This disclosure relates to disk drive testing.
Disk drive manufacturers typically test manufactured disk drives for compliance with a collection of requirements. Test equipment and techniques exist for testing large numbers of disk drives serially or in parallel. Manufacturers tend to test large numbers of disk drives simultaneously in batches. Disk drive testing systems typically include one or more racks having multiple test slots that receive disk drives for testing.
The testing environment immediately around the disk drive is closely regulated. Minimum temperature fluctuations in the testing environment are critical for accurate test conditions and for safety of the disk drives. The latest generations of disk drives, which have higher capacities, faster rotational speeds and smaller head clearance, are more sensitive to vibration. Excess vibration can affect the reliability of test results and the integrity of electrical connections. Under test conditions, the drives themselves can propagate vibrations through supporting structures or fixtures to adjacent units. This vibration “cross-talking,” together with external sources of vibration, contributes to bump errors, head slap and non-repetitive run-out (NRRO), which may result in lower test yields and increased manufacturing costs.
Current disk drive testing systems employ automation and structural support systems that contribute to excess vibrations in the system and/or require large footprints. Current disk drive testing systems also use an operator or conveyer belt to individually feed disk drives to the testing system for testing.
In one aspect, a disk drive testing system includes at least one robotic arm defining a first axis substantially normal to a floor surface. The robotic arm is operable to rotate through a predetermined arc (e.g. 360°) about, and to extend radially from, the first axis. Multiple racks are arranged around the robotic arm for servicing by the robotic arm. Each rack houses multiple test slots that are each configured to receive a disk drive transporter configured to carry a disk drive for testing.
Implementations of the disclosure may include one or more of the following features. In some implementations, the robotic arm includes a manipulator configured to engage the disk drive transporter of one of the test slots. The robotic arm is operable to carrying a disk drive in the disk drive transporter to the test slot for testing. The robotic arm defines a substantially cylindrical working envelope volume, and the racks and the transfer station are arranged within the working envelope volume for servicing by the robotic arm. In some examples, the racks and the transfer station are arranged in at least a partially closed polygon about the first axis of the robotic arm. The racks may be arranged equidistantly radially away from the first axis of the robotic arm or at different distances.
The robotic arm may independently services each test slot by retrieving the disk drive transporter from one of the test slots to transfer a disk drive between a transfer station and the test slot. In some implementations, the disk drive testing system includes a vertically actuating support that supports the robotic arm and is operable to move the robotic arm vertically with respect to the floor surface. The disk drive testing system may also include a linear actuator that supports the robotic arm and is operable to move the robotic arm horizontally along the floor surface. In some implementations, the disk drive testing system includes a rotatable table that supports the robotic arm and is operable to rotate the robotic arm about a second axis substantially normal to the floor surface.
The disk drive testing system may include a transfer station arranged for servicing by the robotic arm. The transfer station is configured to supply and/or store disk drives for testing. In some implementations, the transfer station is operable to rotate about a longitudinal axis defined by the transfer station substantially normal to a floor surface. The transfer station includes a transfer station housing that defines first and second opposite facing tote receptacles. In some examples, the transfer station includes a station base, a spindle extending upwardly substantially normal from the station base, and multiple tote receivers rotatably mounted on the spindle. Each tote receiver is independently rotatable of the other and defines first and second opposite facing tote receptacles.
The robotic arm may independently service each test slot by transferring a disk drive between a received disk drive tote of the transfer station and the test slot. In some implementations, the disk drive tote includes a tote body defining multiple disk drive receptacles configured to each house a disk drive. Each disk drive receptacle defines a disk drive support configured to support a central portion of a received disk drive to allow manipulation of the disk drive along non-central portions. In some examples, the disk drive tote includes a tote body defining multiple column cavities and multiple cantilevered disk drive supports disposed in each column cavity (e.g. off a rear wall of the cavity column), dividing the column cavity into multiple disk drive receptacles that are each configured to receive a disk drive. Each disk drive support is configured to support a central portion of a received disk drive to allow manipulation of the disk drive along non-central portions.
The disk drive testing system sometimes includes a vision system disposed on the robotic arm to aiding guidance of the robotic arm while transporting a disk drive. In particular, the vision system may used to guide a manipulator on the robotic arm that holds the disk drive transporter to insert the disk drive transporter safely into one of the test slots or a disk drive tote. The vision system may calibrate the robotic arm by aligning the robotic arm to a fiducial mark on the rack, test slot, transfer station, and/or disk drive tote.
In some implementations, the disk drive testing system includes at least one computer in communication with the test slots. A power system supplies power to the disk drive testing system and may be configured to monitor and/or regulate power to the received disk drive in the test slot. A temperature control system controls the temperature of each test slot. The temperature control system may include an air mover (e.g. fan) operable to circulate air over and/or through the test slot. A vibration control system controls rack vibrations (e.g. via passive dampening). A data interface is in communication with each test slot and is configured to communicate with a disk drive in the disk drive transporter received by the test slot.
Each rack may include at least one self-testing system in communication with at least one test slot. The self-testing system includes a cluster controller, a connection interface circuit in electrical communication with a disk drive received in the test slot, and a block interface circuit in electrical communication with the connection interface circuit. The block interface circuit is configured to control power and temperature of the test slot. The connection interface circuit and the block interface circuit are configured to test the functionality of at least one component of the disk drive testing system (e.g. test the functionality of the test slot while empty or while housing a disk drive held by a disk drive transporter).
In some implementations, each rack includes at least one functional testing system in communication with at least one test slot. The functional testing system includes a cluster controller, at least one functional interface circuit in electrical communication with the cluster controller, and a connection interface circuit in electrical communication with a disk drive received in the test slot and the functional interface circuit. The functional interface circuit is configured to communicate a functional test routine to the disk drive. In some examples, the functional testing system includes an Ethernet switch for providing electrical communication between the cluster controller and the at least one functional interface circuit.
In another aspect, a method of performing disk drive testing includes loading multiple disk drives into a transfer station (e.g. as by loading the disk drives into disk drive receptacles defined by a disk drive tote, and loading the disk drive tote into a tote receptacle defined by a transfer station). The method includes actuating a robotic arm to retrieve a disk drive transporter from a test slot housed in a rack, and actuating the robotic arm to retrieve one of the disk drives from the transfer station and carry the disk drive in the disk drive transporter. The robotic arm is operable to rotate through a predetermined arc about, and to extend radially from, a first axis defined by the robotic arm substantially normal to a floor surface. The method includes actuating the robotic arm to deliver the disk drive transporter carrying a disk drive to the test slot, and performing a functionality test on the disk drive housed by the received disk drive transporter and the test slot. The method then includes actuating the robotic arm to retrieve the disk drive transporter carrying the tested disk drive from the test slot and deliver the tested disk drive back to the transfer station.
In some examples, the method includes actuating the robotic arm to deposit the disk drive transporter in the test slot (e.g. after depositing the tested disk drive in a disk drive receptacle of the disk drive tote). In some examples, delivering the disk drive transporter to the test slot includes inserting the disk drive transporter carrying the disk drive into the test slot in the rack, establishing an electric connection between the disk drive and the rack.
In some implementations, performing a functionality test on the received disk drive includes regulating the temperature of the test slot while operating the disk drive. Also, operating the received disk drive may include performing reading and writing of data to the disk drive. In some examples, the method includes one or more of circulating air over and/or through the test slot to control the temperature of the test slot, monitoring and/or regulating power delivered to the received disk drive, and performing a self-test on the test slot with a self-testing system housed by the rack to verify the functionality of the test slot.
The method may include communicating with a vision system disposed on the robotic arm to aid guidance of the robotic arm while transporting the disk drive. The method may also include calibrating the robotic arm by aligning the robotic arm to a fiducial mark on the rack, test slot, transfer station, and/or disk drive tote recognized by the vision system.
The details of one or more implementations of the disclosure are set forth in the accompanying drawings and the description below. Other features, objects, and advantages will be apparent from the description and drawings, and from the claims.
Like reference symbols in the various drawings indicate like elements.
Referring to
The robotic arm 200 may be configured to independently service each test slot 310 to provide a continuous flow of disk drives 500 through the testing system 100. A continuous flow of individual disk drives 500 through the testing system 100 allows random start and stop times for each disk drive 500, whereas systems that require batches of disk drives 500 to be run at once must all have the same start and end times. Therefore, with continuous flow, disk drives 500 of different capacities can be run at the same time and serviced (loaded/unloaded) as needed.
Isolation of the free standing robotic arm 200 from the racks 300 aids vibration control of the racks 300, which only shares the floor surface 10 (see e.g.
In the examples illustrated in
In the example shown in
In the example illustrated in
In the example illustrated in
Referring back to
In some implementations, the disk drive testing system 100 includes a transfer station 400, as shown in
The transfer station 400, in some examples, includes a station housing 410 that defines a longitudinal axis 415. One or more tote receivers 420 are rotatably mounted in the station housing 410, for example on a spindle 412 extending along the longitudinal axis 415. Each tote receiver 420 may rotate on an individual respective spindle 412 or on a common spindle 412. Each tote receiver 420 defines first and second opposite facing tote receptacles 430A and 430B. In the example shown, the transfer station 400 includes three tote receivers 420 stacked on the spindle 412. Each tote receiver 420 is independently rotatable from the other and may rotate a received disk drive tote 450 between a servicing position (e.g. accessible by an operator) and a testing position accessible by the robotic arm 200. In the example shown, each tote receiver 420 is rotatable between a first position (e.g. servicing position) and a second position (testing position). While in the first position, an operator is provided access to the first tote receptacle 430A, and the robotic arm 200 is provided access on the opposite side to the second tote receptacle 430B. While in the second position the robotic arm 200 is provided access the first tote receptacle 430A, and an operator is provided access on the opposite side to the second tote receptacles 430B. As a result, an operator may service the transfer station 400 by loading/unloading totes 450 into tote receptacles 430 on one side of the transfer station 400, while the robotic arm 200 has access to totes 450 housed in tote receptacles 430 on an opposite side of the transfer station 400 for loading/unloading disk drives 500.
The transfer station 400 provides a service point for delivering and retrieving disk drives 500 to and from the disk drive testing system 100. The totes 450 allow an operator to deliver and retrieve a batch of disk drives 500 to and from the transfer station 400. In the example shown in
A housing door 416 is pivotally or slidably attached to the transfer station housing 410 and configured to provide operator access to one or more tote receptacles 430. An operator opens the housing door 416 associated with a particular tote receiver 420 to load/unload a tote 450 into the respective tote receptacle 430. The transfer station 400 may be configured to hold the respective tote receiver 420 stationary while the associated housing door 416 is open.
In some examples, the transfer station 400 includes a station indicator 418 which provides visual, audible, or other recognizable indications of one or more states of the transfer station 400. In one example, the station indicator 418 includes lights (e.g. LED's) that indicate when one or more tote receivers 420 need servicing (e.g. to load/unload totes 450 from particular tote receives 420). In another example, the station indicator 418 includes one or more audio devices to provide one or more audible signals (e.g. chirps, clacks, etc.) to signal an operator to service the transfer station 400. The station indicator 418 may be disposed along the longitudinal axis 415, as shown, or on some other portion of the station housing 410.
In the example illustrated in
In the example illustrated in
Referring to
With the disk drive 500 in place within the frame 560 of the disk drive transporter 550, the disk drive transporter 550 and the disk drive 500 together can be moved by the robotic arm 200 for placement within one of the test slots 310, as shown in
The disk drives 500 can be sensitive to vibrations. Fitting multiple disk drives 500 in a single test rack 310 and running the disk drives 500 (e.g., during testing), as well as the insertion and removal of the disk drive transporters 550, each optionally carrying a disk drive 500, from the various test slots 310 in the test rack 300 can be sources of undesirable vibration. In some cases, for example, one of the disk drives 500 may be operating under test within one of the test slots 310, while others are being removed and inserted into adjacent test slots 310 in the same test rack 300. Clamping the disk drive transporter 550 to the test slot 310 after the disk drive transporter 550 is fully inserted into the test slot 310, as described above, can help to reduce or limit vibrations by limiting the contact and scraping between the disk drive transporters 550 and the test slots 310 during insertion and removal of the disk drive transporters 550.
Referring to
In the example illustrated in
Each rack 300, in some examples, includes at least one functional testing system 650 in communication with at least one test slot 310. The functional testing system 650 tests whether a received disk drive 500, held and/or supported in the test slot 310 by the disk drive transporter 550, is functioning properly. A functionality test may include testing the amount of power received by the disk drive 500, the operating temperature, the ability to read and write data, and the ability to read and write data at different temperatures (e.g. read while hot and write while cold, or vice versa). The functionality test may test every memory sector of the disk drive 500 or only random samplings. The functionality test may test an operating temperature of the disk drive 500 and also the data integrity of communications with the disk drive 500. The functional testing system 650 includes a cluster controller 610 and at least one functional interface circuit 660 in electrical communication with the cluster controller 610. A connection interface circuit 620 is in electrical communication with a disk drive 500 received in the test slot 310 and the functional interface circuit 660. The functional interface circuit 660 is configured to communicate a functional test routine to the disk drive 500. The functional testing system 650 may include a communication switch 670 (e.g. Gigabit Ethernet) to provide electrical communication between the cluster controller 610 and the one or more functional interface circuits 660. Preferably, the computer 320, communication switch 670, cluster controller 610, and functional interface circuit 660 communicate on an Ethernet network. However, other forms of communication may be used. The functional interface circuit 660 may communicate to the connection interface circuit 620 via Parallel AT Attachment (a hard disk interface also known as IDE, ATA, ATAPI, UDMA and PATA), SATA, or SAS (Serial Attached SCSI).
A method of performing disk drive testing includes loading multiple disk drives 500 into a transfer station 400 (e.g. as by loading the disk drives 500 into disk drive receptacles 454 defined by a disk drive tote 450, and loading the disk drive tote 450 into a tote receptacle 430 defined by the transfer station 400). The method includes actuating a robotic arm 200 to retrieve a disk drive transporter 550 from a test slot 310 housed in a rack 300, and actuating the robotic arm 200 to retrieve one of the disk drives 500 from the transfer station 400 and carry the disk drive 500 in the disk drive transporter 550. The robotic arm 200 is operable to rotate through a predetermined arc about, and to extend radially from, a first axis 205 defined by the robotic arm 200 substantially normal to a floor surface 10. The method includes actuating the robotic arm 200 to deliver the disk drive transporter 550 carrying the disk drive 500 to the test slot 310, and performing a functionality test on the disk drive 500 housed by the received disk drive transporter 550 and the test slot 310. The method then includes actuating the robotic arm 200 to retrieve the disk drive transporter 550 carrying the tested disk drive 500 from the test slot 310 and deliver the tested disk drive 500 back to the transfer station 400. In some implementations, the rack 300 and two or more associated test slots 310 are configured to move disk drives 500 internally from one test slot 310 to another test slot 310, in case the test slots 310 are provisioned for different kinds of tests.
In some examples, the method includes actuating the robotic arm 200 to deposit the disk drive transporter 550 in the test slot 310 after depositing the tested disk drive 500 in a disk drive receptacle 454 of the disk drive tote 450, or repeating the method by retrieving another disk drive 500 for testing from another disk drive receptacle 454 of the disk drive tote 450. In some examples, delivering the disk drive transporter 550 to the test slot 310 includes inserting the disk drive transporter 550 carrying the disk drive 500 into the test slot 310 in the rack 300, establishing an electric connection between the disk drive 500 and the rack 300.
In some implementations, the method includes performing a functionality test on the received disk drive 500 that includes regulating the temperature of the test slot 310 while operating the disk drive 500. Operation of the received disk drive 500 includes performing reading and writing of data to the disk drive 500. The method may also include circulating air over and/or through the test slot 310 to control the temperature of the test slot 310, and monitoring and/or regulating power delivered to the disk drive 500.
In some examples, the method includes performing a ‘disk drive’ type and/or ‘test slot only’ type of self-test on the test slot 320 with the self-testing system 600 housed by the rack 300 to verify the functionality of the test slot 310. The ‘disk drive’ type self-test tests the functionality of the disk drive testing system with a received disk drive 500, held and/or supported in the test slot 310 by the disk drive transporter 550. The ‘test slot only’ type of self-test tests the functionality of the test slot 310 while empty.
In some examples, the method includes communicating with the vision system 270 disposed on the robotic arm 200 to aid guidance of the robotic arm 200 while transporting the disk drive 500, which may be carried by a disk drive transporter 550. The method includes calibrating the robotic arm 200 by aligning the robotic arm 200 to a fiducial mark 314 on the rack 300, test slot 310, transfer station 400 and/or tote 450 recognized by the vision system 270.
Other details and features combinable with those described herein may be found in the following U.S. patent applications filed concurrently herewith, entitled “DISK DRIVE TESTING”, inventors: Edward Garcia et al., and having assigned Ser. No. 11/958,817, the entire contents of the aforementioned applications are hereby incorporated by reference.
A number of implementations have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the disclosure. Accordingly, other implementations are within the scope of the following claims.
| Number | Name | Date | Kind |
|---|---|---|---|
| 557186 | Cahill | Mar 1896 | A |
| 2224407 | Passur | Dec 1940 | A |
| 2380026 | Clarke | Jul 1945 | A |
| 2631775 | Gordon | Mar 1953 | A |
| 2635524 | Jenkins | Apr 1953 | A |
| 3120166 | Lyman | Feb 1964 | A |
| 3360032 | Sherwood | Dec 1967 | A |
| 3364838 | Bradley | Jan 1968 | A |
| 3517601 | Courchesne | Jun 1970 | A |
| 3845286 | Aronstein et al. | Oct 1974 | A |
| 4147299 | Freeman | Apr 1979 | A |
| 4233644 | Hwang et al. | Nov 1980 | A |
| 4336748 | Martin et al. | Jun 1982 | A |
| 4379259 | Varadi et al. | Apr 1983 | A |
| 4477127 | Kume | Oct 1984 | A |
| 4495545 | Dufresne et al. | Jan 1985 | A |
| 4526318 | Fleming et al. | Jul 1985 | A |
| 4620248 | Gitzendanner | Oct 1986 | A |
| 4648007 | Garner | Mar 1987 | A |
| 4654732 | Mesher | Mar 1987 | A |
| 4665455 | Mesher | May 1987 | A |
| 4683424 | Cutright et al. | Jul 1987 | A |
| 4685303 | Branc et al. | Aug 1987 | A |
| 4688124 | Scribner et al. | Aug 1987 | A |
| 4713714 | Gatti et al. | Dec 1987 | A |
| 4739444 | Zushi et al. | Apr 1988 | A |
| 4754397 | Varaiya et al. | Jun 1988 | A |
| 4768285 | Woodman, Jr. | Sep 1988 | A |
| 4778063 | Ueberreiter | Oct 1988 | A |
| 4801234 | Cedrone | Jan 1989 | A |
| 4809881 | Becker | Mar 1989 | A |
| 4817273 | Lape et al. | Apr 1989 | A |
| 4817934 | McCormick et al. | Apr 1989 | A |
| 4851965 | Gabuzda et al. | Jul 1989 | A |
| 4881591 | Rignall | Nov 1989 | A |
| 4888549 | Wilson et al. | Dec 1989 | A |
| 4911281 | Jenkner | Mar 1990 | A |
| 4967155 | Magnuson | Oct 1990 | A |
| 5012187 | Littlebury | Apr 1991 | A |
| 5045960 | Eding | Sep 1991 | A |
| 5061630 | Knopf et al. | Oct 1991 | A |
| 5119270 | Bolton et al. | Jun 1992 | A |
| 5122914 | Hanson | Jun 1992 | A |
| 5127684 | Klotz et al. | Jul 1992 | A |
| 5128813 | Lee | Jul 1992 | A |
| 5136395 | Ishii et al. | Aug 1992 | A |
| 5158132 | Guillemot | Oct 1992 | A |
| 5168424 | Bolton et al. | Dec 1992 | A |
| 5171183 | Pollard et al. | Dec 1992 | A |
| 5173819 | Takahashi et al. | Dec 1992 | A |
| 5176202 | Richard | Jan 1993 | A |
| 5205132 | Fu | Apr 1993 | A |
| 5206772 | Hirano et al. | Apr 1993 | A |
| 5207613 | Ferchau et al. | May 1993 | A |
| 5210680 | Scheibler | May 1993 | A |
| 5237484 | Ferchau et al. | Aug 1993 | A |
| 5263537 | Plucinski et al. | Nov 1993 | A |
| 5269698 | Singer | Dec 1993 | A |
| 5295392 | Hensel et al. | Mar 1994 | A |
| 5309323 | Gray et al. | May 1994 | A |
| 5325263 | Singer et al. | Jun 1994 | A |
| 5349486 | Sugimoto et al. | Sep 1994 | A |
| 5368072 | Cote | Nov 1994 | A |
| 5374395 | Robinson et al. | Dec 1994 | A |
| 5379229 | Parsons et al. | Jan 1995 | A |
| 5398058 | Hattori | Mar 1995 | A |
| 5412534 | Cutts et al. | May 1995 | A |
| 5414591 | Kimura et al. | May 1995 | A |
| 5426581 | Kishi et al. | Jun 1995 | A |
| 5469037 | McMurtrey, Sr. et al. | Nov 1995 | A |
| 5477416 | Schkrohowsky et al. | Dec 1995 | A |
| 5484012 | Hiratsuka | Jan 1996 | A |
| 5486681 | Dagnac et al. | Jan 1996 | A |
| 5491610 | Mok et al. | Feb 1996 | A |
| 5543727 | Bushard et al. | Aug 1996 | A |
| 5546250 | Diel | Aug 1996 | A |
| 5557186 | McMurtrey, Sr. et al. | Sep 1996 | A |
| 5563768 | Perdue | Oct 1996 | A |
| 5570740 | Flores et al. | Nov 1996 | A |
| 5593380 | Bittikofer | Jan 1997 | A |
| 5601141 | Gordon et al. | Feb 1997 | A |
| 5604662 | Anderson et al. | Feb 1997 | A |
| 5610893 | Soga et al. | Mar 1997 | A |
| 5617430 | Angelotti et al. | Apr 1997 | A |
| 5644705 | Stanley | Jul 1997 | A |
| 5646918 | Dimitri et al. | Jul 1997 | A |
| 5654846 | Wicks et al. | Aug 1997 | A |
| 5673029 | Behl et al. | Sep 1997 | A |
| 5694290 | Chang | Dec 1997 | A |
| 5718627 | Wicks | Feb 1998 | A |
| 5718628 | Nakazato et al. | Feb 1998 | A |
| 5731928 | Jabbari et al. | Mar 1998 | A |
| 5751549 | Eberhardt et al. | May 1998 | A |
| 5754365 | Beck et al. | May 1998 | A |
| 5761032 | Jones | Jun 1998 | A |
| 5793610 | Schmitt et al. | Aug 1998 | A |
| 5811678 | Hirano | Sep 1998 | A |
| 5812761 | Seki et al. | Sep 1998 | A |
| 5819842 | Potter et al. | Oct 1998 | A |
| 5831525 | Harvey | Nov 1998 | A |
| 5851143 | Hamid | Dec 1998 | A |
| 5859409 | Kim et al. | Jan 1999 | A |
| 5859540 | Fukumoto | Jan 1999 | A |
| 5862037 | Behl | Jan 1999 | A |
| 5870630 | Reasoner et al. | Feb 1999 | A |
| 5886639 | Behl et al. | Mar 1999 | A |
| 5890959 | Pettit et al. | Apr 1999 | A |
| 5912799 | Grouell et al. | Jun 1999 | A |
| 5913926 | Anderson et al. | Jun 1999 | A |
| 5914856 | Morton et al. | Jun 1999 | A |
| 5917676 | Browning | Jun 1999 | A |
| 5927386 | Lin | Jul 1999 | A |
| 5956301 | Dimitri et al. | Sep 1999 | A |
| 5959834 | Chang | Sep 1999 | A |
| 5999356 | Dimitri et al. | Dec 1999 | A |
| 5999365 | Hasegawa et al. | Dec 1999 | A |
| 6000623 | Blatti et al. | Dec 1999 | A |
| 6005404 | Cochran et al. | Dec 1999 | A |
| 6005770 | Schmitt | Dec 1999 | A |
| 6008636 | Miller et al. | Dec 1999 | A |
| 6008984 | Cunningham et al. | Dec 1999 | A |
| 6011689 | Wrycraft | Jan 2000 | A |
| 6031717 | Baddour et al. | Feb 2000 | A |
| 6034870 | Osborn et al. | Mar 2000 | A |
| 6042348 | Aakalu et al. | Mar 2000 | A |
| 6045113 | Itakura | Apr 2000 | A |
| 6055814 | Song | May 2000 | A |
| 6066822 | Nemoto et al. | May 2000 | A |
| 6067225 | Reznikov et al. | May 2000 | A |
| 6069792 | Nelik | May 2000 | A |
| 6084768 | Bolognia | Jul 2000 | A |
| 6094342 | Dague et al. | Jul 2000 | A |
| 6104607 | Behl | Aug 2000 | A |
| 6115250 | Schmitt | Sep 2000 | A |
| 6122131 | Jeppson | Sep 2000 | A |
| 6122232 | Schell et al. | Sep 2000 | A |
| 6124707 | Kim et al. | Sep 2000 | A |
| 6130817 | Flotho et al. | Oct 2000 | A |
| 6144553 | Hileman et al. | Nov 2000 | A |
| 6166901 | Gamble et al. | Dec 2000 | A |
| 6169413 | Pack et al. | Jan 2001 | B1 |
| 6169930 | Blachek et al. | Jan 2001 | B1 |
| 6177805 | Pih | Jan 2001 | B1 |
| 6178835 | Orriss et al. | Jan 2001 | B1 |
| 6181557 | Gatti | Jan 2001 | B1 |
| 6185065 | Hasegawa et al. | Feb 2001 | B1 |
| 6185097 | Behl | Feb 2001 | B1 |
| 6188191 | Frees et al. | Feb 2001 | B1 |
| 6192282 | Smith et al. | Feb 2001 | B1 |
| 6193339 | Behl et al. | Feb 2001 | B1 |
| 6209842 | Anderson et al. | Apr 2001 | B1 |
| 6227516 | Webster, Jr. et al. | May 2001 | B1 |
| 6229275 | Yamamoto | May 2001 | B1 |
| 6231145 | Liu | May 2001 | B1 |
| 6233148 | Shen | May 2001 | B1 |
| 6236563 | Buican et al. | May 2001 | B1 |
| 6247944 | Bolognia et al. | Jun 2001 | B1 |
| 6249824 | Henrichs | Jun 2001 | B1 |
| 6252769 | Tullstedt et al. | Jun 2001 | B1 |
| 6262863 | Ostwald et al. | Jul 2001 | B1 |
| 6272007 | Kitlas et al. | Aug 2001 | B1 |
| 6272767 | Botruff et al. | Aug 2001 | B1 |
| 6281677 | Cosci et al. | Aug 2001 | B1 |
| 6282501 | Assouad | Aug 2001 | B1 |
| 6285524 | Boigenzahn et al. | Sep 2001 | B1 |
| 6289678 | Pandolfi | Sep 2001 | B1 |
| 6297950 | Erwin | Oct 2001 | B1 |
| 6298672 | Valicoff, Jr. | Oct 2001 | B1 |
| 6302714 | Bolognia et al. | Oct 2001 | B1 |
| 6304839 | Ho et al. | Oct 2001 | B1 |
| 6307386 | Fowler et al. | Oct 2001 | B1 |
| 6327150 | Levy et al. | Dec 2001 | B1 |
| 6330154 | Fryers et al. | Dec 2001 | B1 |
| 6351379 | Cheng | Feb 2002 | B1 |
| 6354792 | Kobayashi et al. | Mar 2002 | B1 |
| 6356409 | Price et al. | Mar 2002 | B1 |
| 6356415 | Kabasawa | Mar 2002 | B1 |
| 6384995 | Smith | May 2002 | B1 |
| 6388437 | Wolski et al. | May 2002 | B1 |
| 6388875 | Chen | May 2002 | B1 |
| 6388878 | Chang | May 2002 | B1 |
| 6389225 | Malinoski et al. | May 2002 | B1 |
| 6411584 | Davis et al. | Jun 2002 | B2 |
| 6421236 | Montoya et al. | Jul 2002 | B1 |
| 6434000 | Pandolfi | Aug 2002 | B1 |
| 6434498 | Ulrich et al. | Aug 2002 | B1 |
| 6434499 | Ulrich et al. | Aug 2002 | B1 |
| 6464080 | Morris et al. | Oct 2002 | B1 |
| 6467153 | Butts et al. | Oct 2002 | B2 |
| 6473297 | Behl et al. | Oct 2002 | B1 |
| 6473301 | Levy et al. | Oct 2002 | B1 |
| 6476627 | Pelissier et al. | Nov 2002 | B1 |
| 6477044 | Foley et al. | Nov 2002 | B2 |
| 6477442 | Valerino, Sr. | Nov 2002 | B1 |
| 6480380 | French et al. | Nov 2002 | B1 |
| 6480382 | Cheng | Nov 2002 | B2 |
| 6487071 | Tata et al. | Nov 2002 | B1 |
| 6489793 | Jones et al. | Dec 2002 | B2 |
| 6494663 | Ostwald et al. | Dec 2002 | B2 |
| 6525933 | Eland | Feb 2003 | B2 |
| 6526841 | Wanek et al. | Mar 2003 | B1 |
| 6535384 | Huang | Mar 2003 | B2 |
| 6537013 | Emberty et al. | Mar 2003 | B2 |
| 6544309 | Hoefer et al. | Apr 2003 | B1 |
| 6546445 | Hayes | Apr 2003 | B1 |
| 6553532 | Aoki | Apr 2003 | B1 |
| 6560107 | Beck et al. | May 2003 | B1 |
| 6565163 | Behl et al. | May 2003 | B2 |
| 6566859 | Wolski et al. | May 2003 | B2 |
| 6567266 | Ives et al. | May 2003 | B2 |
| 6570734 | Ostwald et al. | May 2003 | B2 |
| 6577586 | Yang et al. | Jun 2003 | B1 |
| 6577687 | Hall et al. | Jun 2003 | B2 |
| 6618254 | Ives | Sep 2003 | B2 |
| 6626846 | Spencer | Sep 2003 | B2 |
| 6628518 | Behl et al. | Sep 2003 | B2 |
| 6635115 | Fairbairn et al. | Oct 2003 | B1 |
| 6640235 | Anderson | Oct 2003 | B1 |
| 6644982 | Ondricek et al. | Nov 2003 | B1 |
| 6651192 | Viglione et al. | Nov 2003 | B1 |
| 6654240 | Tseng et al. | Nov 2003 | B1 |
| 6679128 | Wanek et al. | Jan 2004 | B2 |
| 6693757 | Hayakawa et al. | Feb 2004 | B2 |
| 6741529 | Getreuer | May 2004 | B1 |
| 6746648 | Mattila et al. | Jun 2004 | B1 |
| 6751093 | Hsu et al. | Jun 2004 | B1 |
| 6791785 | Messenger et al. | Sep 2004 | B1 |
| 6791799 | Fletcher | Sep 2004 | B2 |
| 6798651 | Syring et al. | Sep 2004 | B2 |
| 6798972 | Ito et al. | Sep 2004 | B1 |
| 6801834 | Konshak et al. | Oct 2004 | B1 |
| 6806700 | Wanek et al. | Oct 2004 | B2 |
| 6811427 | Garrett et al. | Nov 2004 | B2 |
| 6826046 | Muncaster et al. | Nov 2004 | B1 |
| 6830372 | Liu et al. | Dec 2004 | B2 |
| 6832929 | Garrett et al. | Dec 2004 | B2 |
| 6861861 | Song et al. | Mar 2005 | B2 |
| 6862173 | Konshak et al. | Mar 2005 | B1 |
| 6867939 | Katahara et al. | Mar 2005 | B2 |
| 6892328 | Klein et al. | May 2005 | B2 |
| 6904479 | Hall et al. | Jun 2005 | B2 |
| 6908330 | Garrett et al. | Jun 2005 | B2 |
| 6928336 | Peshkin et al. | Aug 2005 | B2 |
| 6937432 | Sri-Jayantha et al. | Aug 2005 | B2 |
| 6957291 | Moon et al. | Oct 2005 | B2 |
| 6965811 | Dickey et al. | Nov 2005 | B2 |
| 6974017 | Oseguera | Dec 2005 | B2 |
| 6976190 | Goldstone | Dec 2005 | B1 |
| 6980381 | Gray et al. | Dec 2005 | B2 |
| 6982872 | Behl et al. | Jan 2006 | B2 |
| 7006325 | Emberty et al. | Feb 2006 | B2 |
| 7039924 | Goodman et al. | May 2006 | B2 |
| 7054150 | Orriss et al. | May 2006 | B2 |
| 7070323 | Wanek et al. | Jul 2006 | B2 |
| 7076391 | Pakzad et al. | Jul 2006 | B1 |
| 7077614 | Hasper et al. | Jul 2006 | B1 |
| 7088541 | Orriss et al. | Aug 2006 | B2 |
| 7092251 | Henry | Aug 2006 | B1 |
| 7106582 | Albrecht et al. | Sep 2006 | B2 |
| 7123477 | Coglitore et al. | Oct 2006 | B2 |
| 7126777 | Flechsig et al. | Oct 2006 | B2 |
| 7130138 | Lum et al. | Oct 2006 | B2 |
| 7134553 | Stephens | Nov 2006 | B2 |
| 7139145 | Archibald et al. | Nov 2006 | B1 |
| 7164579 | Muncaster et al. | Jan 2007 | B2 |
| 7167360 | Inoue et al. | Jan 2007 | B2 |
| 7181458 | Higashi | Feb 2007 | B1 |
| 7203021 | Ryan et al. | Apr 2007 | B1 |
| 7203060 | Kay et al. | Apr 2007 | B2 |
| 7206201 | Behl et al. | Apr 2007 | B2 |
| 7216968 | Smith et al. | May 2007 | B2 |
| 7219028 | Bae et al. | May 2007 | B2 |
| 7219273 | Fisher et al. | May 2007 | B2 |
| 7227746 | Tanaka et al. | Jun 2007 | B2 |
| 7232101 | Wanek et al. | Jun 2007 | B2 |
| 7243043 | Shin | Jul 2007 | B2 |
| 7248467 | Sri-Jayantha et al. | Jul 2007 | B2 |
| 7259966 | Connelly, Jr. et al. | Aug 2007 | B2 |
| 7273344 | Ostwald et al. | Sep 2007 | B2 |
| 7280353 | Wendel et al. | Oct 2007 | B2 |
| 7289885 | Basham et al. | Oct 2007 | B2 |
| 7304855 | Milligan et al. | Dec 2007 | B1 |
| 7315447 | Inoue et al. | Jan 2008 | B2 |
| 7349205 | Hall et al. | Mar 2008 | B2 |
| 7353524 | Lin et al. | Apr 2008 | B1 |
| 7385385 | Magliocco et al. | Jun 2008 | B2 |
| 7395133 | Lowe | Jul 2008 | B2 |
| 7403451 | Goodman et al. | Jul 2008 | B2 |
| 7437212 | Farchmin et al. | Oct 2008 | B2 |
| 7447011 | Wade et al. | Nov 2008 | B2 |
| 7457112 | Fukuda et al. | Nov 2008 | B2 |
| 7467024 | Flitsch | Dec 2008 | B2 |
| 7476362 | Angros | Jan 2009 | B2 |
| 7483269 | Marvin et al. | Jan 2009 | B1 |
| 7505264 | Hall et al. | Mar 2009 | B2 |
| 7554811 | Scicluna et al. | Jun 2009 | B2 |
| 7568122 | Mechalke et al. | Jul 2009 | B2 |
| 7570455 | Deguchi et al. | Aug 2009 | B2 |
| 7573715 | Mojaver et al. | Aug 2009 | B2 |
| 7584851 | Hong et al. | Sep 2009 | B2 |
| 7612996 | Atkins et al. | Nov 2009 | B2 |
| 7625027 | Kiaie et al. | Dec 2009 | B2 |
| 7630196 | Hall et al. | Dec 2009 | B2 |
| 7643289 | Ye et al. | Jan 2010 | B2 |
| 7646596 | Ng | Jan 2010 | B2 |
| 7729107 | Atkins et al. | Jun 2010 | B2 |
| 20010006453 | Glorioso et al. | Jul 2001 | A1 |
| 20010044023 | Johnson et al. | Nov 2001 | A1 |
| 20010046118 | Yamanashi et al. | Nov 2001 | A1 |
| 20010048590 | Behl et al. | Dec 2001 | A1 |
| 20020030981 | Sullivan et al. | Mar 2002 | A1 |
| 20020044416 | Harmon, III et al. | Apr 2002 | A1 |
| 20020051338 | Jiang et al. | May 2002 | A1 |
| 20020071248 | Huang et al. | Jun 2002 | A1 |
| 20020079422 | Jiang | Jun 2002 | A1 |
| 20020090320 | Burow et al. | Jul 2002 | A1 |
| 20020116087 | Brown | Aug 2002 | A1 |
| 20020161971 | Dimitri et al. | Oct 2002 | A1 |
| 20020172004 | Ives et al. | Nov 2002 | A1 |
| 20030035271 | Lelong et al. | Feb 2003 | A1 |
| 20030043550 | Ives | Mar 2003 | A1 |
| 20030206397 | Allgeyer et al. | Nov 2003 | A1 |
| 20040062104 | Muller et al. | Apr 2004 | A1 |
| 20040165489 | Goodman et al. | Aug 2004 | A1 |
| 20040230399 | Shin | Nov 2004 | A1 |
| 20040236465 | Butka et al. | Nov 2004 | A1 |
| 20040264121 | Orriss et al. | Dec 2004 | A1 |
| 20050004703 | Christie, Jr. | Jan 2005 | A1 |
| 20050010836 | Bae et al. | Jan 2005 | A1 |
| 20050018397 | Kay et al. | Jan 2005 | A1 |
| 20050055601 | Wilson et al. | Mar 2005 | A1 |
| 20050057849 | Twogood et al. | Mar 2005 | A1 |
| 20050069400 | Dickey et al. | Mar 2005 | A1 |
| 20050109131 | Wanek et al. | May 2005 | A1 |
| 20050116702 | Wanek et al. | Jun 2005 | A1 |
| 20050131578 | Weaver | Jun 2005 | A1 |
| 20050179457 | Min et al. | Aug 2005 | A1 |
| 20050207059 | Cochrane | Sep 2005 | A1 |
| 20050219809 | Muncaster et al. | Oct 2005 | A1 |
| 20050225338 | Sands et al. | Oct 2005 | A1 |
| 20050270737 | Wilson et al. | Dec 2005 | A1 |
| 20060023331 | Flechsig et al. | Feb 2006 | A1 |
| 20060028802 | Shaw et al. | Feb 2006 | A1 |
| 20060066974 | Akamatsu et al. | Mar 2006 | A1 |
| 20060130316 | Takase et al. | Jun 2006 | A1 |
| 20060190205 | Klein et al. | Aug 2006 | A1 |
| 20060227517 | Zayas et al. | Oct 2006 | A1 |
| 20060250766 | Blaalid et al. | Nov 2006 | A1 |
| 20060269384 | Kiaie et al. | Nov 2006 | A1 |
| 20070034368 | Atkins et al. | Feb 2007 | A1 |
| 20070035874 | Wendel et al. | Feb 2007 | A1 |
| 20070035875 | Hall et al. | Feb 2007 | A1 |
| 20070053154 | Fukuda et al. | Mar 2007 | A1 |
| 20070064383 | Tanaka et al. | Mar 2007 | A1 |
| 20070082907 | Canada et al. | Apr 2007 | A1 |
| 20070127202 | Scicluna et al. | Jun 2007 | A1 |
| 20070127206 | Wade et al. | Jun 2007 | A1 |
| 20070195497 | Atkins | Aug 2007 | A1 |
| 20070248142 | Rountree et al. | Oct 2007 | A1 |
| 20070253157 | Atkins et al. | Nov 2007 | A1 |
| 20070286045 | Onagi et al. | Dec 2007 | A1 |
| 20080007865 | Orriss et al. | Jan 2008 | A1 |
| 20080030945 | Majaver et al. | Feb 2008 | A1 |
| 20080112075 | Farquhar et al. | May 2008 | A1 |
| 20080239564 | Farquhar et al. | Oct 2008 | A1 |
| 20080282275 | Zaczek et al. | Nov 2008 | A1 |
| 20080282278 | Barkley | Nov 2008 | A1 |
| 20090028669 | Rebstock | Jan 2009 | A1 |
| 20090082907 | Stuvel et al. | Mar 2009 | A1 |
| 20090109622 | Parish et al. | Apr 2009 | A1 |
| 20090122443 | Farquhar et al. | May 2009 | A1 |
| 20090142169 | Garcia et al. | Jun 2009 | A1 |
| 20090153992 | Garcia et al. | Jun 2009 | A1 |
| 20090153993 | Garcia et al. | Jun 2009 | A1 |
| 20090153994 | Merrow et al. | Jun 2009 | A1 |
| 20090175705 | Nakao et al. | Jul 2009 | A1 |
| 20090261047 | Merrow | Oct 2009 | A1 |
| 20090261228 | Merrow | Oct 2009 | A1 |
| 20090261229 | Merrow | Oct 2009 | A1 |
| 20090262444 | Polyakov et al. | Oct 2009 | A1 |
| 20090262445 | Noble et al. | Oct 2009 | A1 |
| 20090262454 | Merrow | Oct 2009 | A1 |
| 20090262455 | Merrow | Oct 2009 | A1 |
| 20090265032 | Toscano et al. | Oct 2009 | A1 |
| 20090265043 | Merrow et al. | Oct 2009 | A1 |
| 20090265136 | Garcia et al. | Oct 2009 | A1 |
| 20090297328 | Slocum, III | Dec 2009 | A1 |
| Number | Date | Country |
|---|---|---|
| 583716 | May 1989 | AU |
| 2341188 | Sep 1999 | CN |
| 1114109 | Jul 2003 | CN |
| 1177187 | Nov 2004 | CN |
| 1192544 | Mar 2005 | CN |
| 3786944 | Nov 1993 | DE |
| 69111634 | May 1996 | DE |
| 69400145 | Oct 1996 | DE |
| 19701548 | Aug 1997 | DE |
| 19804813 | Sep 1998 | DE |
| 69614460 | Jun 2002 | DE |
| 69626584 | Dec 2003 | DE |
| 19861388 | Aug 2007 | DE |
| 0210497 | Jul 1986 | EP |
| 0242970 | Oct 1987 | EP |
| 0 277 634 | Aug 1988 | EP |
| 0 277 634 | Aug 1988 | EP |
| 0356977 | Aug 1989 | EP |
| 0442642 | Feb 1991 | EP |
| 0466073 | Jul 1991 | EP |
| 0776009 | Nov 1991 | EP |
| 0582017 | Feb 1994 | EP |
| 0617570 | Sep 1994 | EP |
| 0635836 | Jan 1995 | EP |
| 741508 | Nov 1996 | EP |
| 0757320 | Feb 1997 | EP |
| 0757351 | Feb 1997 | EP |
| 0840476 | May 1998 | EP |
| 1 045 301 | Oct 2000 | EP |
| 1 045 301 | Oct 2000 | EP |
| 1209557 | May 2002 | EP |
| 1 422 713 | May 2004 | EP |
| 1422713 | May 2004 | EP |
| 1234308 | May 2006 | EP |
| 1 760 722 | Mar 2007 | EP |
| 1760722 | Mar 2007 | EP |
| 1612798 | Nov 2007 | EP |
| 2241118 | Aug 1991 | GB |
| 2276275 | Sep 1994 | GB |
| 2299436 | Oct 1996 | GB |
| 2 312 984 | Nov 1997 | GB |
| 2312984 | Nov 1997 | GB |
| 2328782 | Mar 1999 | GB |
| 2439844 | Jul 2008 | GB |
| 61-115279 | Jun 1986 | JP |
| 62-177621 | Aug 1987 | JP |
| 62-239394 | Oct 1987 | JP |
| 62-251915 | Nov 1987 | JP |
| 63-002160 | Jan 1988 | JP |
| 63-004483 | Jan 1988 | JP |
| 63-016482 | Jan 1988 | JP |
| 63-062057 | Mar 1988 | JP |
| 63-201946 | Aug 1988 | JP |
| 63-214972 | Sep 1988 | JP |
| 63-269376 | Nov 1988 | JP |
| 64-089034 | Apr 1989 | JP |
| 2-091565 | Mar 1990 | JP |
| 2-098197 | Apr 1990 | JP |
| 2-185784 | Jul 1990 | JP |
| 2-199690 | Aug 1990 | JP |
| 2-278375 | Nov 1990 | JP |
| 2-297770 | Dec 1990 | JP |
| 3-008086 | Jan 1991 | JP |
| 3-078160 | Apr 1991 | JP |
| 3-105704 | May 1991 | JP |
| 3-207947 | Sep 1991 | JP |
| 3-210662 | Sep 1991 | JP |
| 3-212859 | Sep 1991 | JP |
| 3-214490 | Sep 1991 | JP |
| 3-240821 | Oct 1991 | JP |
| 3-295071 | Dec 1991 | JP |
| 4-017134 | Jan 1992 | JP |
| 4-143989 | May 1992 | JP |
| 4-172658 | Jun 1992 | JP |
| 4-214288 | Aug 1992 | JP |
| 4-247385 | Sep 1992 | JP |
| 4-259956 | Sep 1992 | JP |
| 4-307440 | Oct 1992 | JP |
| 4-325923 | Nov 1992 | JP |
| 5-035053 | Feb 1993 | JP |
| 5-035415 | Feb 1993 | JP |
| 5-066896 | Mar 1993 | JP |
| 5-068257 | Mar 1993 | JP |
| 5-073566 | Mar 1993 | JP |
| 5-073803 | Mar 1993 | JP |
| 5-101603 | Apr 1993 | JP |
| 5-173718 | Jul 1993 | JP |
| 5-189163 | Jul 1993 | JP |
| 5-204725 | Aug 1993 | JP |
| 5-223551 | Aug 1993 | JP |
| 6-004220 | Jan 1994 | JP |
| 6-004981 | Jan 1994 | JP |
| 6-162645 | Jun 1994 | JP |
| 6-181561 | Jun 1994 | JP |
| 6-215515 | Aug 1994 | JP |
| 6-274943 | Sep 1994 | JP |
| 6-314173 | Nov 1994 | JP |
| 7-007321 | Jan 1995 | JP |
| 7-029364 | Jan 1995 | JP |
| 7-037376 | Feb 1995 | JP |
| 7-056654 | Mar 1995 | JP |
| 7-111078 | Apr 1995 | JP |
| 7-115497 | May 1995 | JP |
| 7-201082 | Aug 1995 | JP |
| 7-226023 | Aug 1995 | JP |
| 7-230669 | Aug 1995 | JP |
| 7-257525 | Oct 1995 | JP |
| 1982246 | Oct 1995 | JP |
| 7-307059 | Nov 1995 | JP |
| 8007994 | Jan 1996 | JP |
| 8-030398 | Feb 1996 | JP |
| 8-030407 | Feb 1996 | JP |
| 8-079672 | Mar 1996 | JP |
| 8-106776 | Apr 1996 | JP |
| 8-110821 | Apr 1996 | JP |
| 8-167231 | Jun 1996 | JP |
| 8-212015 | Aug 1996 | JP |
| 8-244313 | Sep 1996 | JP |
| 8-263525 | Oct 1996 | JP |
| 8-263909 | Oct 1996 | JP |
| 8-297957 | Nov 1996 | JP |
| 2553315 | Nov 1996 | JP |
| 9-044445 | Feb 1997 | JP |
| 9-064571 | Mar 1997 | JP |
| 9-082081 | Mar 1997 | JP |
| 2635127 | Jul 1997 | JP |
| 9-306094 | Nov 1997 | JP |
| 9-319466 | Dec 1997 | JP |
| 10-040021 | Feb 1998 | JP |
| 10-049365 | Feb 1998 | JP |
| 10-064173 | Mar 1998 | JP |
| 10-098521 | Apr 1998 | JP |
| 2771297 | Jul 1998 | JP |
| 10-275137 | Oct 1998 | JP |
| 10-281799 | Oct 1998 | JP |
| 10-320128 | Dec 1998 | JP |
| 10-340139 | Dec 1998 | JP |
| 2862679 | Mar 1999 | JP |
| 11-134852 | May 1999 | JP |
| 11-139839 | May 1999 | JP |
| 2906930 | Jun 1999 | JP |
| 11-203201 | Jul 1999 | JP |
| 11-213182 | Aug 1999 | JP |
| 11-327800 | Nov 1999 | JP |
| 11-353128 | Dec 1999 | JP |
| 11-353129 | Dec 1999 | JP |
| 2000-056935 | Feb 2000 | JP |
| 2000-066845 | Mar 2000 | JP |
| 2000-112831 | Apr 2000 | JP |
| 2000-113563 | Apr 2000 | JP |
| 2000-114759 | Apr 2000 | JP |
| 2000-125290 | Apr 2000 | JP |
| 3052183 | Apr 2000 | JP |
| 2000-132704 | May 2000 | JP |
| 2000-149431 | May 2000 | JP |
| 2000-228686 | Aug 2000 | JP |
| 2000-235762 | Aug 2000 | JP |
| 2000-236188 | Aug 2000 | JP |
| 2000-242598 | Sep 2000 | JP |
| 2000-278647 | Oct 2000 | JP |
| 3097994 | Oct 2000 | JP |
| 2000-305860 | Nov 2000 | JP |
| 2001-005501 | Jan 2001 | JP |
| 2001-023270 | Jan 2001 | JP |
| 2001-100925 | Apr 2001 | JP |
| 03-195697 | Aug 2001 | JP |
| 2002-42446 | Feb 2002 | JP |
| 2007-87498 | Apr 2007 | JP |
| 2007-188615 | Jul 2007 | JP |
| 2007-220184 | Aug 2007 | JP |
| 2007-293936 | Nov 2007 | JP |
| 2007-305206 | Nov 2007 | JP |
| 2007-305290 | Nov 2007 | JP |
| 2007-328761 | Dec 2007 | JP |
| 2008-503824 | Feb 2008 | JP |
| 10-1998-0035445 | Aug 1998 | KR |
| 10-0176527 | Nov 1998 | KR |
| 10-0214308 | Aug 1999 | KR |
| 10-0403039 | Oct 2003 | KR |
| 45223 | Jan 1998 | SG |
| 387574 | Apr 2000 | TW |
| WO 8901682 | Aug 1988 | WO |
| WO 9706532 | Feb 1997 | WO |
| WO 0049487 | Feb 2000 | WO |
| WO 0067253 | Nov 2000 | WO |
| WO 0109627 | Feb 2001 | WO |
| WO 0141148 | Jun 2001 | WO |
| WO 03013783 | Feb 2003 | WO |
| WO 03021597 | Mar 2003 | WO |
| WO 03021598 | Mar 2003 | WO |
| WO 03067385 | Aug 2003 | WO |
| WO 2004006260 | Jan 2004 | WO |
| WO 2004114286 | Dec 2004 | WO |
| WO 2005024830 | Mar 2005 | WO |
| WO 2005024831 | Mar 2005 | WO |
| WO 2005109131 | Nov 2005 | WO |
| WO 2006030185 | Mar 2006 | WO |
| WO 2006048611 | May 2006 | WO |
| WO 2006100441 | Sep 2006 | WO |
| WO 2006100445 | Sep 2006 | WO |
| WO 2007031729 | Mar 2007 | WO |
| Number | Date | Country | |
|---|---|---|---|
| 20090153992 A1 | Jun 2009 | US |