Disk drives comprise a disk and a head connected to a distal end of an actuator arm which is rotated about a pivot by a voice coil motor (VCM) to position the head radially over the disk. The disk comprises a plurality of radially spaced, concentric tracks for recording user data sectors and embedded servo sectors. The embedded servo sectors comprise head positioning information (e.g., a track address) which is read by the head and processed by a VCM servo controller to control the velocity of the actuator arm as it seeks from track to track.
An air bearing forms between the head and the disk due to the disk rotating at high speeds. Since the quality of the write/read signal depends on the fly height of the head, conventional heads (e.g., a magnetoresistive heads) may comprise an actuator for controlling the fly height. Any suitable fly height actuator may be employed, such as a heater which controls fly height through thermal expansion, or a piezoelectric (PZT) actuator. A dynamic fly height (DFH) servo controller may measure the fly height of the head and adjust the fly height actuator to maintain a target fly height during write/read operations.
Certain conditions may affect the ability of the VCM servo controller to maintain the head along the centerline of a target data track and/or the ability of the DFH servo controller to maintain the target fly height. For example, an external vibration applied to the disk drive or degradation and/or malfunction of the spindle motor that rotates the disks may induce a disturbance in the servo control systems. The degradation caused by such a disturbance may be ameliorated using a feed-forward compensation algorithm.
In the embodiment of
In one embodiment, the disk drive comprises a suitable microactuator, such as a suitable piezoelectric actuator, for actuating the head 18 in fine movements radially over the disk 16. The microactuator may be implemented in any suitable manner, such as a microactuator that actuates a suspension relative to the actuator arm 42, or a microactuator that actuates a head gimbal relative to the suspension. In one embodiment, feed-forward compensation values may be generated in response to a selected disturbance signal for use in the microactuator servo control system in addition to, or instead of, generating feed-forward compensation values for the VCM servo control system.
In one embodiment, the head 18 may comprise a suitable fly height actuator, such as a heater or a piezoelectric actuator, operable to actuate the head vertically over the disk in order to maintain a target fly height. The control circuitry 20 may comprise a servo control system operable to compare a measured fly height to a target fly height to generate a fly height error used to generate a dynamic fly height (DFH) control signal 44 (
An external vibration applied to the disk drive or degradation and/or malfunction of the spindle motor that rotates the disks may induce a disturbance in one or more of the servo control systems that actuate the head over the disk (radially or vertically). Using a suitable sensor a disturbance signal can be generated that represents the disturbance; however, since the disturbance may be caused by a number of different sources, in embodiments of the present invention a number of sensors are employed each corresponding to a possible source of vibration. The disturbance signals generated by the sensors are evaluated in order to select the optimal disturbance signal(s), that is, the disturbance signal(s) that best represent(s) the actual vibration. In the embodiment of
Any suitable sensor may be used to generate the disturbance signals 641-64N in the embodiments of the present invention, including an electronic sensor and/or a sensor implemented in firmware.
Any suitable algorithm may be employed by the correlators 621-62N to correlate the disturbance signals 641-64N with the error signal 54.
In an embodiment illustrated in the flow diagram of
Any suitable algorithm may be employed to generate the feed-forward compensation values in response to the selected disturbance signal.
y(n)=wT(n)x(n)
e(n)=d(n)−yc(n)
In the above equations, d(n) represents the reference signal an w represents the vector of coefficients in the FIR filter 76. To find the optimal coefficients of the FIR filter the gradient method is used as described by:
Δw(n)J(n)=2E[e(n)Δw(n)e(n)]
which results in
w(n+1)=γw(n)+μxc*(n)e(n)
where γ represents the leakage factor and μ represents the step size. The above described adaption algorithm is based on a known filtered-X LMS algorithm. However, the feed-forward compensation values may be generated using any suitable algorithm.
In another embodiment of the present invention, the optimal disturbance signal(s) that will optimize the feed-forward compensation are selected by evaluating a residual error of the servo control system. First feed-forward compensation values are generated in response to a first disturbance signal and an error signal of the servo control system. A first residual error is generated in response to the first feed-forward compensation values and an output of the servo control system. Second feed-forward compensation values are generated in response to a second disturbance signal and the error signal of the servo control system. A second residual error is generated in response to the second feed-forward compensation values and the output of the servo control system. At least one of the disturbance signals is selected in response to the first and second residual errors. Third feed-forward compensation values are generated in response to the selected disturbance signal, and the third feed-forward compensation values are applied to the servo control system to compensate for a vibration.
In the embodiment of
In one embodiment, when executing the algorithm for selecting the disturbance signals 641-64N, the feed-forward compensation of the servo control system is disabled. With the feed-forward compensation disabled, the effect of a vibration on the servo control system will manifest directly in the error signal 54 so that, for example, each of the disturbance signals 641-64N may be correlated directly with the error signal 54 as illustrated in the embodiment of
In another embodiment, the feed-forward compensation is enabled while evaluating the disturbance signals 641-64N. For example, a first disturbance signal may be selected for feed-forward compensation while the disk drive is subjected to a first type of vibration. Over time the type of vibration may change (due a change in operating conditions) so that the first disturbance signal may no longer correlate well with the error signal 54. Accordingly, in one embodiment the control circuitry may execute the algorithm for selecting the disturbance signals 641-64N while the disk drive is operating normally, and change the selected disturbance signal(s) over time to adapt to changes in operating conditions. However, when the feed-forward compensation is enabled there will be at least some compensation of a different vibration using the currently selected disturbance signal. Therefore, in an embodiment shown in
Any suitable control circuitry may be employed to implement the flow diagrams in the embodiments of the present invention, such as any suitable integrated circuit or circuits. For example, the control circuitry may be implemented within a read channel integrated circuit, or in a component separate from the read channel, such as a disk controller, or certain steps described above may be performed by a read channel and others by a disk controller. In one embodiment, the read channel and disk controller are implemented as separate integrated circuits, and in an alternative embodiment they are fabricated into a single integrated circuit or system on a chip (SOC). In addition, the control circuitry may include a suitable preamp circuit implemented as a separate integrated circuit, integrated into the read channel or disk controller circuit, or integrated into an SOC.
In one embodiment, the control circuitry comprises a microprocessor executing instructions, the instructions being operable to cause the microprocessor to perform the steps of the flow diagrams described herein. The instructions may be stored in any computer-readable medium. In one embodiment, they may be stored on a non-volatile semiconductor memory external to the microprocessor, or integrated with the microprocessor in a SOC. In another embodiment, the instructions are stored on the disk and read into a volatile semiconductor memory when the disk drive is powered on. In yet another embodiment, the control circuitry comprises suitable logic circuitry, such as state machine circuitry.
This application is a divisional of U.S. patent application Ser. No. 13/298,241, filed on Nov. 16, 2011, which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5299075 | Hanks | Mar 1994 | A |
5333138 | Richards et al. | Jul 1994 | A |
5654840 | Patton et al. | Aug 1997 | A |
5663847 | Abramovitch | Sep 1997 | A |
5923487 | Carlson et al. | Jul 1999 | A |
6014283 | Codilian et al. | Jan 2000 | A |
6052076 | Patton, III et al. | Apr 2000 | A |
6052250 | Golowka et al. | Apr 2000 | A |
6067206 | Hull et al. | May 2000 | A |
6078453 | Dziallo et al. | Jun 2000 | A |
6091564 | Codilian et al. | Jul 2000 | A |
6094020 | Goretzki et al. | Jul 2000 | A |
6101065 | Alfred et al. | Aug 2000 | A |
6104153 | Codilian et al. | Aug 2000 | A |
6115200 | Allen et al. | Sep 2000 | A |
6122133 | Nazarian et al. | Sep 2000 | A |
6122135 | Stich | Sep 2000 | A |
6141175 | Nazarian et al. | Oct 2000 | A |
6160368 | Plutowski | Dec 2000 | A |
6181502 | Hussein et al. | Jan 2001 | B1 |
6195222 | Heminger et al. | Feb 2001 | B1 |
6198584 | Codilian et al. | Mar 2001 | B1 |
6198590 | Codilian et al. | Mar 2001 | B1 |
6204988 | Codilian et al. | Mar 2001 | B1 |
6243223 | Elliott et al. | Jun 2001 | B1 |
6281652 | Ryan et al. | Aug 2001 | B1 |
6285521 | Hussein | Sep 2001 | B1 |
6292320 | Mason et al. | Sep 2001 | B1 |
6310742 | Nazarian et al. | Oct 2001 | B1 |
6320718 | Bouwkamp et al. | Nov 2001 | B1 |
6342984 | Hussein et al. | Jan 2002 | B1 |
6347018 | Kadlec et al. | Feb 2002 | B1 |
6369972 | Codilian et al. | Apr 2002 | B1 |
6369974 | Asgari et al. | Apr 2002 | B1 |
6414813 | Cvancara | Jul 2002 | B2 |
6429990 | Serrano et al. | Aug 2002 | B2 |
6462896 | Codilian et al. | Oct 2002 | B1 |
6476996 | Ryan | Nov 2002 | B1 |
6484577 | Bennett | Nov 2002 | B1 |
6493169 | Ferris et al. | Dec 2002 | B1 |
6496324 | Golowka et al. | Dec 2002 | B1 |
6498698 | Golowka et al. | Dec 2002 | B1 |
6507450 | Elliott | Jan 2003 | B1 |
6534936 | Messenger et al. | Mar 2003 | B2 |
6538839 | Ryan | Mar 2003 | B1 |
6545835 | Codilian et al. | Apr 2003 | B1 |
6549359 | Bennett et al. | Apr 2003 | B1 |
6549361 | Bennett et al. | Apr 2003 | B1 |
6560056 | Ryan | May 2003 | B1 |
6564110 | Makino et al. | May 2003 | B1 |
6568268 | Bennett | May 2003 | B1 |
6574062 | Bennett et al. | Jun 2003 | B1 |
6577465 | Bennett et al. | Jun 2003 | B1 |
6614615 | Ju et al. | Sep 2003 | B1 |
6614618 | Sheh et al. | Sep 2003 | B1 |
6636377 | Yu et al. | Oct 2003 | B1 |
6674600 | Codilian et al. | Jan 2004 | B1 |
6690536 | Ryan | Feb 2004 | B1 |
6693764 | Sheh et al. | Feb 2004 | B1 |
6707635 | Codilian et al. | Mar 2004 | B1 |
6710953 | Vallis et al. | Mar 2004 | B1 |
6710966 | Codilian et al. | Mar 2004 | B1 |
6714371 | Codilian | Mar 2004 | B1 |
6714372 | Codilian et al. | Mar 2004 | B1 |
6724564 | Codilian et al. | Apr 2004 | B1 |
6731450 | Codilian et al. | May 2004 | B1 |
6735041 | Codilian et al. | May 2004 | B1 |
6738220 | Codilian | May 2004 | B1 |
6747837 | Bennett | Jun 2004 | B1 |
6754021 | Kisaka et al. | Jun 2004 | B2 |
6760186 | Codilian et al. | Jul 2004 | B1 |
6788483 | Ferris et al. | Sep 2004 | B1 |
6791785 | Messenger et al. | Sep 2004 | B1 |
6795262 | Codilian et al. | Sep 2004 | B1 |
6795268 | Ryan | Sep 2004 | B1 |
6819518 | Melkote et al. | Nov 2004 | B1 |
6826006 | Melkote et al. | Nov 2004 | B1 |
6826007 | Patton, III | Nov 2004 | B1 |
6847502 | Codilian | Jan 2005 | B1 |
6850383 | Bennett | Feb 2005 | B1 |
6850384 | Bennett | Feb 2005 | B1 |
6853512 | Ozawa | Feb 2005 | B2 |
6867944 | Ryan | Mar 2005 | B1 |
6876508 | Patton, III et al. | Apr 2005 | B1 |
6882496 | Codilian et al. | Apr 2005 | B1 |
6885514 | Codilian et al. | Apr 2005 | B1 |
6900958 | Yi et al. | May 2005 | B1 |
6900959 | Gardner et al. | May 2005 | B1 |
6903897 | Wang et al. | Jun 2005 | B1 |
6909574 | Aikawa et al. | Jun 2005 | B2 |
6914740 | Tu et al. | Jul 2005 | B1 |
6914743 | Narayana et al. | Jul 2005 | B1 |
6920004 | Codilian et al. | Jul 2005 | B1 |
6922304 | Nakagawa | Jul 2005 | B2 |
6924959 | Melkote et al. | Aug 2005 | B1 |
6924960 | Melkote et al. | Aug 2005 | B1 |
6924961 | Melkote et al. | Aug 2005 | B1 |
6934114 | Codilian et al. | Aug 2005 | B1 |
6934135 | Ryan | Aug 2005 | B1 |
6937420 | McNab et al. | Aug 2005 | B1 |
6937423 | Ngo et al. | Aug 2005 | B1 |
6950271 | Inaji et al. | Sep 2005 | B2 |
6952318 | Ngo | Oct 2005 | B1 |
6952322 | Codilian et al. | Oct 2005 | B1 |
6954324 | Tu et al. | Oct 2005 | B1 |
6958881 | Codilian et al. | Oct 2005 | B1 |
6958882 | Kisaka | Oct 2005 | B2 |
6963465 | Melkote et al. | Nov 2005 | B1 |
6965488 | Bennett | Nov 2005 | B1 |
6967458 | Bennett et al. | Nov 2005 | B1 |
6967804 | Codilian | Nov 2005 | B1 |
6967811 | Codilian et al. | Nov 2005 | B1 |
6970319 | Bennett et al. | Nov 2005 | B1 |
6972539 | Codilian et al. | Dec 2005 | B1 |
6972540 | Wang et al. | Dec 2005 | B1 |
6972922 | Subrahmanyam et al. | Dec 2005 | B1 |
6975480 | Codilian et al. | Dec 2005 | B1 |
6977789 | Cloke | Dec 2005 | B1 |
6980389 | Kupferman | Dec 2005 | B1 |
6987636 | Chue et al. | Jan 2006 | B1 |
6987639 | Yu | Jan 2006 | B1 |
6989954 | Lee et al. | Jan 2006 | B1 |
6992848 | Agarwal et al. | Jan 2006 | B1 |
6992851 | Cloke | Jan 2006 | B1 |
6992852 | Ying et al. | Jan 2006 | B1 |
6995941 | Miyamura et al. | Feb 2006 | B1 |
6999263 | Melkote et al. | Feb 2006 | B1 |
6999267 | Melkote et al. | Feb 2006 | B1 |
7006320 | Bennett et al. | Feb 2006 | B1 |
7016134 | Agarwal et al. | Mar 2006 | B1 |
7023637 | Kupferman | Apr 2006 | B1 |
7023640 | Codilian et al. | Apr 2006 | B1 |
7027256 | Subrahmanyam et al. | Apr 2006 | B1 |
7027257 | Kupferman | Apr 2006 | B1 |
7035026 | Codilian et al. | Apr 2006 | B2 |
7046472 | Melkote et al. | May 2006 | B1 |
7050249 | Chue et al. | May 2006 | B1 |
7050254 | Yu et al. | May 2006 | B1 |
7050258 | Codilian | May 2006 | B1 |
7054098 | Yu et al. | May 2006 | B1 |
7061714 | Yu | Jun 2006 | B1 |
7064918 | Codilian et al. | Jun 2006 | B1 |
7068451 | Wang et al. | Jun 2006 | B1 |
7068459 | Cloke et al. | Jun 2006 | B1 |
7068461 | Chue et al. | Jun 2006 | B1 |
7068463 | Ji et al. | Jun 2006 | B1 |
7088547 | Wang et al. | Aug 2006 | B1 |
7095579 | Ryan et al. | Aug 2006 | B1 |
7110208 | Miyamura et al. | Sep 2006 | B1 |
7110214 | Tu et al. | Sep 2006 | B1 |
7113362 | Lee et al. | Sep 2006 | B1 |
7113365 | Ryan et al. | Sep 2006 | B1 |
7116505 | Kupferman | Oct 2006 | B1 |
7116611 | Yokoyama | Oct 2006 | B2 |
7126781 | Bennett | Oct 2006 | B1 |
7139401 | Culman et al. | Nov 2006 | B2 |
7142385 | Shimotono et al. | Nov 2006 | B2 |
7154690 | Brunnett et al. | Dec 2006 | B1 |
7158329 | Ryan | Jan 2007 | B1 |
7180703 | Subrahmanyam et al. | Feb 2007 | B1 |
7184230 | Chue et al. | Feb 2007 | B1 |
7196864 | Yi et al. | Mar 2007 | B1 |
7199964 | Liu et al. | Apr 2007 | B2 |
7199966 | Tu et al. | Apr 2007 | B1 |
7203021 | Ryan et al. | Apr 2007 | B1 |
7203028 | Chung et al. | Apr 2007 | B2 |
7209321 | Bennett | Apr 2007 | B1 |
7212364 | Lee | May 2007 | B1 |
7212374 | Wang et al | May 2007 | B1 |
7215504 | Bennett | May 2007 | B1 |
7224546 | Orakcilar et al. | May 2007 | B1 |
7248426 | Weerasooriya et al. | Jul 2007 | B1 |
7251098 | Wang et al. | Jul 2007 | B1 |
7253582 | Ding et al. | Aug 2007 | B1 |
7253989 | Lau et al. | Aug 2007 | B1 |
7265933 | Phan et al. | Sep 2007 | B1 |
7265934 | Takaishi | Sep 2007 | B2 |
7289288 | Tu | Oct 2007 | B1 |
7292403 | Baek et al. | Nov 2007 | B2 |
7298574 | Melkote et al. | Nov 2007 | B1 |
7301717 | Lee et al. | Nov 2007 | B1 |
7304819 | Melkote et al. | Dec 2007 | B1 |
7315433 | Baek et al. | Jan 2008 | B2 |
7319570 | Jia et al. | Jan 2008 | B2 |
7330019 | Bennett | Feb 2008 | B1 |
7330327 | Chue et al. | Feb 2008 | B1 |
7330332 | Baek et al. | Feb 2008 | B2 |
7333280 | Lifchits et al. | Feb 2008 | B1 |
7333290 | Kupferman | Feb 2008 | B1 |
7339761 | Tu et al. | Mar 2008 | B1 |
7365932 | Bennett | Apr 2008 | B1 |
7372659 | Takaishi | May 2008 | B2 |
7382563 | Saitoh et al. | Jun 2008 | B2 |
7388728 | Chen et al. | Jun 2008 | B1 |
7391583 | Sheh et al. | Jun 2008 | B1 |
7391584 | Sheh et al. | Jun 2008 | B1 |
7423833 | Sutardja | Sep 2008 | B1 |
7433143 | Ying et al. | Oct 2008 | B1 |
7440210 | Lee | Oct 2008 | B1 |
7440225 | Chen et al. | Oct 2008 | B1 |
7450334 | Wang et al. | Nov 2008 | B1 |
7450336 | Wang et al. | Nov 2008 | B1 |
7453661 | Jang et al. | Nov 2008 | B1 |
7457071 | Sheh | Nov 2008 | B1 |
7466101 | Takaishi | Dec 2008 | B2 |
7466509 | Chen et al. | Dec 2008 | B1 |
7468855 | Weerasooriya et al. | Dec 2008 | B1 |
7471483 | Ferris et al. | Dec 2008 | B1 |
7477471 | Nemshick et al. | Jan 2009 | B1 |
7480116 | Bennett | Jan 2009 | B1 |
7489464 | McNab et al. | Feb 2009 | B1 |
7492546 | Miyamura | Feb 2009 | B1 |
7495857 | Bennett | Feb 2009 | B1 |
7499236 | Lee et al. | Mar 2009 | B1 |
7502192 | Wang et al. | Mar 2009 | B1 |
7502195 | Wu et al. | Mar 2009 | B1 |
7502197 | Chue | Mar 2009 | B1 |
7504795 | Takaishi | Mar 2009 | B2 |
7505223 | McCornack | Mar 2009 | B1 |
7535192 | Takaishi | May 2009 | B2 |
7542225 | Ding et al. | Jun 2009 | B1 |
7548392 | Desai et al. | Jun 2009 | B1 |
7551390 | Wang et al. | Jun 2009 | B1 |
7558016 | Le et al. | Jul 2009 | B1 |
7561365 | Noguchi et al. | Jul 2009 | B2 |
7573670 | Ryan et al. | Aug 2009 | B1 |
7576941 | Chen et al. | Aug 2009 | B1 |
7580212 | Li et al. | Aug 2009 | B1 |
7583470 | Chen et al. | Sep 2009 | B1 |
7595953 | Cerda et al. | Sep 2009 | B1 |
7595954 | Chen et al. | Sep 2009 | B1 |
7596795 | Ding et al. | Sep 2009 | B2 |
7602575 | Lifchits et al. | Oct 2009 | B1 |
7616399 | Chen et al. | Nov 2009 | B1 |
7619844 | Bennett | Nov 2009 | B1 |
7626782 | Yu et al. | Dec 2009 | B1 |
7630162 | Zhao et al. | Dec 2009 | B2 |
7633704 | Supino et al. | Dec 2009 | B2 |
7639447 | Yu et al. | Dec 2009 | B1 |
7656604 | Liang et al. | Feb 2010 | B1 |
7656607 | Bennett | Feb 2010 | B1 |
7660067 | Ji et al. | Feb 2010 | B1 |
7663835 | Yu et al. | Feb 2010 | B1 |
7675707 | Liu et al. | Mar 2010 | B1 |
7679854 | Narayana et al. | Mar 2010 | B1 |
7688534 | McCornack | Mar 2010 | B1 |
7688538 | Chen et al. | Mar 2010 | B1 |
7688539 | Bryant et al. | Mar 2010 | B1 |
7697233 | Bennett et al. | Apr 2010 | B1 |
7701661 | Bennett | Apr 2010 | B1 |
7710676 | Chue | May 2010 | B1 |
7715138 | Kupferman | May 2010 | B1 |
7729079 | Huber | Jun 2010 | B1 |
7733189 | Bennett | Jun 2010 | B1 |
7746592 | Liang et al. | Jun 2010 | B1 |
7746594 | Guo et al. | Jun 2010 | B1 |
7746595 | Guo et al. | Jun 2010 | B1 |
7760461 | Bennett | Jul 2010 | B1 |
7800853 | Guo et al. | Sep 2010 | B1 |
7800856 | Bennett et al. | Sep 2010 | B1 |
7800857 | Calaway et al. | Sep 2010 | B1 |
7839591 | Weerasooriya et al. | Nov 2010 | B1 |
7839595 | Chue et al. | Nov 2010 | B1 |
7839600 | Babinski et al. | Nov 2010 | B1 |
7843662 | Weerasooriya et al. | Nov 2010 | B1 |
7852588 | Ferris et al. | Dec 2010 | B1 |
7852592 | Liang et al. | Dec 2010 | B1 |
7864481 | Kon et al. | Jan 2011 | B1 |
7864482 | Babinski et al. | Jan 2011 | B1 |
7869155 | Wong | Jan 2011 | B1 |
7876522 | Calaway et al. | Jan 2011 | B1 |
7876523 | Panyavoravaj et al. | Jan 2011 | B1 |
7881009 | Cherubini | Feb 2011 | B2 |
7916415 | Chue | Mar 2011 | B1 |
7916416 | Guo et al. | Mar 2011 | B1 |
7916420 | McFadyen et al. | Mar 2011 | B1 |
7916422 | Guo et al. | Mar 2011 | B1 |
7929238 | Vasquez | Apr 2011 | B1 |
7940489 | Sutardja | May 2011 | B1 |
7961422 | Chen et al. | Jun 2011 | B1 |
8000053 | Anderson | Aug 2011 | B1 |
8031423 | Tsai et al. | Oct 2011 | B1 |
8054022 | Ryan et al. | Nov 2011 | B1 |
8059357 | Knigge et al. | Nov 2011 | B1 |
8059360 | Melkote et al. | Nov 2011 | B1 |
8072703 | Calaway et al. | Dec 2011 | B1 |
8077428 | Chen et al. | Dec 2011 | B1 |
8078901 | Meyer et al. | Dec 2011 | B1 |
8081395 | Ferris | Dec 2011 | B1 |
8085020 | Bennett | Dec 2011 | B1 |
8116023 | Kupferman | Feb 2012 | B1 |
8145934 | Ferris et al. | Mar 2012 | B1 |
8179626 | Ryan et al. | May 2012 | B1 |
8180464 | Gao et al. | May 2012 | B2 |
8189286 | Chen et al. | May 2012 | B1 |
8213106 | Guo et al. | Jul 2012 | B1 |
8254222 | Tang | Aug 2012 | B1 |
8300348 | Liu et al. | Oct 2012 | B1 |
8315005 | Zou et al. | Nov 2012 | B1 |
8320069 | Knigge et al. | Nov 2012 | B1 |
8351174 | Gardner et al. | Jan 2013 | B1 |
8358114 | Ferris et al. | Jan 2013 | B1 |
8358145 | Ferris et al. | Jan 2013 | B1 |
8390367 | Bennett | Mar 2013 | B1 |
8432031 | Agness et al. | Apr 2013 | B1 |
8432629 | Rigney et al. | Apr 2013 | B1 |
8451697 | Rigney et al. | May 2013 | B1 |
8477444 | Zou et al. | Jul 2013 | B1 |
8482873 | Chue et al. | Jul 2013 | B1 |
8498076 | Sheh et al. | Jul 2013 | B1 |
8498172 | Patton, III et al. | Jul 2013 | B1 |
8508881 | Babinski et al. | Aug 2013 | B1 |
8531798 | Xi et al. | Sep 2013 | B1 |
8537486 | Liang et al. | Sep 2013 | B2 |
8542455 | Huang et al. | Sep 2013 | B2 |
8553351 | Narayana et al. | Oct 2013 | B1 |
8564899 | Lou et al. | Oct 2013 | B2 |
8576506 | Wang et al. | Nov 2013 | B1 |
8605382 | Mallary et al. | Dec 2013 | B1 |
8605384 | Liu et al. | Dec 2013 | B1 |
8610391 | Yang et al. | Dec 2013 | B1 |
8611040 | Xi et al. | Dec 2013 | B1 |
8619385 | Guo et al. | Dec 2013 | B1 |
8630054 | Bennett et al. | Jan 2014 | B2 |
8630059 | Chen et al. | Jan 2014 | B1 |
8634154 | Rigney et al. | Jan 2014 | B1 |
8634158 | Chahwan et al. | Jan 2014 | B1 |
8634283 | Rigney et al. | Jan 2014 | B1 |
8643976 | Wang et al. | Feb 2014 | B1 |
8644963 | Gao et al. | Feb 2014 | B2 |
8649121 | Smith et al. | Feb 2014 | B1 |
8654466 | McFadyen | Feb 2014 | B1 |
8654467 | Wong et al. | Feb 2014 | B1 |
8665546 | Zhao et al. | Mar 2014 | B1 |
8665551 | Rigney et al. | Mar 2014 | B1 |
8670206 | Liang et al. | Mar 2014 | B1 |
8687312 | Liang | Apr 2014 | B1 |
8693123 | Guo et al. | Apr 2014 | B1 |
8693134 | Xi et al. | Apr 2014 | B1 |
8699173 | Kang et al. | Apr 2014 | B1 |
8711027 | Bennett | Apr 2014 | B1 |
8717696 | Ryan et al. | May 2014 | B1 |
8717699 | Ferris | May 2014 | B1 |
8717704 | Yu et al. | May 2014 | B1 |
8724245 | Smith et al. | May 2014 | B1 |
8724253 | Liang et al. | May 2014 | B1 |
8724524 | Urabe et al. | May 2014 | B2 |
8737008 | Watanabe et al. | May 2014 | B1 |
8737013 | Zhou et al. | May 2014 | B2 |
8743495 | Chen et al. | Jun 2014 | B1 |
8743503 | Tang et al. | Jun 2014 | B1 |
8743504 | Bryant et al. | Jun 2014 | B1 |
8749904 | Liang et al. | Jun 2014 | B1 |
8760796 | Lou et al. | Jun 2014 | B1 |
8767332 | Chahwan et al. | Jul 2014 | B1 |
8767343 | Helmick et al. | Jul 2014 | B1 |
8767354 | Ferris et al. | Jul 2014 | B1 |
8773787 | Beker | Jul 2014 | B1 |
8779574 | Agness et al. | Jul 2014 | B1 |
8780473 | Zhao et al. | Jul 2014 | B1 |
8780477 | Guo et al. | Jul 2014 | B1 |
8780479 | Helmick et al. | Jul 2014 | B1 |
8780489 | Gayaka et al. | Jul 2014 | B1 |
8792202 | Wan et al. | Jul 2014 | B1 |
8797664 | Guo et al. | Aug 2014 | B1 |
8804267 | Huang et al. | Aug 2014 | B2 |
20020153451 | Kiss et al. | Oct 2002 | A1 |
20030123182 | Inaji et al. | Jul 2003 | A1 |
20040080860 | Inaji et al. | Apr 2004 | A1 |
20040240101 | Inaji et al. | Dec 2004 | A1 |
20050088774 | Bahirat et al. | Apr 2005 | A1 |
20060291087 | Suh et al. | Dec 2006 | A1 |
20060291101 | Takaishi | Dec 2006 | A1 |
20080065240 | Takaishi | Mar 2008 | A1 |
20080174900 | Abrishamchian et al. | Jul 2008 | A1 |
20090002869 | Cherubini | Jan 2009 | A1 |
20090034116 | Higashino et al. | Feb 2009 | A1 |
20090034117 | Higashino | Feb 2009 | A1 |
20090135516 | Takasaki et al. | May 2009 | A1 |
20100035085 | Jung et al. | Feb 2010 | A1 |
20100061007 | Matsushita et al. | Mar 2010 | A1 |
20100079906 | Wile et al. | Apr 2010 | A1 |
20120050904 | Park et al. | Mar 2012 | A1 |
20120284493 | Lou et al. | Nov 2012 | A1 |
20130120870 | Zhou et al. | May 2013 | A1 |
20130148240 | Ferris et al. | Jun 2013 | A1 |
20140195013 | Gao et al. | Jul 2014 | A1 |
Number | Date | Country |
---|---|---|
2001-266466 | Sep 2001 | JP |
Entry |
---|
L Hakansson, “The Filtered-x LMS Alogrithm”, Department of Telecommunications and Signal Processing, University of Karlskrona/Rooneby, 372 25 Ronneby, Sweden, Jan. 15, 2004. |
Min Chen, et. al., U.S. Appl. No. 13/162,095, filed Jun. 16, 2011, 27 pages. |
Jianguo Zhou, et. al., U.S. Appl. No. 13/298,241, filed Nov. 16, 2011, 28 pages. |
Jianguo Zhou, et. al., Office Action dated Aug. 9, 2013, U.S. Appl. No. 13/298,241, filed Nov. 16, 2011, 10 pages. |
Jianguo Zhou, et. al., Notice of Allowance dated Jan. 17, 2014, U.S. Appl. No. 13/298,241, filed Nov. 16, 2011, 10 pages. |
Number | Date | Country | |
---|---|---|---|
Parent | 13298241 | Nov 2011 | US |
Child | 14253797 | US |