Disk drives are a type of information storage device that store information on at least one spinning disk. Other types of information storage devices include, for example, magnetic tape drives which retrieve stored information on magnetic tape (e.g. linear tape drive, helical scan tape drive). There are several types of disk drives. Magnetic hard disk drives typically store information on non-removable rigid magnetic disks. There are also optical disk drives, which typically retrieve information stored on removable optical disk media. Also for example, there are magneto-optical disk drives, which share some of the characteristics of optical disk drives and magnetic hard disk drives.
All types of disk drives typically include a spindle motor that supports and spins at least one disk media. Although past disk drive spindle motors utilized ball bearings, ball bearings have been replaced by fluid bearings in many contemporary disk drive spindle motors, for example to reduce non-repeatable runout, vibration, and/or acoustic noise.
A disk drive that is installed in a mobile device such as a laptop computer is often subjected to angular displacements during operation, which can cause the spindle fluid bearing to be subjected to gyration-induced torques. Such gyration-induced torques can undesirably increase the operation noise of the disk drive spindle, and can also accelerate surface wear within the fluid bearing.
Therefore, there is a need in the art for an improved fluid bearing for a disk drive spindle motor that is more robust to gyration-induced torques, while still providing acceptable bearing pressure and stiffness to meet contemporary specifications, and that can be practically mass-manufactured at acceptably low cost.
In the embodiment of
In the embodiment of
One or more actuator arms 36 may extend from the actuator body 32, and one or more head gimbal assemblies (HGA) 42 may be attached to a distal end of each actuator arm 36. Each HGA 42 may include a head 40 for reading and writing data from and to an adjacent disk surface. The HSA 30 may further include a coil 50. The coil 50 may interact with one or more magnets 54 attached to disk drive base 16 via a yoke structure 56, 58, to form a voice coil motor for controllably rotating the HSA 30. The HDA 12 also optionally includes a latch 52 pivotably mounted on the disk drive base 16 to limit the rotational movement of the HSA 30.
In the embodiment of
Suppose that the fixed member 210, 212 is tilted (clockwise in the view of
A fluid bearing is formed between the hollow cylindrical bore 370 and the cylindrical spindle shaft 312. Such fluid bearing may be pressurized by rotation and optional grooves formed in the outer surface of the cylindrical spindle shaft 312. Specifically, the hollow cylindrical bore has a journal bearing portion 321, 322, 323 that has a fluid filled radial clearance in the range 1.5 microns to 5 microns. Larger radial clearances would not develop sufficient fluid bearing pressure to function as a bearing and support a bearing load at typical spindle rotational speeds. As shown in
In the embodiment of
In the embodiment of
In the embodiment of
In the embodiment of
In the embodiment of
Conversely, the larger taper angle of the fluid reservoir 365 (e.g. 3° to 20°) prevents the fluid reservoir 365 from functioning as a bearing segment, because the radial clearance quickly grows too large within the fluid reservoir 365, for the fluid reservoir 365 to carry any significant bearing load. For example, the tapered fluid reservoir 365 may have an axial extent that is in the range of 200 microns to 1.5 mm, and a maximum fluid reservoir radius that is in the range of 50 to 500 microns greater than the constant radius. In this context, a greater angle is one that deviates more from the spindle axis of rotation regardless of sense, and a lesser angle is one that deviates less from the spindle axis of rotation, regardless of sense. The tapered fluid reservoir 365 may also be partially filled with a gas (e.g. the gas that surrounds the fluid bearing spindle, such as air, helium, nitrogen, argon, etc.), with a meniscus in the tapered fluid reservoir 365 between the bearing lubricant and the gas.
A fluid journal bearing having a central bearing segment 430 is formed between the hollow cylindrical bore of the rotatable spindle hub 420 and the cylindrical spindle shaft 412. Such fluid journal bearing may be pressurized by rotation and optional groove patterns 432, 434, and 435 formed in the outer surface of the cylindrical spindle shaft 412. Specifically, the central bearing segment 430 of the fluid journal bearing may have a fluid filled radial clearance in the range 1.5 microns to 5 microns. In this context, the radial clearance is measured at a non-grooved location of the fluid journal bearing 430 (i.e. does not include the groove depth). Larger radial clearances would not develop sufficient fluid bearing pressure to function as a bearing and support a bearing load at typical spindle rotational speeds.
In the embodiment of
In the embodiment of
In the embodiment of
In the embodiment of
Conversely, the larger taper angle of the fluid reservoir 444 (e.g. 3° to 20°) prevents the fluid reservoir 444 from functioning as a bearing segment, because the radial clearance quickly grows too large within the fluid reservoir 444, for the fluid reservoir 444 to carry any significant bearing load. For example, the tapered fluid reservoir 444 may have an axial extent that is in the range of 200 microns to 1.5 mm, and a maximum fluid reservoir radius that is in the range of 50 to 500 microns greater than the constant radius.
In
In the embodiment of
Note that in
In the embodiment of
Likewise, the lower tapered portion 592 may have a taper length 528 that may preferably be in the range 0.7 mm to 1.3 mm, and a taper amount 534 (the maximum increased radial clearance relative to that of the central portion 530) that may preferably be in the range 0.5 microns to 1.5 microns. The central portion 530 of the journal bearing surface may have an axial extent 536 characterized by a constant radial clearance in the range 1.5 to 5 microns at non-groove locations.
Referring again to the embodiment of
In the embodiment of
In certain embodiments, the taper length 528 of the lower tapered portion 592 and/or the taper length 526 of the upper tapered portion 594, may preferably correspond to an axial distance between an apex 552 of a groove in the herringbone groove pattern 550, and an axial end of the journal bearing (e.g. where one of the fluid reservoir tapered regions 522, 524 begins). In certain embodiments, such a taper location and length may help facilitate desirable fluid pumping by one or more of the grooves 550.
In certain embodiments, the lower tapered portion 592 and the upper tapered portion 594, although being deliberately machined shallow tapers, may mimic a future worn condition of a conventional fluid bearing. Such shallow tapers may reduce high stress concentration on bearing surfaces, by intentionally designing the wear pattern already into the bearing bore during initial manufacture. In some embodiments this can reduce acoustic noise and wear during operation. The novel fluid bearing may still provide sufficient bearing stiffness with the remaining straight portion of the journal bearing, and adequately discourage sub-ambient pressure conditions in fluid bearing interface areas.
An example process to fabricate a journal bearing sleeve for a fluid bearing spindle according to certain embodiments of the present invention, may include one or more of the following steps listed in the nonexclusive list of steps provided in the following five paragraphs—not necessarily to be performed in the order listed here (this is not a complete list of manufacturing steps, and may include steps that are not necessary for every embodiment):
Mount a solid material (e.g. series 4000 stainless steel) workpiece on a precision lathe.
Drill a bore through the workpiece.
While turning the workpiece on the lathe, traverse a precision tool (e.g. diamond bit) along a bearing region of the internal bore to create a constant diameter bearing surface in a middle section, and to create slightly tapered bearing surfaces of the bore near each axial end. The tapered bearing surfaces may preferably extend over an axial taper length in the range of 0.7 mm to 1.3 mm. The result of this step is to create a slightly larger radius near each axial end—e.g. larger by 0.5 microns to 1.5 microns at an outer axial extent of each axial taper length.
While turning the workpiece on the lathe, traverse a cutting bit along the internal bore to optionally create fluid reservoir tapered regions (outside the bearing region) having a much greater taper angle in the range of 3° to 20°, and a greater diameter than that found in the bearing region.
Optionally create a pattern of grooves in the bearing surfaces in the bearing region of the internal bore. This can be done, for example by inserting an approximately cylindrical electrode into the bore (e.g. with a radial clearance with the bore that is preferably greater than 20 microns). The approximately cylindrical electrode may have an electrically conductive outer surface in locations facing where grooves are desired in the journal sleeve under manufacture, and an electrically insulative outer surface in locations facing where grooves are not desired in the journal sleeve under manufacture.
Note that the approximately cylindrical electrode may optionally have a slightly larger diameter near its axial ends (e.g. to compensate for the increased diameter of the journal bearing sleeve near the axial ends of the bearing region according to certain embodiments of the present invention, and thereby keep the electrode to bearing sleeve spacing substantially constant despite diameter changes along their length—or, alternatively, to over-compensate in that regard, so that the electrode to bearing sleeve spacing is reduced near the axial ends, so that the etched grooves may result as deeper or wider near the axial ends, for example to better pump fluid during spindle operation). For example, the cylindrical electrode tool may have a middle tool segment of constant outer diameter, and increases diameter in first and second tool end segments, with the middle tool segment being disposed axially between the first and second tool end segments.
In certain embodiments, the electrode and journal bearing sleeve under manufacture may be bathed in an electrolytic solution and an electrical current may be passed between the electrode and the journal bearing sleeve under manufacture, for example to create the desired grooves by a electrochemical etching process. In certain embodiments, passing the electrical current may preferably be continued until the pattern of grooves defines a groove depth in the range of 2 microns to 7 microns.
The process to fabricate a shaft for use within a journal bearing sleeve, for a fluid bearing spindle according to certain alternative embodiments of the present invention, may include one or more of the steps listed in the nonexclusive list of steps in the following four paragraphs—not necessarily to be performed in the order listed here (this is not a complete list of manufacturing steps, and may include steps that are not necessary for every embodiment):
Mount a solid material (e.g. series 4000 stainless steel) workpiece on a precision lathe.
While turning the workpiece on the lathe, traverse a precision tool (e.g. diamond bit) along a bearing region of the outside surface to create a constant diameter outer bearing surface in a middle section, and to create slightly tapered bearing surfaces of the outer surface near each axial end. The tapered bearing surfaces may preferably extend over an axial taper length in the range of 0.7 mm to 1.3 mm. The result of this step is to create a slightly smaller radius near each axial end—e.g. smaller by 0.5 microns to 1.5 microns at an outer axial extent of each axial taper length.
While turning the workpiece on the lathe, traverse a cutting bit along the outer surface to optionally create fluid reservoir tapered regions (outside the bearing region) having a much greater taper angle in the range of 3° to 20°, and a smaller diameter than that found in the bearing region.
Optionally create a pattern of grooves in the bearing surfaces in the bearing region of the outer surface. This can be done, for example by inserting the bearing shaft under manufacture into an approximately cylindrical bore of an electrode (e.g. with an approximately 30 micron radial clearance between the bearing shaft under manufacture and the bore of the electrode), the approximately cylindrical bore of the electrode having an electrically conductive inner surface in locations facing where grooves are desired on the bearing shaft under manufacture, and an electrically insulative inner surface in locations facing where grooves are not desired on the bearing shaft under manufacture. Note that the approximately cylindrical bore of the electrode may optionally have a slightly smaller diameter near its axial ends (e.g. to compensate for the decreased diameter of the bearing shaft near the axial ends of the bearing region according to certain embodiments of the present invention, and thereby keep the electrode to bearing shaft spacing constant despite diameter changes along their length—or, alternatively, to over-compensate in that regard, so that the electrode to bearing shaft spacing is reduced near the axial ends, so that the etched grooves may result as deeper or wider near the axial ends, for example to better pump fluid during spindle operation). The electrode and bearing shaft under manufacture may be bathed in an electrolitic solution and an electrical current may be passed between the electrode and the bearing shaft under manufacture, for example to create the desired grooves by electrochemical etching.
In the foregoing specification, the invention is described with reference to specific exemplary embodiments, but those skilled in the art will recognize that the invention is not limited to those. It is contemplated that various features and aspects of the invention may be used individually or jointly and possibly in a different environment or application. The specification and drawings are, accordingly, to be regarded as illustrative and exemplary rather than restrictive. For example, the word “preferably,” and the phrase “preferably but not necessarily,” are used synonymously herein to consistently include the meaning of “not necessarily” or optionally. “Comprising,” “including,” and “having,” are intended to be open-ended terms.
This application claims priority to provisional U.S. Patent Application Ser. No. 61/950,686, filed on Mar. 10, 2014, which is incorporated herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5235482 | Schmitz | Aug 1993 | A |
5938124 | Lowi, Jr. | Aug 1999 | A |
6046889 | Berding et al. | Apr 2000 | A |
6052890 | Malagrino, Jr. et al. | Apr 2000 | A |
6061206 | Foisy et al. | May 2000 | A |
6101876 | Brooks et al. | Aug 2000 | A |
6147831 | Kennedy et al. | Nov 2000 | A |
6151189 | Brooks | Nov 2000 | A |
6151197 | Larson et al. | Nov 2000 | A |
6185067 | Chamberlain | Feb 2001 | B1 |
6185074 | Wang et al. | Feb 2001 | B1 |
6208486 | Gustafson et al. | Mar 2001 | B1 |
6215616 | Phan et al. | Apr 2001 | B1 |
6272694 | Knoth | Aug 2001 | B1 |
6288866 | Butler et al. | Sep 2001 | B1 |
6292333 | Blumentritt et al. | Sep 2001 | B1 |
6344950 | Watson et al. | Feb 2002 | B1 |
6349464 | Codilian et al. | Feb 2002 | B1 |
6388873 | Brooks et al. | May 2002 | B1 |
6417979 | Patton, III et al. | Jul 2002 | B1 |
6421208 | Oveyssi | Jul 2002 | B1 |
6441998 | Abrahamson | Aug 2002 | B1 |
6462914 | Oveyssi et al. | Oct 2002 | B1 |
6466398 | Butler et al. | Oct 2002 | B1 |
6469871 | Wang | Oct 2002 | B1 |
6502300 | Casey et al. | Jan 2003 | B1 |
6519116 | Lin et al. | Feb 2003 | B1 |
6529345 | Butler et al. | Mar 2003 | B1 |
6529351 | Oveyssi et al. | Mar 2003 | B1 |
6535358 | Hauert et al. | Mar 2003 | B1 |
6544403 | Usui | Apr 2003 | B2 |
6545382 | Bennett | Apr 2003 | B1 |
6549381 | Watson | Apr 2003 | B1 |
6560065 | Yang et al. | May 2003 | B1 |
6571460 | Casey et al. | Jun 2003 | B1 |
6574073 | Hauert et al. | Jun 2003 | B1 |
6580574 | Codilian | Jun 2003 | B1 |
6594111 | Oveyssi et al. | Jul 2003 | B1 |
6603620 | Berding | Aug 2003 | B1 |
6618222 | Watkins et al. | Sep 2003 | B1 |
6624966 | Ou-Yang et al. | Sep 2003 | B1 |
6624980 | Watson et al. | Sep 2003 | B1 |
6624983 | Berding | Sep 2003 | B1 |
6628473 | Codilian et al. | Sep 2003 | B1 |
6654200 | Alexander et al. | Nov 2003 | B1 |
6657811 | Codilian | Dec 2003 | B1 |
6661597 | Codilian et al. | Dec 2003 | B1 |
6661603 | Watkins et al. | Dec 2003 | B1 |
6674600 | Codilian et al. | Jan 2004 | B1 |
6690637 | Codilian | Feb 2004 | B1 |
6693767 | Butler | Feb 2004 | B1 |
6693773 | Sassine | Feb 2004 | B1 |
6697217 | Codilian | Feb 2004 | B1 |
6698286 | Little et al. | Mar 2004 | B1 |
6700736 | Wu et al. | Mar 2004 | B1 |
6704167 | Scura et al. | Mar 2004 | B1 |
6707637 | Codilian et al. | Mar 2004 | B1 |
6707641 | Oveyssi et al. | Mar 2004 | B1 |
6710980 | Hauert et al. | Mar 2004 | B1 |
6710981 | Oveyssi et al. | Mar 2004 | B1 |
6728062 | Ou-Yang et al. | Apr 2004 | B1 |
6728063 | Gustafson et al. | Apr 2004 | B1 |
6731470 | Oveyssi | May 2004 | B1 |
6735033 | Codilian et al. | May 2004 | B1 |
6741428 | Oveyssi | May 2004 | B1 |
6751051 | Garbarino | Jun 2004 | B1 |
6754042 | Chiou et al. | Jun 2004 | B1 |
6757132 | Watson et al. | Jun 2004 | B1 |
6759784 | Gustafson et al. | Jul 2004 | B1 |
6781780 | Codilian | Aug 2004 | B1 |
6781787 | Codilian et al. | Aug 2004 | B1 |
6781791 | Griffin et al. | Aug 2004 | B1 |
6790066 | Klein | Sep 2004 | B1 |
6791791 | Alfred et al. | Sep 2004 | B1 |
6791801 | Oveyssi | Sep 2004 | B1 |
6795262 | Codilian et al. | Sep 2004 | B1 |
6798603 | Singh et al. | Sep 2004 | B1 |
6801389 | Berding et al. | Oct 2004 | B1 |
6801404 | Oveyssi | Oct 2004 | B1 |
6816342 | Oveyssi | Nov 2004 | B1 |
6816343 | Oveyssi | Nov 2004 | B1 |
6825622 | Ryan et al. | Nov 2004 | B1 |
6826009 | Scura et al. | Nov 2004 | B1 |
6831810 | Butler et al. | Dec 2004 | B1 |
6839199 | Alexander, Jr. et al. | Jan 2005 | B1 |
6844996 | Berding et al. | Jan 2005 | B1 |
6847504 | Bennett et al. | Jan 2005 | B1 |
6847506 | Lin et al. | Jan 2005 | B1 |
6856491 | Oveyssi | Feb 2005 | B1 |
6856492 | Oveyssi | Feb 2005 | B2 |
6862154 | Subrahmanyam et al. | Mar 2005 | B1 |
6862156 | Lin et al. | Mar 2005 | B1 |
6862176 | Codilian et al. | Mar 2005 | B1 |
6865049 | Codilian et al. | Mar 2005 | B1 |
6865055 | Ou-Yang et al. | Mar 2005 | B1 |
6867946 | Berding et al. | Mar 2005 | B1 |
6867950 | Lin | Mar 2005 | B1 |
6876514 | Little | Apr 2005 | B1 |
6879466 | Oveyssi et al. | Apr 2005 | B1 |
6888697 | Oveyssi | May 2005 | B1 |
6888698 | Berding et al. | May 2005 | B1 |
6891696 | Ou-Yang et al. | May 2005 | B1 |
6898052 | Oveyssi | May 2005 | B1 |
6900961 | Butler | May 2005 | B1 |
6906880 | Codilian | Jun 2005 | B1 |
6906897 | Oveyssi | Jun 2005 | B1 |
6908330 | Garrett et al. | Jun 2005 | B2 |
6922308 | Butler | Jul 2005 | B1 |
6930848 | Codilian et al. | Aug 2005 | B1 |
6930857 | Lin et al. | Aug 2005 | B1 |
6934126 | Berding et al. | Aug 2005 | B1 |
6937444 | Oveyssi | Aug 2005 | B1 |
6940698 | Lin et al. | Sep 2005 | B2 |
6941642 | Subrahmanyam et al. | Sep 2005 | B1 |
6943985 | Kull et al. | Sep 2005 | B2 |
6947251 | Oveyssi et al. | Sep 2005 | B1 |
6950275 | Ali et al. | Sep 2005 | B1 |
6950284 | Lin | Sep 2005 | B1 |
6952318 | Ngo | Oct 2005 | B1 |
6954329 | Ojeda et al. | Oct 2005 | B1 |
6958884 | Ojeda et al. | Oct 2005 | B1 |
6958890 | Lin et al. | Oct 2005 | B1 |
6961212 | Gustafson et al. | Nov 2005 | B1 |
6961218 | Lin et al. | Nov 2005 | B1 |
6963469 | Gustafson et al. | Nov 2005 | B1 |
6965500 | Hanna et al. | Nov 2005 | B1 |
6967800 | Chen et al. | Nov 2005 | B1 |
6967804 | Codilian | Nov 2005 | B1 |
6970329 | Oveyssi et al. | Nov 2005 | B1 |
6972924 | Chen et al. | Dec 2005 | B1 |
6972926 | Codilian | Dec 2005 | B1 |
6975476 | Berding | Dec 2005 | B1 |
6979931 | Gustafson et al. | Dec 2005 | B1 |
6980391 | Haro | Dec 2005 | B1 |
6980401 | Narayanan et al. | Dec 2005 | B1 |
6982853 | Oveyssi et al. | Jan 2006 | B1 |
6989953 | Codilian | Jan 2006 | B1 |
6990727 | Butler et al. | Jan 2006 | B1 |
6996893 | Ostrander et al. | Feb 2006 | B1 |
7000309 | Klassen et al. | Feb 2006 | B1 |
7006324 | Oveyssi et al. | Feb 2006 | B1 |
7013731 | Szeremeta et al. | Mar 2006 | B1 |
7031104 | Butt et al. | Apr 2006 | B1 |
7035053 | Oveyssi et al. | Apr 2006 | B1 |
7050270 | Oveyssi et al. | May 2006 | B1 |
7057852 | Butler et al. | Jun 2006 | B1 |
7059052 | Okamura | Jun 2006 | B2 |
7062837 | Butler | Jun 2006 | B1 |
7064921 | Yang et al. | Jun 2006 | B1 |
7064922 | Alfred et al. | Jun 2006 | B1 |
7064932 | Lin et al. | Jun 2006 | B1 |
7085098 | Yang et al. | Aug 2006 | B1 |
7085108 | Oveyssi et al. | Aug 2006 | B1 |
7092216 | Chang et al. | Aug 2006 | B1 |
7092251 | Henry | Aug 2006 | B1 |
7099099 | Codilian et al. | Aug 2006 | B1 |
7113371 | Hanna et al. | Sep 2006 | B1 |
7142397 | Venk | Nov 2006 | B1 |
7145753 | Chang et al. | Dec 2006 | B1 |
RE39478 | Hatch et al. | Jan 2007 | E |
7161768 | Oveyssi | Jan 2007 | B1 |
7161769 | Chang et al. | Jan 2007 | B1 |
7180711 | Chang et al. | Feb 2007 | B1 |
7193819 | Chen et al. | Mar 2007 | B1 |
7209317 | Berding et al. | Apr 2007 | B1 |
7209319 | Watkins et al. | Apr 2007 | B1 |
D542289 | Diebel | May 2007 | S |
7212377 | Ou-Yang et al. | May 2007 | B1 |
7215513 | Chang et al. | May 2007 | B1 |
7215514 | Yang et al. | May 2007 | B1 |
7224551 | Ou-Yang et al. | May 2007 | B1 |
D543981 | Diebel | Jun 2007 | S |
7227725 | Chang et al. | Jun 2007 | B1 |
7239475 | Lin et al. | Jul 2007 | B1 |
7271978 | Santini et al. | Sep 2007 | B1 |
7274534 | Choy et al. | Sep 2007 | B1 |
7280311 | Ou-Yang et al. | Oct 2007 | B1 |
7280317 | Little et al. | Oct 2007 | B1 |
7280319 | McNab | Oct 2007 | B1 |
7292406 | Huang | Nov 2007 | B1 |
7298584 | Yamada et al. | Nov 2007 | B1 |
7327537 | Oveyssi | Feb 2008 | B1 |
7339268 | Ho et al. | Mar 2008 | B1 |
7342746 | Lin | Mar 2008 | B1 |
RE40203 | Hatch et al. | Apr 2008 | E |
7353524 | Lin et al. | Apr 2008 | B1 |
7369368 | Mohajerani | May 2008 | B1 |
7372670 | Oveyssi | May 2008 | B1 |
7375929 | Chang et al. | May 2008 | B1 |
7379266 | Ou-Yang et al. | May 2008 | B1 |
7380989 | Murata et al. | Jun 2008 | B2 |
7381904 | Codilian | Jun 2008 | B1 |
7385784 | Berding et al. | Jun 2008 | B1 |
7388731 | Little et al. | Jun 2008 | B1 |
7420771 | Hanke et al. | Sep 2008 | B1 |
7434987 | Gustafson et al. | Oct 2008 | B1 |
7436625 | Chiou et al. | Oct 2008 | B1 |
7440234 | Cheng et al. | Oct 2008 | B1 |
7477488 | Zhang et al. | Jan 2009 | B1 |
7477489 | Chen et al. | Jan 2009 | B1 |
7484291 | Ostrander et al. | Feb 2009 | B1 |
7505231 | Golgolab et al. | Mar 2009 | B1 |
7529064 | Huang et al. | May 2009 | B1 |
7538981 | Pan | May 2009 | B1 |
7561374 | Codilian et al. | Jul 2009 | B1 |
7567410 | Zhang et al. | Jul 2009 | B1 |
7576955 | Yang et al. | Aug 2009 | B1 |
7593181 | Tsay et al. | Sep 2009 | B1 |
7605999 | Kung et al. | Oct 2009 | B1 |
7609486 | Little | Oct 2009 | B1 |
7610672 | Liebman | Nov 2009 | B1 |
7633721 | Little et al. | Dec 2009 | B1 |
7633722 | Larson et al. | Dec 2009 | B1 |
7656609 | Berding et al. | Feb 2010 | B1 |
7660075 | Lin et al. | Feb 2010 | B1 |
7672083 | Yu et al. | Mar 2010 | B1 |
7684155 | Huang et al. | Mar 2010 | B1 |
7686555 | Larson et al. | Mar 2010 | B1 |
7709078 | Sevier et al. | May 2010 | B1 |
7715149 | Liebman et al. | May 2010 | B1 |
7729091 | Huang et al. | Jun 2010 | B1 |
7751145 | Lin et al. | Jul 2010 | B1 |
7826177 | Zhang et al. | Nov 2010 | B1 |
7852601 | Little | Dec 2010 | B1 |
7864488 | Pan | Jan 2011 | B1 |
7898770 | Zhang et al. | Mar 2011 | B1 |
7903369 | Codilian et al. | Mar 2011 | B1 |
7907369 | Pan | Mar 2011 | B1 |
7911742 | Chang et al. | Mar 2011 | B1 |
7926167 | Liebman et al. | Apr 2011 | B1 |
7957095 | Tsay et al. | Jun 2011 | B1 |
7957102 | Watson et al. | Jun 2011 | B1 |
7961436 | Huang et al. | Jun 2011 | B1 |
8004782 | Nojaba et al. | Aug 2011 | B1 |
8009384 | Little | Aug 2011 | B1 |
8018687 | Little et al. | Sep 2011 | B1 |
8031431 | Berding et al. | Oct 2011 | B1 |
8064168 | Zhang et al. | Nov 2011 | B1 |
8064170 | Pan | Nov 2011 | B1 |
8068314 | Pan et al. | Nov 2011 | B1 |
8081401 | Huang et al. | Dec 2011 | B1 |
8100017 | Blick et al. | Jan 2012 | B1 |
8116038 | Zhang et al. | Feb 2012 | B1 |
8120220 | Yamashita et al. | Feb 2012 | B2 |
8125740 | Yang et al. | Feb 2012 | B1 |
8142671 | Pan | Mar 2012 | B1 |
8156633 | Foisy | Apr 2012 | B1 |
8159785 | Lee et al. | Apr 2012 | B1 |
8177434 | Ito et al. | May 2012 | B2 |
8189298 | Lee et al. | May 2012 | B1 |
8194348 | Jacoby et al. | Jun 2012 | B2 |
8194354 | Zhang et al. | Jun 2012 | B1 |
8194355 | Pan et al. | Jun 2012 | B1 |
8203806 | Larson et al. | Jun 2012 | B2 |
8223453 | Norton et al. | Jul 2012 | B1 |
8228631 | Tsay et al. | Jul 2012 | B1 |
8233239 | Teo et al. | Jul 2012 | B1 |
8248733 | Radavicius et al. | Aug 2012 | B1 |
8259417 | Ho et al. | Sep 2012 | B1 |
8274760 | Zhang et al. | Sep 2012 | B1 |
8276256 | Zhang et al. | Oct 2012 | B1 |
8279560 | Pan | Oct 2012 | B1 |
8284514 | Garbarino | Oct 2012 | B1 |
8284515 | Sekii et al. | Oct 2012 | B2 |
8289646 | Heo et al. | Oct 2012 | B1 |
8300352 | Larson et al. | Oct 2012 | B1 |
8305708 | Tacklind | Nov 2012 | B2 |
8320086 | Moradnouri et al. | Nov 2012 | B1 |
8322021 | Berding et al. | Dec 2012 | B1 |
8345387 | Nguyen | Jan 2013 | B1 |
8363351 | Little | Jan 2013 | B1 |
8369044 | Howie et al. | Feb 2013 | B2 |
8411389 | Tian et al. | Apr 2013 | B1 |
8416522 | Schott et al. | Apr 2013 | B1 |
8416534 | Heo et al. | Apr 2013 | B1 |
8422171 | Guerini | Apr 2013 | B1 |
8422175 | Oveyssi | Apr 2013 | B1 |
8432641 | Nguyen | Apr 2013 | B1 |
8437101 | German et al. | May 2013 | B1 |
8438721 | Sill | May 2013 | B1 |
8446688 | Quines et al. | May 2013 | B1 |
8451559 | Berding et al. | May 2013 | B1 |
8467153 | Pan et al. | Jun 2013 | B1 |
8472131 | Ou-Yang et al. | Jun 2013 | B1 |
8477460 | Liebman | Jul 2013 | B1 |
8488270 | Brause et al. | Jul 2013 | B2 |
8488280 | Myers et al. | Jul 2013 | B1 |
8499652 | Tran et al. | Aug 2013 | B1 |
8514514 | Berding et al. | Aug 2013 | B1 |
8530032 | Sevier et al. | Sep 2013 | B1 |
8542465 | Liu et al. | Sep 2013 | B2 |
8547664 | Foisy et al. | Oct 2013 | B1 |
8553356 | Heo et al. | Oct 2013 | B1 |
8553366 | Hanke | Oct 2013 | B1 |
8553367 | Foisy et al. | Oct 2013 | B1 |
8616900 | Lion | Dec 2013 | B1 |
8665555 | Young et al. | Mar 2014 | B1 |
8667667 | Nguyen et al. | Mar 2014 | B1 |
8693139 | Tian et al. | Apr 2014 | B2 |
8693140 | Weiher et al. | Apr 2014 | B1 |
8699179 | Golgolab et al. | Apr 2014 | B1 |
8702998 | Guerini | Apr 2014 | B1 |
8705201 | Casey et al. | Apr 2014 | B2 |
8705209 | Seymour et al. | Apr 2014 | B2 |
8717706 | German et al. | May 2014 | B1 |
8743509 | Heo et al. | Jun 2014 | B1 |
8755148 | Howie et al. | Jun 2014 | B1 |
8756776 | Chen et al. | Jun 2014 | B1 |
8760800 | Brown et al. | Jun 2014 | B1 |
8760814 | Pan et al. | Jun 2014 | B1 |
8760816 | Myers et al. | Jun 2014 | B1 |
8773812 | Gustafson et al. | Jul 2014 | B1 |
8780491 | Perlas et al. | Jul 2014 | B1 |
8780504 | Teo et al. | Jul 2014 | B1 |
8792205 | Boye-Doe et al. | Jul 2014 | B1 |
8797677 | Heo et al. | Aug 2014 | B2 |
8797689 | Pan et al. | Aug 2014 | B1 |
8824095 | Dougherty | Sep 2014 | B1 |
8824098 | Huang et al. | Sep 2014 | B1 |
20110212281 | Jacoby et al. | Sep 2011 | A1 |
20120237148 | Niwa et al. | Sep 2012 | A1 |
20130038964 | Garbarino et al. | Feb 2013 | A1 |
20130091698 | Banshak, Jr. et al. | Apr 2013 | A1 |
20130155546 | Heo et al. | Jun 2013 | A1 |
20130290988 | Watson et al. | Oct 2013 | A1 |
Number | Date | Country |
---|---|---|
102010022340 | Dec 2011 | DE |
Entry |
---|
Hendriks, Ferdi, “The oil-air interface problem of fluid dynamic bearings in hard disk drives,” Presented at MPI 2005 WPI Worcester, MA dated Jun. 13-17, 2005, Hitachi Global Storage Technologies, pp. 1-27. |
Number | Date | Country | |
---|---|---|---|
61950686 | Mar 2014 | US |