When manufacturing a disk drive, concentric servo sectors 20-2N are written to a disk 4 which define a plurality of radially-spaced, concentric data tracks 6 as shown in the prior art disk format of
In the past, external servo writers have been used to write the concentric servo sectors 20-2N to the disk surface during manufacturing. External servo writers employ extremely accurate head positioning mechanics, such as a laser interferometer, to ensure the concentric servo sectors 20-2N are written at the proper radial location from the outer diameter of the disk to the inner diameter of the disk. However, external servo writers are expensive and require a clean room environment so that a head positioning pin can be inserted into the head disk assembly (HDA) without contaminating the disk. Thus, external servo writers have become an expensive bottleneck in the disk drive manufacturing process.
The prior art has suggested various “self-servo” writing methods wherein the internal electronics of the disk drive are used to write the concentric servo sectors independent of an external servo writer. For example, U.S. Pat. No. 5,668,679 teaches a disk drive which performs a self-servo writing operation by writing a plurality of spiral servo tracks to the disk which are then processed to write the concentric servo sectors along a circular path. Each spiral servo track is written to the disk as a high frequency signal (with missing bits), wherein the position error signal (PES) for tracking is generated relative to time shifts in the detected location of the spiral servo tracks. The read signal is rectified and low pass filtered to generate a triangular envelope signal representing a spiral servo track crossing, wherein the location of the spiral servo track is detected by detecting a peak in the triangular envelope signal relative to a clock synchronized to the rotation of the disk.
In an embodiment of the present invention, a disk drive comprises a head actuated over a disk comprising a plurality of spiral tracks, each spiral track comprising a high frequency signal interrupted at a predetermined interval by a sync mark. An offset r0 representing a difference between an axial rotation of the disk and an axial rotation of the spiral tracks is estimated. Radial dependent timing compensation values are generated in response to the estimated r0. A phase error is generated in response to the sync marks in the spiral track crossings. A control signal is generated in response to the phase error and the radial dependent timing compensation values, and a frequency of an oscillator is adjusted in response to the control signal.
The spiral tracks may comprise any suitable pattern and may be written to the disk using any suitable technique, such as using a media writer or an external writer for writing the spiral tracks to the disk, or stamping the spiral tracks on the disk using magnetic printing techniques. In another embodiment, the control circuitry internal to each production disk drive may be used to self-servo write the spiral tracks to the disk.
The external spiral servo writer 36 comprises a head positioner 38 for actuating a head positioning pin 40 using sensitive positioning circuitry, such as a laser interferometer. Pattern circuitry 42 generates the data sequence written to the disk 18 for the spiral tracks 200-20N. The external spiral servo writer 36 inserts a clock head 46 into the HDA 32 for writing a clock track 44 (
In the embodiment of
Referring again to the embodiment of
The sync marks 24 in the spiral tracks 200-20N may comprise any suitable pattern, and in one embodiment, a pattern that is substantially shorter than the sync mark 10 in the conventional product servo sectors 2 of
In one embodiment, the servo write clock is further synchronized by generating a timing recovery measurement from the high frequency signal 22 between the sync marks 24 in the spiral tracks 200-20N. Synchronizing the servo write clock to the high frequency signal 22 helps maintain proper radial alignment (phase coherency) of the Gray coded track addresses in the product servo sectors. The timing recovery measurement may be generated in any suitable manner. In one embodiment, the servo write clock is used to sample the high frequency signal 22 and the signal sample values are processed to generate the timing recovery measurement. The timing recovery measurement adjusts the phase of the servo write clock (PLL) so that the high frequency signal 22 is sampled synchronously. In this manner, the sync marks 24 provide a coarse timing recovery measurement and the high frequency signal 22 provides a fine timing recovery measurement for maintaining synchronization of the servo write clock.
The spiral PES for maintaining the head 28 along a servo track (tracking) may be generated from the spiral tracks 200-20N in any suitable manner. In one embodiment, the PES is generated by detecting the eye pattern in
Once the head 28 is tracking on a servo track, the product servo sectors 560-56N are written to the disk using the servo write clock. Write circuitry is enabled when the modulo-N counter reaches a predetermined value, wherein the servo write clock clocks the write circuitry to write the product servo sector 56 to the disk. The spiral tracks 200-20N on the disk are processed in an interleaved manner to account for the product servo sectors 560-56N overwriting a spiral track. For example, when writing the product servo sectors 561 to the disk, spiral track 200 is processed initially to generate the spiral PES tracking error and the servo write clock timing recovery measurement. When the product servo sectors 561 begin to overwrite spiral track 201, spiral track 200 is processed to generate the spiral PES tracking error and the servo write clock timing recovery measurement.
In the embodiment of
As the disk 18 rotates about Cspin, Cseed will rotate about Cspin along the dashed circle shown in
The magnitude of the circumferential phase offset P will vary based on the radial location of the head 28. This is illustrated in
where rs represents the radial location of the head 28, and θ represents the rotation angle of the disk 18. In the embodiment of
The offset r0 between Cspin and Cseed shown in
The adjusted PES 98 is filtered using a suitable compensator 100 to generate a control signal 102 applied to the actuator 82. Eventually the coefficients (a1,b1) of the sinusoid 94 will adapt such that the RRO in the adjusted PES 98 is substantially canceled. Once the coefficients (a1,b1) have adapted, the amplitude of the resulting sinusoid 94 represents the amplitude of the offset r0 in
In the embodiment of
The offset r0 may be estimated in any suitable manner, and in one embodiment the offset r0 is estimated in response to a repeatable runout (RRO) in the phase error of the PLL that generates the servo write clock. As the disk 18 rotates and Cseed rotates around Cspin as shown in
In one embodiment in order to estimate the offset r0, the head 28 is positioned at a first radial location R1 as shown in
R2−R1=r0/tan ψ2−r0/tan ψ1
The phase of the offset r0 relative to the rotation angle of the disk 18 may be determined relative to the angle of the disk 18 when the RRO in the phase error reaches its peak. In the example shown in
Estimating the offset r0 using the above equation assumes the head 28 follows the RRO in the position error while servoing on the spiral tracks 200-20N (e.g., using feed-forward compensation). In this manner, the distance between R1 and R2 can be measured based on the corresponding tracks defined by the spiral tracks 200-20N when Ψ1 and Ψ2 reach their peak. In another embodiment, the RRO may be canceled from the position error while servoing on the spiral tracks 200-20N. In this embodiment, R1 and R2 may be measured along the axis aligned with Cspin based on the corresponding tracks defined by the spiral tracks 200-20N when Ψ1 and Ψ2 reach their peak. Accordingly, the above equation in this embodiment is modified to derive the estimate for the offset r0 based on the measured hypotenuse of the right triangles shown in
where a1 and b1 are the first coefficients, k is the kth spiral track out of N spiral tracks, r is the radial location of the head, and r1 represents a part of the radius of the disk spanned by a complete revolution of the spiral tracks (as illustrated in
The feed-forward timing compensation values 128 adjust the control signal 78 to generate an adjusted control signal 130 used to adjust the frequency of the oscillator 58. The coefficients a1,b1 are adapted 124 in order to drive the RRO in the phase error 68 toward zero. Once the coefficients a1,b1 have adapted, the resulting sinusoid 126 represents the RRO in the phase error 68, and the peak in the sinusoid 126 represents the peak in the RRO (Ψ1 or Ψ2 described above).
Any suitable control circuitry may be employed to implement the flow diagrams in the embodiments of the present invention, such as any suitable integrated circuit or circuits. For example, the control circuitry may be implemented within a read channel integrated circuit, or in a component separate from the read channel, such as a disk controller, or certain operations described above may be performed by a read channel and others by a disk controller. In one embodiment, the read channel and disk controller are implemented as separate integrated circuits, and in an alternative embodiment they are fabricated into a single integrated circuit or system on a chip (SOC). In addition, the control circuitry may include a suitable preamp circuit implemented as a separate integrated circuit, integrated into the read channel or disk controller circuit, or integrated into an SOC.
In one embodiment, the control circuitry comprises a microprocessor executing instructions, the instructions being operable to cause the microprocessor to perform the flow diagrams described herein. The instructions may be stored in any computer-readable medium. In one embodiment, they may be stored on a non-volatile semiconductor memory external to the microprocessor, or integrated with the microprocessor in a SOC. In another embodiment, the instructions are stored on the disk and read into a volatile semiconductor memory when the disk drive is powered on. In yet another embodiment, the control circuitry comprises suitable logic circuitry, such as state machine circuitry.
Number | Name | Date | Kind |
---|---|---|---|
4404605 | Sakamoto | Sep 1983 | A |
4764914 | Estes et al. | Aug 1988 | A |
5306994 | Supino | Apr 1994 | A |
5416759 | Chun | May 1995 | A |
5612833 | Yarmchuk et al. | Mar 1997 | A |
5668679 | Swearingen et al. | Sep 1997 | A |
5793559 | Shepherd et al. | Aug 1998 | A |
5844742 | Yarmchuk et al. | Dec 1998 | A |
5889631 | Hobson | Mar 1999 | A |
5905705 | Takeda et al. | May 1999 | A |
5907447 | Yarmchuk et al. | May 1999 | A |
5930068 | Gregg et al. | Jul 1999 | A |
6014283 | Codilian et al. | Jan 2000 | A |
6052076 | Patton, III et al. | Apr 2000 | A |
6052250 | Golowka et al. | Apr 2000 | A |
6061200 | Shepherd et al. | May 2000 | A |
6067206 | Hull et al. | May 2000 | A |
6078453 | Dziallo et al. | Jun 2000 | A |
6091564 | Codilian et al. | Jul 2000 | A |
6094020 | Goretzki et al. | Jul 2000 | A |
6101065 | Alfred et al. | Aug 2000 | A |
6104153 | Codilian et al. | Aug 2000 | A |
6118739 | Kishinami et al. | Sep 2000 | A |
6122133 | Nazarian et al. | Sep 2000 | A |
6122135 | Stich | Sep 2000 | A |
6128153 | Hasegawa et al. | Oct 2000 | A |
6141175 | Nazarian et al. | Oct 2000 | A |
6160368 | Plutowski | Dec 2000 | A |
6181502 | Hussein et al. | Jan 2001 | B1 |
6181652 | Katou et al. | Jan 2001 | B1 |
6195222 | Heminger et al. | Feb 2001 | B1 |
6198584 | Codilian et al. | Mar 2001 | B1 |
6198590 | Codilian et al. | Mar 2001 | B1 |
6204988 | Codilian et al. | Mar 2001 | B1 |
6243223 | Elliott et al. | Jun 2001 | B1 |
6281652 | Ryan et al. | Aug 2001 | B1 |
6285521 | Hussein | Sep 2001 | B1 |
6292320 | Mason et al. | Sep 2001 | B1 |
6310742 | Nazarian et al. | Oct 2001 | B1 |
6320718 | Bouwkamp et al. | Nov 2001 | B1 |
6342984 | Hussein et al. | Jan 2002 | B1 |
6347018 | Kadlec et al. | Feb 2002 | B1 |
6369972 | Codilian et al. | Apr 2002 | B1 |
6369974 | Asgari et al. | Apr 2002 | B1 |
6370094 | Kishinami et al. | Apr 2002 | B1 |
6392834 | Ellis | May 2002 | B1 |
6421198 | Lamberts et al. | Jul 2002 | B1 |
6442112 | Tateishi | Aug 2002 | B1 |
6462896 | Codilian et al. | Oct 2002 | B1 |
6476995 | Liu et al. | Nov 2002 | B1 |
6476996 | Ryan | Nov 2002 | B1 |
6484577 | Bennett | Nov 2002 | B1 |
6493169 | Ferris et al. | Dec 2002 | B1 |
6496322 | Hasegawa et al. | Dec 2002 | B1 |
6496324 | Golowka et al. | Dec 2002 | B1 |
6498698 | Golowka et al. | Dec 2002 | B1 |
6507450 | Elliott | Jan 2003 | B1 |
6510112 | Sakamoto et al. | Jan 2003 | B1 |
6522493 | Dobbek et al. | Feb 2003 | B1 |
6534936 | Messenger et al. | Mar 2003 | B2 |
6538839 | Ryan | Mar 2003 | B1 |
6545835 | Codilian et al. | Apr 2003 | B1 |
6549359 | Bennett et al. | Apr 2003 | B1 |
6549361 | Bennett et al. | Apr 2003 | B1 |
6560056 | Ryan | May 2003 | B1 |
6563663 | Bi et al. | May 2003 | B1 |
6568268 | Bennett | May 2003 | B1 |
6574062 | Bennett et al. | Jun 2003 | B1 |
6577465 | Bennett et al. | Jun 2003 | B1 |
6606214 | Liu et al. | Aug 2003 | B1 |
6608731 | Szita | Aug 2003 | B2 |
6611397 | Nguyen | Aug 2003 | B1 |
6614615 | Ju et al. | Sep 2003 | B1 |
6614618 | Sheh et al. | Sep 2003 | B1 |
6624963 | Szita | Sep 2003 | B2 |
6636377 | Yu et al. | Oct 2003 | B1 |
6654198 | Liu et al. | Nov 2003 | B2 |
6657810 | Kupferman | Dec 2003 | B1 |
6667840 | Cheong et al. | Dec 2003 | B1 |
6690536 | Ryan | Feb 2004 | B1 |
6693764 | Sheh et al. | Feb 2004 | B1 |
6707635 | Codilian et al. | Mar 2004 | B1 |
6710953 | Vallis et al. | Mar 2004 | B1 |
6710966 | Codilian et al. | Mar 2004 | B1 |
6714371 | Codilian | Mar 2004 | B1 |
6714372 | Codilian et al. | Mar 2004 | B1 |
6724564 | Codilian et al. | Apr 2004 | B1 |
6731450 | Codilian et al. | May 2004 | B1 |
6735040 | Galloway et al. | May 2004 | B2 |
6735041 | Codilian et al. | May 2004 | B1 |
6738220 | Codilian | May 2004 | B1 |
6747837 | Bennett | Jun 2004 | B1 |
6751042 | Bi et al. | Jun 2004 | B2 |
6760186 | Codilian et al. | Jul 2004 | B1 |
6775091 | Sutardja | Aug 2004 | B1 |
6785084 | Szita | Aug 2004 | B2 |
6788483 | Ferris et al. | Sep 2004 | B1 |
6791785 | Messenger et al. | Sep 2004 | B1 |
6795268 | Ryan | Sep 2004 | B1 |
6798606 | Tang et al. | Sep 2004 | B2 |
6819518 | Melkote et al. | Nov 2004 | B1 |
6826006 | Melkote et al. | Nov 2004 | B1 |
6826007 | Patton, III | Nov 2004 | B1 |
6847502 | Codilian | Jan 2005 | B1 |
6850383 | Bennett | Feb 2005 | B1 |
6850384 | Bennett | Feb 2005 | B1 |
6862155 | Yang et al. | Mar 2005 | B2 |
6867944 | Ryan | Mar 2005 | B1 |
6876508 | Patton, III et al. | Apr 2005 | B1 |
6882496 | Codilian et al. | Apr 2005 | B1 |
6885514 | Codilian et al. | Apr 2005 | B1 |
6900958 | Yi et al. | May 2005 | B1 |
6900959 | Gardner et al. | May 2005 | B1 |
6903897 | Wang et al. | Jun 2005 | B1 |
6914740 | Tu et al. | Jul 2005 | B1 |
6914743 | Narayana et al. | Jul 2005 | B1 |
6920004 | Codilian et al. | Jul 2005 | B1 |
6922304 | Nakagawa | Jul 2005 | B2 |
6924959 | Melkote et al. | Aug 2005 | B1 |
6924960 | Melkote et al. | Aug 2005 | B1 |
6924961 | Melkote et al. | Aug 2005 | B1 |
6934114 | Codilian et al. | Aug 2005 | B1 |
6934135 | Ryan | Aug 2005 | B1 |
6937420 | McNab et al. | Aug 2005 | B1 |
6937423 | Ngo et al. | Aug 2005 | B1 |
6952320 | Pollock et al. | Oct 2005 | B1 |
6952322 | Codilian et al. | Oct 2005 | B1 |
6954324 | Tu et al. | Oct 2005 | B1 |
6958881 | Codilian et al. | Oct 2005 | B1 |
6963465 | Melkote et al. | Nov 2005 | B1 |
6965488 | Bennett | Nov 2005 | B1 |
6965491 | Perlmutter et al. | Nov 2005 | B1 |
6967458 | Bennett et al. | Nov 2005 | B1 |
6967811 | Codilian et al. | Nov 2005 | B1 |
6970319 | Bennett et al. | Nov 2005 | B1 |
6972539 | Codilian et al. | Dec 2005 | B1 |
6972540 | Wang et al. | Dec 2005 | B1 |
6972922 | Subrahmanyam et al. | Dec 2005 | B1 |
6975478 | Fukushima et al. | Dec 2005 | B2 |
6975480 | Codilian et al. | Dec 2005 | B1 |
6977789 | Cloke | Dec 2005 | B1 |
6977792 | Melrose et al. | Dec 2005 | B1 |
6980389 | Kupferman | Dec 2005 | B1 |
6987636 | Chue et al. | Jan 2006 | B1 |
6987639 | Yu | Jan 2006 | B1 |
6989954 | Lee et al. | Jan 2006 | B1 |
6992848 | Agarwal et al. | Jan 2006 | B1 |
6992851 | Cloke | Jan 2006 | B1 |
6992852 | Ying et al. | Jan 2006 | B1 |
6995941 | Miyamura et al. | Feb 2006 | B1 |
6999263 | Melkote et al. | Feb 2006 | B1 |
6999266 | Schmidt | Feb 2006 | B1 |
6999267 | Melkote et al. | Feb 2006 | B1 |
7002767 | Annampedu et al. | Feb 2006 | B2 |
7006320 | Bennett et al. | Feb 2006 | B1 |
7012778 | Shigematsu | Mar 2006 | B2 |
7016134 | Agarwal et al. | Mar 2006 | B1 |
7023637 | Kupferman | Apr 2006 | B1 |
7023640 | Codilian et al. | Apr 2006 | B1 |
7027255 | Schmidt | Apr 2006 | B2 |
7027256 | Subrahmanyam et al. | Apr 2006 | B1 |
7027257 | Kupferman | Apr 2006 | B1 |
7035026 | Codilian et al. | Apr 2006 | B2 |
7046472 | Melkote et al. | May 2006 | B1 |
7050249 | Chue et al. | May 2006 | B1 |
7050254 | Yu et al. | May 2006 | B1 |
7050258 | Codilian | May 2006 | B1 |
7054096 | Sun et al. | May 2006 | B1 |
7054098 | Yu et al. | May 2006 | B1 |
7057836 | Kupferman | Jun 2006 | B1 |
7061714 | Yu | Jun 2006 | B1 |
7064918 | Codilian et al. | Jun 2006 | B1 |
7068451 | Wang et al. | Jun 2006 | B1 |
7068459 | Cloke et al. | Jun 2006 | B1 |
7068461 | Chue et al. | Jun 2006 | B1 |
7068463 | Ji et al. | Jun 2006 | B1 |
7088547 | Wang et al. | Aug 2006 | B1 |
7095579 | Ryan et al. | Aug 2006 | B1 |
7106542 | Sun et al. | Sep 2006 | B1 |
7106547 | Hargarten et al. | Sep 2006 | B1 |
7110208 | Miyamura et al. | Sep 2006 | B1 |
7110209 | Ehrlich et al. | Sep 2006 | B2 |
7110214 | Tu et al. | Sep 2006 | B1 |
7113362 | Lee et al. | Sep 2006 | B1 |
7113365 | Ryan et al. | Sep 2006 | B1 |
7116505 | Kupferman | Oct 2006 | B1 |
7119981 | Hanson et al. | Oct 2006 | B2 |
7123433 | Melrose et al. | Oct 2006 | B1 |
7126781 | Bennett | Oct 2006 | B1 |
7158329 | Ryan | Jan 2007 | B1 |
7167336 | Ehrlich et al. | Jan 2007 | B1 |
7180703 | Subrahmanyam et al. | Feb 2007 | B1 |
7184230 | Chue et al. | Feb 2007 | B1 |
7196864 | Yi et al. | Mar 2007 | B1 |
7199966 | Tu et al. | Apr 2007 | B1 |
7203021 | Ryan et al. | Apr 2007 | B1 |
7209321 | Bennett | Apr 2007 | B1 |
7212364 | Lee | May 2007 | B1 |
7212374 | Wang et al. | May 2007 | B1 |
7215504 | Bennett | May 2007 | B1 |
7224546 | Orakcilar et al. | May 2007 | B1 |
7230786 | Ray et al. | Jun 2007 | B1 |
7248426 | Weerasooriya et al. | Jul 2007 | B1 |
7251098 | Wang et al. | Jul 2007 | B1 |
7253582 | Ding et al. | Aug 2007 | B1 |
7253989 | Lau et al. | Aug 2007 | B1 |
7257062 | Li et al. | Aug 2007 | B2 |
7265933 | Phan et al. | Sep 2007 | B1 |
7271977 | Melrose et al. | Sep 2007 | B1 |
7286317 | Li et al. | Oct 2007 | B1 |
7289288 | Tu | Oct 2007 | B1 |
7298574 | Melkote et al. | Nov 2007 | B1 |
7301717 | Lee et al. | Nov 2007 | B1 |
7304819 | Melkote et al. | Dec 2007 | B1 |
7315431 | Perlmutter et al. | Jan 2008 | B1 |
7317669 | Lee | Jan 2008 | B2 |
7330019 | Bennett | Feb 2008 | B1 |
7330322 | Hanson et al. | Feb 2008 | B2 |
7330327 | Chue et al. | Feb 2008 | B1 |
7333280 | Lifchits et al. | Feb 2008 | B1 |
7333287 | Hara | Feb 2008 | B2 |
7333288 | Kim et al. | Feb 2008 | B2 |
7333290 | Kupferman | Feb 2008 | B1 |
7339761 | Tu et al. | Mar 2008 | B1 |
7365932 | Bennett | Apr 2008 | B1 |
7388728 | Chen et al. | Jun 2008 | B1 |
7391583 | Sheh et al. | Jun 2008 | B1 |
7391584 | Sheh et al. | Jun 2008 | B1 |
7408735 | Coric | Aug 2008 | B1 |
7433143 | Ying et al. | Oct 2008 | B1 |
7436742 | Yanagawa | Oct 2008 | B2 |
7440210 | Lee | Oct 2008 | B1 |
7440225 | Chen et al. | Oct 2008 | B1 |
7450334 | Wang et al. | Nov 2008 | B1 |
7450336 | Wang et al. | Nov 2008 | B1 |
7453661 | Jang et al. | Nov 2008 | B1 |
7457071 | Sheh | Nov 2008 | B1 |
7457075 | Liu et al. | Nov 2008 | B2 |
7460328 | Chase et al. | Dec 2008 | B2 |
7460330 | Takaishi | Dec 2008 | B2 |
7466509 | Chen et al. | Dec 2008 | B1 |
7468855 | Weerasooriya et al. | Dec 2008 | B1 |
7474491 | Liikanen et al. | Jan 2009 | B2 |
7477471 | Nemshick et al. | Jan 2009 | B1 |
7477473 | Patapoutian et al. | Jan 2009 | B2 |
7480116 | Bennett | Jan 2009 | B1 |
7489464 | McNab et al. | Feb 2009 | B1 |
7489469 | Sun et al. | Feb 2009 | B2 |
7492546 | Miyamura | Feb 2009 | B1 |
7495857 | Bennett | Feb 2009 | B1 |
7499236 | Lee et al. | Mar 2009 | B1 |
7502192 | Wang et al. | Mar 2009 | B1 |
7502195 | Wu et al. | Mar 2009 | B1 |
7502197 | Chue | Mar 2009 | B1 |
7505223 | McCornack | Mar 2009 | B1 |
7525754 | Melrose et al. | Apr 2009 | B2 |
7542225 | Ding et al. | Jun 2009 | B1 |
7548392 | Desai et al. | Jun 2009 | B1 |
7551387 | Sun et al. | Jun 2009 | B2 |
7551390 | Wang et al. | Jun 2009 | B1 |
7558016 | Le et al. | Jul 2009 | B1 |
7561361 | Rutherford | Jul 2009 | B1 |
7573670 | Ryan et al. | Aug 2009 | B1 |
7576941 | Chen et al. | Aug 2009 | B1 |
7580212 | Li et al. | Aug 2009 | B1 |
7583470 | Chen et al. | Sep 2009 | B1 |
7595954 | Chen et al. | Sep 2009 | B1 |
7602575 | Lifchits et al. | Oct 2009 | B1 |
7616399 | Chen et al. | Nov 2009 | B1 |
7619844 | Bennett | Nov 2009 | B1 |
7626782 | Yu et al. | Dec 2009 | B1 |
7630162 | Zhao et al. | Dec 2009 | B2 |
7639447 | Yu et al. | Dec 2009 | B1 |
7646559 | Cheung et al. | Jan 2010 | B1 |
7656604 | Liang et al. | Feb 2010 | B1 |
7656607 | Bennett | Feb 2010 | B1 |
7660067 | Ji et al. | Feb 2010 | B1 |
7663835 | Yu et al. | Feb 2010 | B1 |
7675707 | Liu et al. | Mar 2010 | B1 |
7679854 | Narayana et al. | Mar 2010 | B1 |
7688534 | McCornack | Mar 2010 | B1 |
7688538 | Chen et al. | Mar 2010 | B1 |
7688539 | Bryant et al. | Mar 2010 | B1 |
7697233 | Bennett et al. | Apr 2010 | B1 |
7701661 | Bennett | Apr 2010 | B1 |
7710676 | Chue | May 2010 | B1 |
7715138 | Kupferman | May 2010 | B1 |
7729079 | Huber | Jun 2010 | B1 |
7733189 | Bennett | Jun 2010 | B1 |
7746592 | Liang et al. | Jun 2010 | B1 |
7746594 | Guo et al. | Jun 2010 | B1 |
7746595 | Guo et al. | Jun 2010 | B1 |
7760455 | Kang et al. | Jul 2010 | B2 |
7760461 | Bennett | Jul 2010 | B1 |
7773328 | Katchmart et al. | Aug 2010 | B1 |
7791832 | Cheung et al. | Sep 2010 | B1 |
7796479 | Kim et al. | Sep 2010 | B2 |
7800853 | Guo et al. | Sep 2010 | B1 |
7800856 | Bennett et al. | Sep 2010 | B1 |
7800857 | Calaway et al. | Sep 2010 | B1 |
7800859 | Moriya et al. | Sep 2010 | B2 |
7839591 | Weerasooriya et al. | Nov 2010 | B1 |
7839595 | Chue et al. | Nov 2010 | B1 |
7839600 | Babinski et al. | Nov 2010 | B1 |
7843662 | Weerasooriya et al. | Nov 2010 | B1 |
7852588 | Ferris et al. | Dec 2010 | B1 |
7852592 | Liang et al. | Dec 2010 | B1 |
7864481 | Kon et al. | Jan 2011 | B1 |
7864482 | Babinski et al. | Jan 2011 | B1 |
7869155 | Wong | Jan 2011 | B1 |
7876522 | Calaway et al. | Jan 2011 | B1 |
7876523 | Panyavoravaj et al. | Jan 2011 | B1 |
7881005 | Cheung et al. | Feb 2011 | B1 |
7898762 | Guo et al. | Mar 2011 | B1 |
7916415 | Chue | Mar 2011 | B1 |
7916416 | Guo et al. | Mar 2011 | B1 |
7916420 | McFadyen et al. | Mar 2011 | B1 |
7916422 | Guo et al. | Mar 2011 | B1 |
7924519 | Lambert | Apr 2011 | B2 |
7929238 | Vasquez | Apr 2011 | B1 |
7961422 | Chen et al. | Jun 2011 | B1 |
8000053 | Anderson | Aug 2011 | B1 |
8031423 | Tsai et al. | Oct 2011 | B1 |
8054022 | Ryan et al. | Nov 2011 | B1 |
8059357 | Knigge et al. | Nov 2011 | B1 |
8059360 | Melkote et al. | Nov 2011 | B1 |
8072703 | Calaway et al. | Dec 2011 | B1 |
8077428 | Chen et al. | Dec 2011 | B1 |
8078901 | Meyer et al. | Dec 2011 | B1 |
8081395 | Ferris | Dec 2011 | B1 |
8085020 | Bennett | Dec 2011 | B1 |
8116023 | Kupferman | Feb 2012 | B1 |
8116025 | Chan et al. | Feb 2012 | B1 |
8145934 | Ferris et al. | Mar 2012 | B1 |
8174941 | Takazawa et al. | May 2012 | B2 |
8179626 | Ryan et al. | May 2012 | B1 |
8189286 | Chen et al. | May 2012 | B1 |
8213106 | Guo et al. | Jul 2012 | B1 |
8254222 | Tang | Aug 2012 | B1 |
8300348 | Liu et al. | Oct 2012 | B1 |
8315005 | Zou et al. | Nov 2012 | B1 |
8320069 | Knigge et al. | Nov 2012 | B1 |
8351174 | Gardner et al. | Jan 2013 | B1 |
8358114 | Ferris et al. | Jan 2013 | B1 |
8358145 | Ferris et al. | Jan 2013 | B1 |
8390367 | Bennett | Mar 2013 | B1 |
8432031 | Agness et al. | Apr 2013 | B1 |
8432629 | Rigney et al. | Apr 2013 | B1 |
8451697 | Rigney et al. | May 2013 | B1 |
8482873 | Chue et al. | Jul 2013 | B1 |
8498076 | Sheh et al. | Jul 2013 | B1 |
8498172 | Patton, III et al. | Jul 2013 | B1 |
8508881 | Babinski et al. | Aug 2013 | B1 |
8531798 | Xi et al. | Sep 2013 | B1 |
8537486 | Liang et al. | Sep 2013 | B2 |
8542455 | Huang et al. | Sep 2013 | B2 |
8553351 | Narayana et al. | Oct 2013 | B1 |
8564899 | Lou et al. | Oct 2013 | B2 |
8576506 | Wang et al. | Nov 2013 | B1 |
8605379 | Sun | Dec 2013 | B1 |
8605382 | Mallary et al. | Dec 2013 | B1 |
8605384 | Liu et al. | Dec 2013 | B1 |
8610391 | Yang et al. | Dec 2013 | B1 |
8611040 | Xi et al. | Dec 2013 | B1 |
8619385 | Guo et al. | Dec 2013 | B1 |
8630054 | Bennett et al. | Jan 2014 | B2 |
8630059 | Chen et al. | Jan 2014 | B1 |
8634154 | Rigney et al. | Jan 2014 | B1 |
8634283 | Rigney et al. | Jan 2014 | B1 |
8643976 | Wang et al. | Feb 2014 | B1 |
8649121 | Smith et al. | Feb 2014 | B1 |
8654466 | McFadyen | Feb 2014 | B1 |
8654467 | Wong et al. | Feb 2014 | B1 |
8665546 | Zhao et al. | Mar 2014 | B1 |
8665551 | Rigney et al. | Mar 2014 | B1 |
8670206 | Liang et al. | Mar 2014 | B1 |
8687312 | Liang | Apr 2014 | B1 |
8693123 | Guo et al. | Apr 2014 | B1 |
8693134 | Xi et al. | Apr 2014 | B1 |
8717704 | Yu et al. | May 2014 | B1 |
8724253 | Liang et al. | May 2014 | B1 |
8743495 | Chen et al. | Jun 2014 | B1 |
8749904 | Liang et al. | Jun 2014 | B1 |
20010040755 | Szita | Nov 2001 | A1 |
20020067567 | Szita | Jun 2002 | A1 |
20030218814 | Min et al. | Nov 2003 | A9 |
20050152246 | Li et al. | Jul 2005 | A1 |
20050168863 | Sakai et al. | Aug 2005 | A1 |
20050185319 | Liu et al. | Aug 2005 | A1 |
20050275964 | Hara | Dec 2005 | A1 |
20070096678 | Melrose | May 2007 | A1 |
20070097806 | Beker et al. | May 2007 | A1 |
20070297088 | Sun et al. | Dec 2007 | A1 |
20080002280 | Asakura | Jan 2008 | A1 |
20080186617 | Hosono et al. | Aug 2008 | A1 |
20080239555 | Ehrlich et al. | Oct 2008 | A1 |
20080279059 | Zhou | Nov 2008 | A1 |
20090002874 | Melrose et al. | Jan 2009 | A1 |
20090052081 | Chase et al. | Feb 2009 | A1 |
20090086364 | Gerasimov | Apr 2009 | A1 |
20100020428 | Mochizuki et al. | Jan 2010 | A1 |
20100035085 | Jung et al. | Feb 2010 | A1 |
20100195235 | Vikramaditya et al. | Aug 2010 | A1 |
20100214686 | Higa et al. | Aug 2010 | A1 |
20120033317 | Szita | Feb 2012 | A1 |
20120275050 | Wilson et al. | Nov 2012 | A1 |
20120284493 | Lou et al. | Nov 2012 | A1 |
20130120870 | Zhou et al. | May 2013 | A1 |
20130148240 | Ferris et al. | Jun 2013 | A1 |
Entry |
---|
Liang et. al., U.S. Appl. No. 14/149,565, filed Jan. 17, 2014, 28 pages. |
Liang et. al., Office Action dated Apr. 11, 2014 U.S. Appl. No. 14/149,565, 21 pages. |
Liang et al., Notice of Allowance dated Aug. 4, 2014 U.S. Appl. No. 14/149,565, 41 pages. |
Yuanyuan Zhao, et. al., U.S. Appl. No. 14/137,230, filed Dec. 20, 2013, 31 pages. |
Yuanyuan Zhao, et. al., Notice of Allowance dated May 5, 2014 U.S. Appl. No. 14/137,230, filed Dec. 20, 2013, 25 pages. |