Disk drive testing

Information

  • Patent Grant
  • 7996174
  • Patent Number
    7,996,174
  • Date Filed
    Tuesday, December 18, 2007
    16 years ago
  • Date Issued
    Tuesday, August 9, 2011
    13 years ago
Abstract
A disk drive testing system includes at least one robotic arm defining a first axis substantially normal to a floor surface. The robotic arm is operable to rotate through a predetermined arc about and extend radially from the first axis. Multiple racks are arranged around the robotic arm for servicing by the robotic arm. Each rack houses multiple test slots that are each configured to receive a disk drive transporter configured to carry a disk drive for testing.
Description
TECHNICAL FIELD

This disclosure relates to disk drive testing.


BACKGROUND

Disk drive manufacturers typically test manufactured disk drives for compliance with a collection of requirements. Test equipment and techniques exist for testing large numbers of disk drives serially or in parallel. Manufacturers tend to test large numbers of disk drives simultaneously in batches. Disk drive testing systems typically include one or more racks having multiple test slots that receive disk drives for testing.


The testing environment immediately around the disk drive is closely regulated. Minimum temperature fluctuations in the testing environment are critical for accurate test conditions and for safety of the disk drives. The latest generations of disk drives, which have higher capacities, faster rotational speeds and smaller head clearance, are more sensitive to vibration. Excess vibration can affect the reliability of test results and the integrity of electrical connections. Under test conditions, the drives themselves can propagate vibrations through supporting structures or fixtures to adjacent units. This vibration “cross-talking,” together with external sources of vibration, contributes to bump errors, head slap and non-repetitive run-out (NRRO), which may result in lower test yields and increased manufacturing costs.


Current disk drive testing systems employ automation and structural support systems that contribute to excess vibrations in the system and/or require large footprints. Current disk drive testing systems also use an operator or conveyer belt to individually feed disk drives to the testing system for testing.


SUMMARY

In one aspect, a disk drive testing system includes at least one robotic arm defining a first axis substantially normal to a floor surface. The robotic arm is operable to rotate through a predetermined arc (e.g. 360°) about, and to extend radially from, the first axis. Multiple racks are arranged around the robotic arm for servicing by the robotic arm. Each rack houses multiple test slots that are each configured to receive a disk drive transporter configured to carry a disk drive for testing.


Implementations of the disclosure may include one or more of the following features. In some implementations, the robotic arm includes a manipulator configured to engage the disk drive transporter of one of the test slots. The robotic arm is operable to carrying a disk drive in the disk drive transporter to the test slot for testing. The robotic arm defines a substantially cylindrical working envelope volume, and the racks and the transfer station are arranged within the working envelope volume for servicing by the robotic arm. In some examples, the racks and the transfer station are arranged in at least a partially closed polygon about the first axis of the robotic arm. The racks may be arranged equidistantly radially away from the first axis of the robotic arm or at different distances.


The robotic arm may independently services each test slot by retrieving the disk drive transporter from one of the test slots to transfer a disk drive between a transfer station and the test slot. In some implementations, the disk drive testing system includes a vertically actuating support that supports the robotic arm and is operable to move the robotic arm vertically with respect to the floor surface. The disk drive testing system may also include a linear actuator that supports the robotic arm and is operable to move the robotic arm horizontally along the floor surface. In some implementations, the disk drive testing system includes a rotatable table that supports the robotic arm and is operable to rotate the robotic arm about a second axis substantially normal to the floor surface.


The disk drive testing system may include a transfer station arranged for servicing by the robotic arm. The transfer station is configured to supply and/or store disk drives for testing. In some implementations, the transfer station is operable to rotate about a longitudinal axis defined by the transfer station substantially normal to a floor surface. The transfer station includes a transfer station housing that defines first and second opposite facing tote receptacles. In some examples, the transfer station includes a station base, a spindle extending upwardly substantially normal from the station base, and multiple tote receivers rotatably mounted on the spindle. Each tote receiver is independently rotatable of the other and defines first and second opposite facing tote receptacles.


The robotic arm may independently service each test slot by transferring a disk drive between a received disk drive tote of the transfer station and the test slot. In some implementations, the disk drive tote includes a tote body defining multiple disk drive receptacles configured to each house a disk drive. Each disk drive receptacle defines a disk drive support configured to support a central portion of a received disk drive to allow manipulation of the disk drive along non-central portions. In some examples, the disk drive tote includes a tote body defining multiple column cavities and multiple cantilevered disk drive supports disposed in each column cavity (e.g. off a rear wall of the cavity column), dividing the column cavity into multiple disk drive receptacles that are each configured to receive a disk drive. Each disk drive support is configured to support a central portion of a received disk drive to allow manipulation of the disk drive along non-central portions.


The disk drive testing system sometimes includes a vision system disposed on the robotic arm to aiding guidance of the robotic arm while transporting a disk drive. In particular, the vision system may used to guide a manipulator on the robotic arm that holds the disk drive transporter to insert the disk drive transporter safely into one of the test slots or a disk drive tote. The vision system may calibrate the robotic arm by aligning the robotic arm to a fiducial mark on the rack, test slot, transfer station, and/or disk drive tote.


In some implementations, the disk drive testing system includes at least one computer in communication with the test slots. A power system supplies power to the disk drive testing system and may be configured to monitor and/or regulate power to the received disk drive in the test slot. A temperature control system controls the temperature of each test slot. The temperature control system may include an air mover (e.g. fan) operable to circulate air over and/or through the test slot. A vibration control system controls rack vibrations (e.g. via passive dampening). A data interface is in communication with each test slot and is configured to communicate with a disk drive in the disk drive transporter received by the test slot.


Each rack may include at least one self-testing system in communication with at least one test slot. The self-testing system includes a cluster controller, a connection interface circuit in electrical communication with a disk drive received in the test slot, and a block interface circuit in electrical communication with the connection interface circuit. The block interface circuit is configured to control power and temperature of the test slot. The connection interface circuit and the block interface circuit are configured to test the functionality of at least one component of the disk drive testing system (e.g. test the functionality of the test slot while empty or while housing a disk drive held by a disk drive transporter).


In some implementations, each rack includes at least one functional testing system in communication with at least one test slot. The functional testing system includes a cluster controller, at least one functional interface circuit in electrical communication with the cluster controller, and a connection interface circuit in electrical communication with a disk drive received in the test slot and the functional interface circuit. The functional interface circuit is configured to communicate a functional test routine to the disk drive. In some examples, the functional testing system includes an Ethernet switch for providing electrical communication between the cluster controller and the at least one functional interface circuit.


In another aspect, a method of performing disk drive testing includes loading multiple disk drives into a transfer station (e.g. as by loading the disk drives into disk drive receptacles defined by a disk drive tote, and loading the disk drive tote into a tote receptacle defined by a transfer station). The method includes actuating a robotic arm to retrieve a disk drive transporter from a test slot housed in a rack, and actuating the robotic arm to retrieve one of the disk drives from the transfer station and carry the disk drive in the disk drive transporter. The robotic arm is operable to rotate through a predetermined arc about, and to extend radially from, a first axis defined by the robotic arm substantially normal to a floor surface. The method includes actuating the robotic arm to deliver the disk drive transporter carrying a disk drive to the test slot, and performing a functionality test on the disk drive housed by the received disk drive transporter and the test slot. The method then includes actuating the robotic arm to retrieve the disk drive transporter carrying the tested disk drive from the test slot and deliver the tested disk drive back to the transfer station.


In some examples, the method includes actuating the robotic arm to deposit the disk drive transporter in the test slot (e.g. after depositing the tested disk drive in a disk drive receptacle of the disk drive tote). In some examples, delivering the disk drive transporter to the test slot includes inserting the disk drive transporter carrying the disk drive into the test slot in the rack, establishing an electric connection between the disk drive and the rack.


In some implementations, performing a functionality test on the received disk drive includes regulating the temperature of the test slot while operating the disk drive. Also, operating the received disk drive may include performing reading and writing of data to the disk drive. In some examples, the method includes one or more of circulating air over and/or through the test slot to control the temperature of the test slot, monitoring and/or regulating power delivered to the received disk drive, and performing a self-test on the test slot with a self-testing system housed by the rack to verify the functionality of the test slot.


The method may include communicating with a vision system disposed on the robotic arm to aid guidance of the robotic arm while transporting the disk drive. The method may also include calibrating the robotic arm by aligning the robotic arm to a fiducial mark on the rack, test slot, transfer station, and/or disk drive tote recognized by the vision system.


The details of one or more implementations of the disclosure are set forth in the accompanying drawings and the description below. Other features, objects, and advantages will be apparent from the description and drawings, and from the claims.





DESCRIPTION OF DRAWINGS


FIG. 1 is a perspective view of a disk drive testing system.



FIG. 2 is a top view of a disk drive testing system.



FIG. 3 is a perspective view of a disk drive testing system.



FIGS. 4-5 are top views disk drive testing systems having different sized racks and footprints.



FIG. 6 is a perspective view of a disk drive testing system.



FIG. 7 is a side view of a robotic am supported on vertical and horizontal actuating supports.



FIG. 8 is a perspective view of a disk drive testing system having two robotic arms.



FIG. 9 is a top view of a disk drive testing system including a robotic arm supported on a rotating support.



FIG. 10 is a perspective view of a transfer station.



FIG. 11 is a perspective view of a tote defining multiple disk drive receptacles.



FIG. 12 is a perspective view of a tote having cantilevered disk drive supports.



FIG. 13 is a perspective view of a disk drive transporter.



FIG. 14 is a perspective view of a disk drive transporter carrying a disk drive.



FIG. 15 is a bottom perspective view of a disk drive transporter carrying a disk drive.



FIG. 16 is a perspective view of a disk drive transporter carrying a disk drive aligned for insertion into a test slot.



FIG. 17 is a schematic view of a disk drive testing system.



FIG. 18 is a schematic view of a disk drive testing system with self-testing and functional testing capabilities.





Like reference symbols in the various drawings indicate like elements.


DETAILED DESCRIPTION

Referring to FIGS. 1-3, in some implementations, a disk drive testing system 100 includes at least one robotic arm 200 defining a first axis 205 substantially normal to a floor surface 10. The robotic arm 200 is operable to rotate through a predetermined arc about the first axis 205 and to extend radially from the first axis 205. In some examples, the robotic arm 200 is operable to rotate 360° about the first axis 205 and includes a manipulator 212 disposed at a distal end of the robotic arm 200 to handle a disk drive 500 and/or a disk drive transporter 550 carrying the disk drive 500 (see e.g. FIGS. 13-14). Multiple racks 300 are arranged around the robotic arm 200 for servicing by the robotic arm 200. Each rack 300 houses multiple test slots 310 configured to receive disk drives 500 for testing. The robotic arm 200 defines a substantially cylindrical working envelope volume 210, with the racks 300 being arranged within the working envelope volume 210 (see e.g. FIGS. 4 and 5) for accessibility of each test slot 310 for servicing by the robotic arm 200. The substantially cylindrical working envelope volume 210 provides a compact footprint and is generally only limited in capacity by height constraints.


The robotic arm 200 may be configured to independently service each test slot 310 to provide a continuous flow of disk drives 500 through the testing system 100. A continuous flow of individual disk drives 500 through the testing system 100 allows random start and stop times for each disk drive 500, whereas systems that require batches of disk drives 500 to be run at once must all have the same start and end times. Therefore, with continuous flow, disk drives 500 of different capacities can be run at the same time and serviced (loaded/unloaded) as needed.


Isolation of the free standing robotic arm 200 from the racks 300 aids vibration control of the racks 300, which only shares the floor surface 10 (see e.g. FIG. 10) as a common support structure. In other words, the robotic arm 200 is decoupled from the racks 300 and only shares the floor surface 10 as the only means of connection between the two structures. In some instances, each rack 300 houses about 480 test slots 310. In other instances, the racks 300 vary in size and test slot capacity.


In the examples illustrated in FIGS. 1-3, the racks 300 are arranged equidistantly radially away from the first axis 205 of the robotic arm 200. However, the racks 300 may be arranged in any pattern and at any distance around the robotic arm 200 within the working envelope volume 210. The racks 300 are arranged in at least a partially closed polygon about the first axis 205 of the robotic arm 200, such as an open or closed octagon, square, triangle, trapezoid, or other polygon, examples of which are shown in FIGS. 4-5. The racks 300 may be configured in different sizes and shapes to fit a particular footprint. The arrangement of racks 300 around the robotic arm 200 may be symmetric or asymmetric.


In the example shown in FIGS. 3 and 6, the robotic arm 200 is elevated by and supported on a pedestal or lift 250 on the floor surface 10. The pedestal or lift 250 increases the height of the working envelope volume 210 by allowing the robotic arm 200 to reach not only upwardly, but also downwardly to service test slots 310. The height of the working envelope volume 210 can be further increased by adding a vertical actuator to the pedestal or lift 250, configuring it as a vertically actuating support 252 that supports the robotic arm 200, as shown in FIG. 7. The vertically actuating support 252 is operable to move the robotic arm 200 vertically with respect to the floor surface 10. In some examples, the vertically actuating support 252 is configured as a vertical track supporting the robotic arm 200 and includes an actuator (e.g. driven ball-screw or belt) to move the robotic arm 200 vertically along the track. A horizontally actuating support 254 (e.g. a linear actuator), also shown in FIG. 7, may be used to support the robotic arm 200 and be operable to move the robotic arm 200 horizontally along the floor surface 10. In the example shown, the combination of the vertically and horizontally actuating supports 252, 254 supporting the robotic arm 210 provides an enlarged working envelope volume 210 having an elongated substantially elliptical profile from a top view.


In the example illustrated in FIG. 8, the disk drive testing system 100 includes two robotic arms 200A and 200B, both rotating about the first axis 205. One robotic arm 200A is supported on the floor surface 10, while the other robotic arm 200B is suspended from a ceiling structure 12. Similarly, in the example shown in FIG. 7, additional robotic arms 200 may be operational on the vertically actuating support 252.


In the example illustrated in FIG. 9, the disk drive testing system 100 includes a rotatable table 260 that supports the robotic arm 200. The rotatable table 260 is operable to rotate the robotic arm 200 about a second axis 262 substantially normal to the floor surface 10, thereby providing a larger working envelope volume 210 than a robotic arm 200 rotating only about the first axis 205.


Referring back to FIGS. 7-8, in some implementations, the disk drive testing system 100 includes a vision system 270 disposed on the robotic arm 200. The vision system 270 is configured to aid guidance of the robotic arm 200 while transporting a disk drive 500. In particular, the vision system 270 aids alignment of the disk drive transporter 550, held by the manipulator 212, for insertion in the test slot 310 and/or tote 450. The vision system 270 calibrates the robotic arm 200 by aligning the robotic arm 200 to a fiducial mark 314 on the rack 300, preferably the test slot 310. In some examples, the fiducial mark 314 is an “L” shaped mark located near a corner of an opening 312 of the test slot 310 on the rack 300. The robotic arm 200 aligns itself with the fiducial mark 314 before accessing the test slot 310 (e.g. to either pick-up or place a disk drive transporter 550, which may be carrying a disk drive 500). The continual robotic arm alignments enhances the accuracy and reputability of the robotic arm 200, while minimizing misplacement of a disk drive transporter 550 carrying a disk drive 500 (which may result in damage to the disk drive 500 and/or the disk drive testing system 100).


In some implementations, the disk drive testing system 100 includes a transfer station 400, as shown in FIGS. 1-3 and 10. While in other implementations, the disk drive testing system 100 include may include a conveyor belt (not shown) or an operator that feeds disk drives 500 to the robotic arm 200. In examples including a transfer station 400, the robotic arm 200 independently services each test slot 310 by transferring a disk drive 500 between the transfer station 400 and the test slot 310. The transfer station 400 includes multiple tote receptacles 430 configured to each receive a tote 450. The tote 450 defines disk drive receptacles 454 that house disk drives 500 for testing and/or storage. In each disk drive receptacle 454, the housed disk drive 500 is supported by a disk drive support 456. The robotic arm 200 is configured to remove a disk drive transporter 550 from one of the test slots 310 with the manipulator 212, then pick up a disk drive 500 from one the disk drive receptacles 454 at the transfer station 400 with the disk drive transporter 550, and then return the disk drive transporter 550, with a disk drive 500 therein, to the test slot 310 for testing of the disk drive 500. After testing, the robotic arm 200 retrieves the tested disk drive 500 from the test slot 310, by removing the disk drive transporter 550 carrying the tested disk drive 500 from the test slot 310 (i.e., with the manipulator 212), carrying the tested disk drive 500 in the disk drive transporter 550 to the transfer station 400, and manipulating the disk drive transporter 550 to return the tested disk drive 500 to one of the disk drive receptacles 454 at the transfer station 400. In implementations that include a vision system 270 on the robotic arm 200, the fiducial mark 314 may be located adjacent one or more disk drive receptacles 454 to aid guidance of the robotic arm in retrieving or depositing disk drives 500 at the transfer station 400.


The transfer station 400, in some examples, includes a station housing 410 that defines a longitudinal axis 415. One or more tote receivers 420 are rotatably mounted in the station housing 410, for example on a spindle 412 extending along the longitudinal axis 415. Each tote receiver 420 may rotate on an individual respective spindle 412 or on a common spindle 412. Each tote receiver 420 defines first and second opposite facing tote receptacles 430A and 430B. In the example shown, the transfer station 400 includes three tote receivers 420 stacked on the spindle 412. Each tote receiver 420 is independently rotatable from the other and may rotate a received disk drive tote 450 between a servicing position (e.g. accessible by an operator) and a testing position accessible by the robotic arm 200. In the example shown, each tote receiver 420 is rotatable between a first position (e.g. servicing position) and a second position (testing position). While in the first position, an operator is provided access to the first tote receptacle 430A, and the robotic arm 200 is provided access on the opposite side to the second tote receptacle 430B. While in the second position the robotic arm 200 is provided access the first tote receptacle 430A, and an operator is provided access on the opposite side to the second tote receptacles 430B. As a result, an operator may service the transfer station 400 by loading/unloading totes 450 into tote receptacles 430 on one side of the transfer station 400, while the robotic arm 200 has access to totes 450 housed in tote receptacles 430 on an opposite side of the transfer station 400 for loading/unloading disk drives 500.


The transfer station 400 provides a service point for delivering and retrieving disk drives 500 to and from the disk drive testing system 100. The totes 450 allow an operator to deliver and retrieve a batch of disk drives 500 to and from the transfer station 400. In the example shown in FIG. 10, each tote 450 that is accessible from respective tote receivers 420 in the second position may be designated as source totes 450 for supplying disk drives 500 for testing or as destination totes 450 for receiving tested disk drives 500. Destination totes 450 may be classified as “passed return totes” or “failed return totes” for receiving respective disk drives 500 that have either passed or failed a functionality test, respectively.


A housing door 416 is pivotally or slidably attached to the transfer station housing 410 and configured to provide operator access to one or more tote receptacles 430. An operator opens the housing door 416 associated with a particular tote receiver 420 to load/unload a tote 450 into the respective tote receptacle 430. The transfer station 400 may be configured to hold the respective tote receiver 420 stationary while the associated housing door 416 is open.


In some examples, the transfer station 400 includes a station indicator 418 which provides visual, audible, or other recognizable indications of one or more states of the transfer station 400. In one example, the station indicator 418 includes lights (e.g. LED's) that indicate when one or more tote receivers 420 need servicing (e.g. to load/unload totes 450 from particular tote receives 420). In another example, the station indicator 418 includes one or more audio devices to provide one or more audible signals (e.g. chirps, clacks, etc.) to signal an operator to service the transfer station 400. The station indicator 418 may be disposed along the longitudinal axis 415, as shown, or on some other portion of the station housing 410.


In the example illustrated in FIG. 11, a tote 450A includes a tote body 452A that defines multiple disk drive receptacles 454A. Each disk drive receptacle 454A is configured to house a disk drive 500. In this example, each disk drive receptacle 454A includes a disk drive support 456A configured to support a central portion 502 of the received disk drive 500 to allow manipulation of the disk drive 500 along non-central portions. To remove a housed disk drive 500 from the disk drive receptacle 454A, the disk drive transporter 550 is positioned below the disk drive 500 (e.g. by the robotic arm 200) in the disk drive receptacle 454A and elevated to lift the disk drive 500 off of the disk drive support 456A. The disk drive transporter 550 is then removed from the disk drive receptacle 454A while carrying the disk drive 500 for delivery to a destination target, such as a test slot 310.


In the example illustrated in FIG. 12, a tote 450B includes a tote body 452B that defines column cavities 453B divided into disk drive receptacles 454B by multiple disk drive supports 456B. The disk drive supports 456B are cantilevered off a rear wall 457B of the column cavity 453B. The disk drive supports 456B are configured to support a central portion 502 of the received disk drive 500 to allow manipulation of the disk drive 500 along non-central portions. The cantilevered disk drive supports 456B allow retrieval of disk drives 500 from the tote 450B by inserting a disk drive transporter 550 (e.g. as shown in FIG. 13) into an empty disk drive receptacle 454B just below and lifting the disk drive 500 off the disk drive support 456B for removal from the disk drive receptacle 454B. The same steps are repeated in reverse for depositing the disk drive 500 in the tote 450B. As shown, the bottom disk drive receptacle 454B in each column cavity 453B is left empty to facilitate removal of a disk drive 500 housed in the disk drive receptacle 454B above it. Consequently, the disk drives 500 must be loaded/unloaded in a sequential order in a particular column; however a greater storage density is achieved than the tote solution shown in FIG. 11.


Referring to FIGS. 13-16, in some examples, the test slot 310 is configured to receive the disk drive transporter 550. The disk drive transporter 550 is configured to receive the disk drive 500 and be handled by the robotic arm 200. In use, one of the disk drive transporters 550 is removed from one of the test slots 310 with the robot 200 (e.g., by grabbing, or otherwise engaging, the indentation 552 of the transporter 550 with the manipulator 212 of the robot 200). As illustrated in FIG. 13, the disk drive transporter 550 includes a frame 560 defining a substantially U-shaped opening 561 formed by sidewalls 562, 564 and a base plate 566 that collectively allow the frame 560 to fit around the disk drive support 456 in the tote 450 so that the disk drive transporter 550 can be moved (e.g., via the robotic arm 200) into a position beneath one of the disk drives 500 housed in one of the disk drive receptacles 454 of the tote 450. The disk drive transporter 550 can then be raised (e.g., by the robotic arm 310) into a position engaging the disk drive 600 for removal off of the disk drive support 456 in the tote 450.


With the disk drive 500 in place within the frame 560 of the disk drive transporter 550, the disk drive transporter 550 and the disk drive 500 together can be moved by the robotic arm 200 for placement within one of the test slots 310, as shown in FIG. 16. The manipulator 212 is also configured to initiate actuation of a clamping mechanism 570 disposed in the disk drive transporter 550. This allows actuation of the clamping mechanism 570 before the transporter 550 is moved from the tote 450 to the test slot 310 to inhibit movement of the disk drive 500 relative to the disk drive transporter 550 during the move. Prior to insertion in the test slot 310, the manipulator 212 can again actuate the clamping mechanism 570 to release the disk drive 500 within the frame 560. This allows for insertion of the disk drive transporter 550 into one of the test slots 310, until the disk drive 500 is in a test position with a disk drive connector 510 engaged with a test slot connector (not shown). The clamping mechanism 570 may also be configured to engage the test slot 310, once received therein, to inhibit movement of the disk drive transporter 550 relative to the test slot 310. In such implementations, once the disk drive 500 is in the test position, the clamping mechanism 570 is engaged again (e.g., by the manipulator 212) to inhibit movement of the disk drive transporter 550 relative to the test slot 310. The clamping of the disk drive transporter 550 in this manner can help to reduce vibrations during testing. In some examples, after insertion, the disk drive transporter 550 and disk drive 500 carried therein are both clamped or secured in combination or individually within the test slot 310. A detailed description of the clamping mechanism 570 and other details and features combinable with those described herein may be found in the following U.S. patent application filed concurrently herewith, entitled “DISK DRIVE TRANSPORT, CLAMPING AND TESTING”, inventors: Brian Merrow et al., and having assigned Ser. No. 11/959,133, the entire contents of the which are hereby incorporated by reference.


The disk drives 500 can be sensitive to vibrations. Fitting multiple disk drives 500 in a single test rack 310 and running the disk drives 500 (e.g., during testing), as well as the insertion and removal of the disk drive transporters 550, each optionally carrying a disk drive 500, from the various test slots 310 in the test rack 300 can be sources of undesirable vibration. In some cases, for example, one of the disk drives 500 may be operating under test within one of the test slots 310, while others are being removed and inserted into adjacent test slots 310 in the same test rack 300. Clamping the disk drive transporter 550 to the test slot 310 after the disk drive transporter 550 is fully inserted into the test slot 310, as described above, can help to reduce or limit vibrations by limiting the contact and scraping between the disk drive transporters 550 and the test slots 310 during insertion and removal of the disk drive transporters 550.


Referring to FIG. 17, in some implementations, the disk drive testing system 100 includes at least one computer 320 in communication with the test slots 310. The computer 320 may be configured to provide inventory control of the disk drives 500 and/or an automation interface to control the disk drive testing system 100. A power system 330 supplies power to the disk drive testing system 100. The power system 330 may monitor and/or regulate power to the received disk drive 500 in the test slot 310. A temperature control system 340 controls the temperature of each test slot 310. The temperature control system 340 may be an air mover 342 (e.g. a fan) operable to circulate air over and/or through the test slot 310. In some examples, the air mover 342 is located exteriorly of the test slot 310. A vibration control system 350, such as active or passive dampening, controls the vibration of each test slot 310. In some examples, the vibration control system 350 includes a passive dampening system where components of the test slot 310 are connected via grommet isolators (e.g. thermoplastic vinyl) and/or elastomeric mounts (e.g. urethane elastomer). In some examples, the vibration control system 350 includes an active control system with a spring, damper, and control loop that controls the vibrations in the rack 300 and/or test slot 310. A data interface 360 is in communication with each test slot 310. The data interface 360 is configured to communicate with a disk drive 500 received by the test slot 310.


In the example illustrated in FIG. 18, each rack 300 includes at least one self-testing system 600 in communication with at least one test slot 310. The self-testing system 600 includes a cluster controller 610, a connection interface circuit 620 in electrical communication with a disk drive 500 received in the test slot 310, and a block interface circuit 630 in electrical communication with the connection interface circuit 620. The cluster controller 610 may be configured to run one or more testing programs, such as multiple self-tests on test slots 310 and/or functionality tests on disk drives 500. The connection interface circuit 620 and the block interface circuit 630 may be configured to self-test. However, in some examples, the self-testing system 600 includes a self-test circuit 660 configured to execute and control a self-testing routine on one or more components of the disk drive testing system 100. For example, the self-test circuit 660 may be configured to perform a ‘disk drive’ type and/or ‘test slot only’ type of self-test on one or more components of the disk drive testing system 100. The cluster controller 610 may communicate with the self-test circuit 640 via Ethernet (e.g. Gigabit Ethernet), which may communicate with the block interface circuit 630 and onto the connection interface circuit 620 and disk drive 500 via universal asynchronous receiver/transmitter (UART) serial links. A UART is usually an individual (or part of an) integrated circuit used for serial communications over a computer or peripheral device serial port. The block interface circuit 630 is configured to control power and temperature of the test slot 310, and may control multiple test slots 310 and/or disk drives 500.


Each rack 300, in some examples, includes at least one functional testing system 650 in communication with at least one test slot 310. The functional testing system 650 tests whether a received disk drive 500, held and/or supported in the test slot 310 by the disk drive transporter 550, is functioning properly. A functionality test may include testing the amount of power received by the disk drive 500, the operating temperature, the ability to read and write data, and the ability to read and write data at different temperatures (e.g. read while hot and write while cold, or vice versa). The functionality test may test every memory sector of the disk drive 500 or only random samplings. The functionality test may test an operating temperature of the disk drive 500 and also the data integrity of communications with the disk drive 500. The functional testing system 650 includes a cluster controller 610 and at least one functional interface circuit 660 in electrical communication with the cluster controller 610. A connection interface circuit 620 is in electrical communication with a disk drive 500 received in the test slot 310 and the functional interface circuit 660. The functional interface circuit 660 is configured to communicate a functional test routine to the disk drive 500. The functional testing system 650 may include a communication switch 670 (e.g. Gigabit Ethernet) to provide electrical communication between the cluster controller 610 and the one or more functional interface circuits 660. Preferably, the computer 320, communication switch 670, cluster controller 610, and functional interface circuit 660 communicate on an Ethernet network. However, other forms of communication may be used. The functional interface circuit 660 may communicate to the connection interface circuit 620 via Parallel AT Attachment (a hard disk interface also known as IDE, ATA, ATAPI, UDMA and PATA), SATA, or SAS (Serial Attached SCSI).


A method of performing disk drive testing includes loading multiple disk drives 500 into a transfer station 400 (e.g. as by loading the disk drives 500 into disk drive receptacles 454 defined by a disk drive tote 450, and loading the disk drive tote 450 into a tote receptacle 430 defined by the transfer station 400). The method includes actuating a robotic arm 200 to retrieve a disk drive transporter 550 from a test slot 310 housed in a rack 300, and actuating the robotic arm 200 to retrieve one of the disk drives 500 from the transfer station 400 and carry the disk drive 500 in the disk drive transporter 550. The robotic arm 200 is operable to rotate through a predetermined arc about, and to extend radially from, a first axis 205 defined by the robotic arm 200 substantially normal to a floor surface 10. The method includes actuating the robotic arm 200 to deliver the disk drive transporter 550 carrying the disk drive 500 to the test slot 310, and performing a functionality test on the disk drive 500 housed by the received disk drive transporter 550 and the test slot 310. The method then includes actuating the robotic arm 200 to retrieve the disk drive transporter 550 carrying the tested disk drive 500 from the test slot 310 and deliver the tested disk drive 500 back to the transfer station 400. In some implementations, the rack 300 and two or more associated test slots 310 are configured to move disk drives 500 internally from one test slot 310 to another test slot 310, in case the test slots 310 are provisioned for different kinds of tests.


In some examples, the method includes actuating the robotic arm 200 to deposit the disk drive transporter 550 in the test slot 310 after depositing the tested disk drive 500 in a disk drive receptacle 454 of the disk drive tote 450, or repeating the method by retrieving another disk drive 500 for testing from another disk drive receptacle 454 of the disk drive tote 450. In some examples, delivering the disk drive transporter 550 to the test slot 310 includes inserting the disk drive transporter 550 carrying the disk drive 500 into the test slot 310 in the rack 300, establishing an electric connection between the disk drive 500 and the rack 300.


In some implementations, the method includes performing a functionality test on the received disk drive 500 that includes regulating the temperature of the test slot 310 while operating the disk drive 500. Operation of the received disk drive 500 includes performing reading and writing of data to the disk drive 500. The method may also include circulating air over and/or through the test slot 310 to control the temperature of the test slot 310, and monitoring and/or regulating power delivered to the disk drive 500.


In some examples, the method includes performing a ‘disk drive’ type and/or ‘test slot only’ type of self-test on the test slot 320 with the self-testing system 600 housed by the rack 300 to verify the functionality of the test slot 310. The ‘disk drive’ type self-test tests the functionality of the disk drive testing system with a received disk drive 500, held and/or supported in the test slot 310 by the disk drive transporter 550. The ‘test slot only’ type of self-test tests the functionality of the test slot 310 while empty.


In some examples, the method includes communicating with the vision system 270 disposed on the robotic arm 200 to aid guidance of the robotic arm 200 while transporting the disk drive 500, which may be carried by a disk drive transporter 550. The method includes calibrating the robotic arm 200 by aligning the robotic arm 200 to a fiducial mark 314 on the rack 300, test slot 310, transfer station 400 and/or tote 450 recognized by the vision system 270.


Other details and features combinable with those described herein may be found in the following U.S. patent applications filed concurrently herewith, entitled “DISK DRIVE TESTING”, inventors: Edward Garcia et al., and having assigned Ser. No. 11/958,817, the entire contents of the aforementioned applications are hereby incorporated by reference.


A number of implementations have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the disclosure. Accordingly, other implementations are within the scope of the following claims.

Claims
  • 1. A disk drive testing system, comprising: a robotic arm configured to rotate through a predetermined arc about, and to extend radially from, a first axis that is substantially normal to a floor surface and the robotic arm;multiple racks arranged around the robotic arm for servicing by the robotic arm;multiple test slots housed by at least one of the multiple racks, wherein a test slot is configured to receive a disk drive transporter configured to carry a disk drive for testing;at least one computer configured to communicate with the multiple test slots;a power system configured to supply power to the disk drive testing system;a temperature control system configured to control a temperature of at least one of the multiple test slots;a vibration control system configured to control rack vibrations;a data interface configured to communicate with the disk drive in the disk drive transporter received by the test slot; anda rotatable table supporting the robotic arm and configured to rotate the robotic arm about a second axis that is substantially normal to the floor surface.
  • 2. The disk drive testing system of claim 1, wherein the power system is configured to monitor power to the disk drive received in the test slot.
  • 3. The disk drive testing system of claim 1, wherein the power system is configured to regulate power to the disk drive received in the test slot.
  • 4. The disk drive testing system of claim 1, wherein the temperature control system comprises an air mover configured to circulate air through the test slot.
  • 5. A disk drive testing system, comprising: a robotic arm configured to rotate through a predetermined arc about, and to extend radially from, an axis that is substantially normal to a floor surface and the robotic arm;multiple racks arranged around the robotic arm for servicing by the robotic arm; andmultiple test slots housed by at least one of the multiple racks, wherein a test slot is configured to receive a disk drive transporter configured to carry a disk drive for testing;wherein one of the multiple racks comprises at least one self-testing system configured to communicate with at least one test slot, the at least self-testing system comprising: a cluster controller configured to run one or more testing programs on the disk drive received in the test slot;a connection interface circuit configured to communicate with the disk drive received in the test slot; anda block interface circuit configured to communicate with the connection interface circuit, and to control power and temperature of the test slot;wherein one or more of the connection interface circuit and the block interface circuit are further configured to test a functionality of at least one component of the disk drive testing system.
  • 6. A disk drive testing system, comprising: a robotic arm configured to rotate through a predetermined arc about, and to extend radially from, an axis that is substantially normal to a floor surface and the robotic arm;multiple racks arranged around the robotic arm for servicing by the robotic arm; andmultiple test slots housed by at least one of the multiple racks, wherein a test slot is configured to receive a disk drive transporter configured to carry a disk drive for testing;wherein one of the multiple racks comprises at least one functional testing system configured to communicate with at least one test slot, the at least one functional testing system comprising:a cluster controller configured to run one or more testing programs on the disk drive received in the test slot;at least one functional interface circuit configured to communicate with the cluster controller; anda connection interface circuit configured to communicate with the disk drive received in the test slot and the at least one functional interface circuit, wherein the at least one functional interface circuit is further configured to communicate a functional test routine to the disk drive.
  • 7. The disk drive testing system of claim 6, wherein the at least one functional testing system further comprises an Ethernet switch configured to establish an electrical communication among the cluster controller and the at least one functional interface circuit.
  • 8. A disk drive testing system, comprising: a robotic arm configured to rotate through a predetermined arc about, and to extend radially from, a first axis that is substantially normal to a floor surface and the robotic arm;multiple racks arranged around the robotic arm for servicing by the robotic arm;multiple test slots housed by at least one of the multiple racks, wherein a test slot is configured to receive a disk drive transporter configured to carry a disk drive for testing; anda rotatable table supporting the robotic arm and configured to rotate the robotic arm about a second axis that is substantially normal to the floor surface.
  • 9. The disk drive testing system of claim 8, wherein the robotic arm comprises a manipulator configured to engage the disk drive transporter, and the robotic arm is further configured to carry the disk drive in the disk drive transporter to the test slot for testing.
  • 10. The disk drive testing system of claim 8, wherein the multiple racks are arranged equidistantly radially away from the first axis.
  • 11. The disk drive testing system of claim 8, wherein the multiple racks are arranged in at least a partially closed polygon about the first axis.
  • 12. The disk drive testing system of claim 8, wherein the robotic arm defines a substantially cylindrical working envelope volume, and the multiple racks are arranged within the working envelope volume for accessibility of each test slot for servicing by the robotic arm.
  • 13. The disk drive testing system of claim 8, wherein the robotic arm independently services the test slot by retrieving the disk drive transporter from the test slot to transfer the disk drive between a transfer station and the test slot.
  • 14. The disk drive testing system of claim 8, wherein the robotic arm is configured to rotate 360° about the first axis.
  • 15. The disk drive testing system of claim 8, further comprising a vertically actuating support that supports the robotic arm and is configured to move the robotic arm vertically with respect to the floor surface.
  • 16. The disk drive testing system of claim 8, further comprising a linear actuator for supporting the robotic arm and configured to move the robotic arm horizontally along the floor surface.
  • 17. The disk drive testing system of claim 8, further comprising a transfer station arranged for servicing by the robotic arm, the transfer station configured to supply disk drives for testing.
  • 18. A method of performing disk drive testing, the method comprising: loading multiple disk drives into a transfer station;actuating a robotic arm to retrieve a disk drive transporter from a test slot housed in a rack;actuating the robotic arm to retrieve a disk drive from the transfer station and to carry the disk drive in the disk drive transporter, the robotic arm configured to rotate through a predetermined arc about, and to extend radially from, a first axis that is substantially normal to a floor surface and the robotic arm;actuating the robotic arm to deliver the disk drive transporter carrying the disk drive to the test slot;performing a functionality test on the disk drive housed by the disk drive transporter and the test slot; andactuating the robotic arm to retrieve the disk drive transporter, carrying the disk drive, from the test slot and to deliver the disk drive to the transfer station;wherein the rack comprises: at least one computer configured to communicate with the test slot;a power system configured to supply power to the rack;a temperature control system configured to control a temperature of the test slot;a vibration control system configured to control rack vibrations;a data interface configured to communicate with the disk drive in the disk drive transporter received by the test slot; anda rotatable table supporting the robotic arm and configured to rotate the robotic arm about a second axis that is substantially normal to the floor surface.
  • 19. The method of claim 18, further comprising actuating the robotic arm to deposit the disk drive transporter in the test slot.
  • 20. The method of claim 18, wherein performing the functionality test on the disk drive comprises regulating the temperature of the test slot while operating the disk drive.
  • 21. The method of claim 20, wherein operating the disk drive comprises performing reading and writing of data to the disk drive.
  • 22. The method of claim 18, wherein the rack comprises a first rack and a second rack, each arranged equidistantly radially away from the axis.
  • 23. The method of claim 18, wherein the rack comprises a first rack and a second rack, each arranged in at least a partially closed polygon about the first axis of the robotic arm.
  • 24. The method claim 18, further comprising circulating air through the test slot to control the temperature of the test slot.
  • 25. The method claim 18, further comprising monitoring power delivered to the disk drive.
  • 26. The method claim 18, further comprising regulating power delivered to the disk drive.
  • 27. The method claim 18, wherein the robotic arm is further configured to service the test slot by retrieving the disk drive transporter from the test slot to transfer the disk drive between the transfer station and the test slot.
  • 28. The method claim 18, wherein the robotic arm is further configured to rotate 360° about the axis.
  • 29. A method of performing disk drive testing, the method comprising: loading multiple disk drives into a transfer station;actuating a robotic arm to retrieve a disk drive transporter from a test slot housed in a rack;actuating the robotic arm to retrieve a disk drive from the transfer station and to carry the disk drive in the disk drive transporter, the robotic arm configured to rotate through a predetermined arc about, and to extend radially from, an axis that is substantially normal to a floor surface and the robotic arm;actuating the robotic arm to deliver the disk drive transporter carrying the disk drive to the test slot;performing a functionality test on the disk drive housed by the disk drive transporter and the test slot;actuating the robotic arm to retrieve the disk drive transporter, carrying the disk drive, from the test slot and to deliver the disk drive to the transfer station; andperforming a self-test on the test slot with a self-testing system housed by the rack to verify a functionality of the test slot;wherein the self-testing system comprises: a cluster controller configured to run one or more testing programs on the disk drive received in the test slot;a connection interface circuit configured to communicate with the disk drive received in the test slot; anda block interface circuit configured to communicate with the connection interface circuit, and to control power and temperature of the test slot;wherein one or more of the connection interface circuit and the block interface circuit are further configured to test a functionality of at least one component of the disk drive testing system.
  • 30. A method of performing disk drive testing, the method comprising: loading multiple disk drives into a transfer station;actuating a robotic arm to retrieve a disk drive transporter from a test slot housed in a rack;actuating the robotic arm to retrieve a disk drive from the transfer station and to carry the disk drive in the disk drive transporter, the robotic arm configured to rotate through a predetermined arc about, and to extend radially from, an axis that is substantially normal to a floor surface and the robotic arm;actuating the robotic arm to deliver the disk drive transporter carrying the disk drive to the test slot;performing a functionality test on the disk drive housed by the disk drive transporter and the test slot; andactuating the robotic arm to retrieve the disk drive transporter, carrying the disk drive, from the test slot and to deliver the disk drive to the transfer station;wherein the rack comprises at least one functional testing system configured to perform the functionality test on the disk drive, the at least one functional testing system comprising: a cluster controller configured to run one or more testing programs on the disk drive received in the test slot;at least one functional interface circuit configured to communicate with the cluster controller; anda connection interface circuit configured to communicate with the disk drive received in the test slot and the at least one functional interface circuit, wherein the at least one functional interface circuit is further configured to communicate a functional test routine to the disk drive.
  • 31. The method claim 30, wherein the at least one functional testing system further comprises an Ethernet switch configured to establish an electrical communication between the cluster controller and the at least one functional interface circuit.
US Referenced Citations (387)
Number Name Date Kind
557186 Cahill Mar 1896 A
2224407 Passur Dec 1940 A
2380026 Clarke Jul 1945 A
2631775 Gordon Mar 1953 A
2635524 Jenkins Apr 1953 A
3120166 Lyman Feb 1964 A
3360032 Sherwood Dec 1967 A
3364838 Bradley Jan 1968 A
3517601 Courchesne Jun 1970 A
3845286 Aronstein et al. Oct 1974 A
4147299 Freeman Apr 1979 A
4233644 Hwang et al. Nov 1980 A
4336748 Martin et al. Jun 1982 A
4379259 Varadi et al. Apr 1983 A
4477127 Kume Oct 1984 A
4495545 Dufresne et al. Jan 1985 A
4526318 Fleming et al. Jul 1985 A
4620248 Gitzendanner Oct 1986 A
4648007 Garner Mar 1987 A
4654732 Mesher Mar 1987 A
4665455 Mesher May 1987 A
4683424 Cutright et al. Jul 1987 A
4685303 Branc et al. Aug 1987 A
4688124 Scribner et al. Aug 1987 A
4713714 Gatti et al. Dec 1987 A
4739444 Zushi et al. Apr 1988 A
4754397 Varaiya et al. Jun 1988 A
4768285 Woodman, Jr. Sep 1988 A
4778063 Ueberreiter Oct 1988 A
4801234 Cedrone Jan 1989 A
4809881 Becker Mar 1989 A
4817273 Lape et al. Apr 1989 A
4817934 McCormick et al. Apr 1989 A
4851965 Gabuzda et al. Jul 1989 A
4881591 Rignall Nov 1989 A
4888549 Wilson et al. Dec 1989 A
4911281 Jenkner Mar 1990 A
4967155 Magnuson Oct 1990 A
5012187 Littlebury Apr 1991 A
5045960 Eding Sep 1991 A
5061630 Knopf et al. Oct 1991 A
5119270 Bolton et al. Jun 1992 A
5122914 Hanson Jun 1992 A
5127684 Klotz et al. Jul 1992 A
5128813 Lee Jul 1992 A
5136395 Ishii et al. Aug 1992 A
5158132 Guillemot Oct 1992 A
5168424 Bolton et al. Dec 1992 A
5171183 Pollard et al. Dec 1992 A
5173819 Takahashi et al. Dec 1992 A
5176202 Richard Jan 1993 A
5205132 Fu Apr 1993 A
5206772 Hirano et al. Apr 1993 A
5207613 Ferchau et al. May 1993 A
5210680 Scheibler May 1993 A
5237484 Ferchau et al. Aug 1993 A
5263537 Plucinski et al. Nov 1993 A
5269698 Singer Dec 1993 A
5295392 Hensel et al. Mar 1994 A
5309323 Gray et al. May 1994 A
5325263 Singer et al. Jun 1994 A
5349486 Sugimoto et al. Sep 1994 A
5368072 Cote Nov 1994 A
5374395 Robinson et al. Dec 1994 A
5379229 Parsons et al. Jan 1995 A
5398058 Hattori Mar 1995 A
5412534 Cutts et al. May 1995 A
5414591 Kimura et al. May 1995 A
5426581 Kishi et al. Jun 1995 A
5469037 McMurtrey, Sr. et al. Nov 1995 A
5477416 Schkrohowsky et al. Dec 1995 A
5484012 Hiratsuka Jan 1996 A
5486681 Dagnac et al. Jan 1996 A
5491610 Mok et al. Feb 1996 A
5543727 Bushard et al. Aug 1996 A
5546250 Diel Aug 1996 A
5557186 McMurtrey, Sr. et al. Sep 1996 A
5563768 Perdue Oct 1996 A
5570740 Flores et al. Nov 1996 A
5593380 Bittikofer Jan 1997 A
5601141 Gordon et al. Feb 1997 A
5604662 Anderson et al. Feb 1997 A
5610893 Soga et al. Mar 1997 A
5617430 Angelotti et al. Apr 1997 A
5644705 Stanley Jul 1997 A
5646918 Dimitri et al. Jul 1997 A
5654846 Wicks et al. Aug 1997 A
5673029 Behl et al. Sep 1997 A
5694290 Chang Dec 1997 A
5718627 Wicks Feb 1998 A
5718628 Nakazato et al. Feb 1998 A
5731928 Jabbari et al. Mar 1998 A
5751549 Eberhardt et al. May 1998 A
5754365 Beck et al. May 1998 A
5761032 Jones Jun 1998 A
5793610 Schmitt et al. Aug 1998 A
5811678 Hirano Sep 1998 A
5812761 Seki et al. Sep 1998 A
5819842 Potter et al. Oct 1998 A
5831525 Harvey Nov 1998 A
5851143 Hamid Dec 1998 A
5859409 Kim et al. Jan 1999 A
5859540 Fukumoto Jan 1999 A
5862037 Behl Jan 1999 A
5870630 Reasoner et al. Feb 1999 A
5886639 Behl et al. Mar 1999 A
5890959 Pettit et al. Apr 1999 A
5912799 Grouell et al. Jun 1999 A
5913926 Anderson et al. Jun 1999 A
5914856 Morton et al. Jun 1999 A
5917676 Browning Jun 1999 A
5927386 Lin Jul 1999 A
5956301 Dimitri et al. Sep 1999 A
5959834 Chang Sep 1999 A
5999356 Dimitri et al. Dec 1999 A
5999365 Hasegawa et al. Dec 1999 A
6000623 Blatti et al. Dec 1999 A
6005404 Cochran et al. Dec 1999 A
6005770 Schmitt Dec 1999 A
6008636 Miller et al. Dec 1999 A
6008984 Cunningham et al. Dec 1999 A
6011689 Wrycraft Jan 2000 A
6031717 Baddour et al. Feb 2000 A
6034870 Osborn et al. Mar 2000 A
6042348 Aakalu et al. Mar 2000 A
6045113 Itakura Apr 2000 A
6055814 Song May 2000 A
6066822 Nemoto et al. May 2000 A
6067225 Reznikov et al. May 2000 A
6069792 Nelik May 2000 A
6084768 Bolognia Jul 2000 A
6094342 Dague et al. Jul 2000 A
6104607 Behl Aug 2000 A
6115250 Schmitt Sep 2000 A
6122131 Jeppson Sep 2000 A
6122232 Schell et al. Sep 2000 A
6124707 Kim et al. Sep 2000 A
6130817 Flotho et al. Oct 2000 A
6144553 Hileman et al. Nov 2000 A
6166901 Gamble et al. Dec 2000 A
6169413 Pack et al. Jan 2001 B1
6169930 Blachek et al. Jan 2001 B1
6177805 Pih Jan 2001 B1
6178835 Orriss et al. Jan 2001 B1
6181557 Gatti Jan 2001 B1
6185065 Hasegawa et al. Feb 2001 B1
6185097 Behl Feb 2001 B1
6188191 Frees et al. Feb 2001 B1
6192282 Smith et al. Feb 2001 B1
6193339 Behl et al. Feb 2001 B1
6209842 Anderson et al. Apr 2001 B1
6227516 Webster, Jr. et al. May 2001 B1
6229275 Yamamoto May 2001 B1
6231145 Liu May 2001 B1
6233148 Shen May 2001 B1
6236563 Buican et al. May 2001 B1
6247944 Bolognia et al. Jun 2001 B1
6249824 Henrichs Jun 2001 B1
6252769 Tullstedt et al. Jun 2001 B1
6262863 Ostwald et al. Jul 2001 B1
6272007 Kitlas et al. Aug 2001 B1
6272767 Botruff et al. Aug 2001 B1
6281677 Cosci et al. Aug 2001 B1
6282501 Assouad Aug 2001 B1
6285524 Boigenzahn et al. Sep 2001 B1
6289678 Pandolfi Sep 2001 B1
6297950 Erwin Oct 2001 B1
6298672 Valicoff, Jr. Oct 2001 B1
6302714 Bolognia et al. Oct 2001 B1
6304839 Ho et al. Oct 2001 B1
6307386 Fowler et al. Oct 2001 B1
6327150 Levy et al. Dec 2001 B1
6330154 Fryers et al. Dec 2001 B1
6351379 Cheng Feb 2002 B1
6354792 Kobayashi et al. Mar 2002 B1
6356409 Price et al. Mar 2002 B1
6356415 Kabasawa Mar 2002 B1
6384995 Smith May 2002 B1
6388437 Wolski et al. May 2002 B1
6388875 Chen May 2002 B1
6388878 Chang May 2002 B1
6389225 Malinoski et al. May 2002 B1
6411584 Davis et al. Jun 2002 B2
6421236 Montoya et al. Jul 2002 B1
6434000 Pandolfi Aug 2002 B1
6434498 Ulrich et al. Aug 2002 B1
6434499 Ulrich et al. Aug 2002 B1
6464080 Morris et al. Oct 2002 B1
6467153 Butts et al. Oct 2002 B2
6473297 Behl et al. Oct 2002 B1
6473301 Levy et al. Oct 2002 B1
6476627 Pelissier et al. Nov 2002 B1
6477044 Foley et al. Nov 2002 B2
6477442 Valerino, Sr. Nov 2002 B1
6480380 French et al. Nov 2002 B1
6480382 Cheng Nov 2002 B2
6487071 Tata et al. Nov 2002 B1
6489793 Jones et al. Dec 2002 B2
6494663 Ostwald et al. Dec 2002 B2
6525933 Eland Feb 2003 B2
6526841 Wanek et al. Mar 2003 B1
6535384 Huang Mar 2003 B2
6537013 Emberty et al. Mar 2003 B2
6544309 Hoefer et al. Apr 2003 B1
6546445 Hayes Apr 2003 B1
6553532 Aoki Apr 2003 B1
6560107 Beck et al. May 2003 B1
6565163 Behl et al. May 2003 B2
6566859 Wolski et al. May 2003 B2
6567266 Ives et al. May 2003 B2
6570734 Ostwald et al. May 2003 B2
6577586 Yang et al. Jun 2003 B1
6577687 Hall et al. Jun 2003 B2
6618254 Ives Sep 2003 B2
6626846 Spencer Sep 2003 B2
6628518 Behl et al. Sep 2003 B2
6635115 Fairbairn et al. Oct 2003 B1
6640235 Anderson Oct 2003 B1
6644982 Ondricek et al. Nov 2003 B1
6651192 Viglione et al. Nov 2003 B1
6654240 Tseng et al. Nov 2003 B1
6679128 Wanek et al. Jan 2004 B2
6693757 Hayakawa et al. Feb 2004 B2
6741529 Getreuer May 2004 B1
6746648 Mattila et al. Jun 2004 B1
6751093 Hsu et al. Jun 2004 B1
6791785 Messenger et al. Sep 2004 B1
6791799 Fletcher Sep 2004 B2
6798651 Syring et al. Sep 2004 B2
6798972 Ito et al. Sep 2004 B1
6801834 Konshak et al. Oct 2004 B1
6806700 Wanek et al. Oct 2004 B2
6811427 Garrett et al. Nov 2004 B2
6826046 Muncaster et al. Nov 2004 B1
6830372 Liu et al. Dec 2004 B2
6832929 Garrett et al. Dec 2004 B2
6861861 Song et al. Mar 2005 B2
6862173 Konshak et al. Mar 2005 B1
6867939 Katahara et al. Mar 2005 B2
6892328 Klein et al. May 2005 B2
6904479 Hall et al. Jun 2005 B2
6908330 Garrett et al. Jun 2005 B2
6928336 Peshkin et al. Aug 2005 B2
6937432 Sri-Jayantha et al. Aug 2005 B2
6957291 Moon et al. Oct 2005 B2
6965811 Dickey et al. Nov 2005 B2
6974017 Oseguera Dec 2005 B2
6976190 Goldstone Dec 2005 B1
6980381 Gray et al. Dec 2005 B2
6982872 Behl et al. Jan 2006 B2
7006325 Emberty et al. Feb 2006 B2
7039924 Goodman et al. May 2006 B2
7054150 Orriss et al. May 2006 B2
7070323 Wanek et al. Jul 2006 B2
7076391 Pakzad et al. Jul 2006 B1
7077614 Hasper et al. Jul 2006 B1
7088541 Orriss et al. Aug 2006 B2
7092251 Henry Aug 2006 B1
7106582 Albrecht et al. Sep 2006 B2
7123477 Coglitore et al. Oct 2006 B2
7126777 Flechsig et al. Oct 2006 B2
7130138 Lum et al. Oct 2006 B2
7134553 Stephens Nov 2006 B2
7139145 Archibald et al. Nov 2006 B1
7164579 Muncaster et al. Jan 2007 B2
7167360 Inoue et al. Jan 2007 B2
7181458 Higashi Feb 2007 B1
7203021 Ryan et al. Apr 2007 B1
7203060 Kay et al. Apr 2007 B2
7206201 Behl et al. Apr 2007 B2
7216968 Smith et al. May 2007 B2
7219028 Bae et al. May 2007 B2
7219273 Fisher et al. May 2007 B2
7227746 Tanaka et al. Jun 2007 B2
7232101 Wanek et al. Jun 2007 B2
7243043 Shin Jul 2007 B2
7248467 Sri-Jayantha et al. Jul 2007 B2
7259966 Connelly, Jr. et al. Aug 2007 B2
7273344 Ostwald et al. Sep 2007 B2
7280353 Wendel et al. Oct 2007 B2
7289885 Basham et al. Oct 2007 B2
7304855 Milligan et al. Dec 2007 B1
7315447 Inoue et al. Jan 2008 B2
7349205 Hall et al. Mar 2008 B2
7353524 Lin et al. Apr 2008 B1
7385385 Magliocco et al. Jun 2008 B2
7395133 Lowe Jul 2008 B2
7403451 Goodman et al. Jul 2008 B2
7437212 Farchmin et al. Oct 2008 B2
7447011 Wade et al. Nov 2008 B2
7457112 Fukuda et al. Nov 2008 B2
7467024 Flitsch Dec 2008 B2
7476362 Angros Jan 2009 B2
7483269 Marvin et al. Jan 2009 B1
7505264 Hall et al. Mar 2009 B2
7554811 Scicluna et al. Jun 2009 B2
7568122 Mechalke et al. Jul 2009 B2
7570455 Deguchi et al. Aug 2009 B2
7573715 Mojaver et al. Aug 2009 B2
7584851 Hong et al. Sep 2009 B2
7612996 Atkins et al. Nov 2009 B2
7625027 Kiaie et al. Dec 2009 B2
7630196 Hall et al. Dec 2009 B2
7643289 Ye et al. Jan 2010 B2
7646596 Ng Jan 2010 B2
7729107 Atkins et al. Jun 2010 B2
20010006453 Glorioso et al. Jul 2001 A1
20010044023 Johnson et al. Nov 2001 A1
20010046118 Yamanashi et al. Nov 2001 A1
20010048590 Behl et al. Dec 2001 A1
20020030981 Sullivan et al. Mar 2002 A1
20020044416 Harmon, III et al. Apr 2002 A1
20020051338 Jiang et al. May 2002 A1
20020071248 Huang et al. Jun 2002 A1
20020079422 Jiang Jun 2002 A1
20020090320 Burow et al. Jul 2002 A1
20020116087 Brown Aug 2002 A1
20020161971 Dimitri et al. Oct 2002 A1
20020172004 Ives et al. Nov 2002 A1
20030035271 Lelong et al. Feb 2003 A1
20030043550 Ives Mar 2003 A1
20030206397 Allgeyer et al. Nov 2003 A1
20040062104 Muller et al. Apr 2004 A1
20040165489 Goodman et al. Aug 2004 A1
20040230399 Shin Nov 2004 A1
20040236465 Butka et al. Nov 2004 A1
20040264121 Orriss et al. Dec 2004 A1
20050004703 Christie, Jr. Jan 2005 A1
20050010836 Bae et al. Jan 2005 A1
20050018397 Kay et al. Jan 2005 A1
20050055601 Wilson et al. Mar 2005 A1
20050057849 Twogood et al. Mar 2005 A1
20050069400 Dickey et al. Mar 2005 A1
20050109131 Wanek et al. May 2005 A1
20050116702 Wanek et al. Jun 2005 A1
20050131578 Weaver Jun 2005 A1
20050179457 Min et al. Aug 2005 A1
20050207059 Cochrane Sep 2005 A1
20050219809 Muncaster et al. Oct 2005 A1
20050225338 Sands et al. Oct 2005 A1
20050270737 Wilson et al. Dec 2005 A1
20060023331 Flechsig et al. Feb 2006 A1
20060028802 Shaw et al. Feb 2006 A1
20060066974 Akamatsu et al. Mar 2006 A1
20060130316 Takase et al. Jun 2006 A1
20060190205 Klein et al. Aug 2006 A1
20060227517 Zayas et al. Oct 2006 A1
20060250766 Blaalid et al. Nov 2006 A1
20060269384 Kiaie et al. Nov 2006 A1
20070034368 Atkins et al. Feb 2007 A1
20070035874 Wendel et al. Feb 2007 A1
20070035875 Hall et al. Feb 2007 A1
20070053154 Fukuda et al. Mar 2007 A1
20070064383 Tanaka et al. Mar 2007 A1
20070082907 Canada et al. Apr 2007 A1
20070127202 Scicluna et al. Jun 2007 A1
20070127206 Wade et al. Jun 2007 A1
20070195497 Atkins Aug 2007 A1
20070248142 Rountree et al. Oct 2007 A1
20070253157 Atkins et al. Nov 2007 A1
20070286045 Onagi et al. Dec 2007 A1
20080007865 Orriss et al. Jan 2008 A1
20080030945 Majaver et al. Feb 2008 A1
20080112075 Farquhar et al. May 2008 A1
20080239564 Farquhar et al. Oct 2008 A1
20080282275 Zaczek et al. Nov 2008 A1
20080282278 Barkley Nov 2008 A1
20090028669 Rebstock Jan 2009 A1
20090082907 Stuvel et al. Mar 2009 A1
20090109622 Parish et al. Apr 2009 A1
20090122443 Farquhar et al. May 2009 A1
20090142169 Garcia et al. Jun 2009 A1
20090153992 Garcia et al. Jun 2009 A1
20090153993 Garcia et al. Jun 2009 A1
20090153994 Merrow et al. Jun 2009 A1
20090175705 Nakao et al. Jul 2009 A1
20090261047 Merrow Oct 2009 A1
20090261228 Merrow Oct 2009 A1
20090261229 Merrow Oct 2009 A1
20090262444 Polyakov et al. Oct 2009 A1
20090262445 Noble et al. Oct 2009 A1
20090262454 Merrow Oct 2009 A1
20090262455 Merrow Oct 2009 A1
20090265032 Toscano et al. Oct 2009 A1
20090265043 Merrow et al. Oct 2009 A1
20090265136 Garcia et al. Oct 2009 A1
20090297328 Slocum, III Dec 2009 A1
Foreign Referenced Citations (201)
Number Date Country
583716 May 1989 AU
2341188 Sep 1999 CN
1114109 Jul 2003 CN
1177187 Nov 2004 CN
1192544 Mar 2005 CN
3786944 Nov 1993 DE
69111634 May 1996 DE
69400145 Oct 1996 DE
19701548 Aug 1997 DE
19804813 Sep 1998 DE
69614460 Jun 2002 DE
69626584 Dec 2003 DE
19861388 Aug 2007 DE
0210497 Jul 1986 EP
0242970 Oct 1987 EP
0 277 634 Aug 1988 EP
0 277 634 Aug 1988 EP
0356977 Aug 1989 EP
0442642 Feb 1991 EP
0466073 Jul 1991 EP
0776009 Nov 1991 EP
0582017 Feb 1994 EP
0617570 Sep 1994 EP
0635836 Jan 1995 EP
741508 Nov 1996 EP
0757320 Feb 1997 EP
0757351 Feb 1997 EP
0840476 May 1998 EP
1 045 301 Oct 2000 EP
1 045 301 Oct 2000 EP
1209557 May 2002 EP
1 422 713 May 2004 EP
1422713 May 2004 EP
1234308 May 2006 EP
1 760 722 Mar 2007 EP
1760722 Mar 2007 EP
1612798 Nov 2007 EP
2241118 Aug 1991 GB
2276275 Sep 1994 GB
2299436 Oct 1996 GB
2 312 984 Nov 1997 GB
2312984 Nov 1997 GB
2328782 Mar 1999 GB
2439844 Jul 2008 GB
61-115279 Jun 1986 JP
62-177621 Aug 1987 JP
62-239394 Oct 1987 JP
62-251915 Nov 1987 JP
63-002160 Jan 1988 JP
63-004483 Jan 1988 JP
63-016482 Jan 1988 JP
63-062057 Mar 1988 JP
63-201946 Aug 1988 JP
63-214972 Sep 1988 JP
63-269376 Nov 1988 JP
64-089034 Apr 1989 JP
2-091565 Mar 1990 JP
2-098197 Apr 1990 JP
2-185784 Jul 1990 JP
2-199690 Aug 1990 JP
2-278375 Nov 1990 JP
2-297770 Dec 1990 JP
3-008086 Jan 1991 JP
3-078160 Apr 1991 JP
3-105704 May 1991 JP
3-207947 Sep 1991 JP
3-210662 Sep 1991 JP
3-212859 Sep 1991 JP
3-214490 Sep 1991 JP
3-240821 Oct 1991 JP
3-295071 Dec 1991 JP
4-017134 Jan 1992 JP
4-143989 May 1992 JP
4-172658 Jun 1992 JP
4-214288 Aug 1992 JP
4-247385 Sep 1992 JP
4-259956 Sep 1992 JP
4-307440 Oct 1992 JP
4-325923 Nov 1992 JP
5-035053 Feb 1993 JP
5-035415 Feb 1993 JP
5-066896 Mar 1993 JP
5-068257 Mar 1993 JP
5-073566 Mar 1993 JP
5-073803 Mar 1993 JP
5-101603 Apr 1993 JP
5-173718 Jul 1993 JP
5-189163 Jul 1993 JP
5-204725 Aug 1993 JP
5-223551 Aug 1993 JP
6-004220 Jan 1994 JP
6-004981 Jan 1994 JP
6-162645 Jun 1994 JP
6-181561 Jun 1994 JP
6-215515 Aug 1994 JP
6-274943 Sep 1994 JP
6-314173 Nov 1994 JP
7-007321 Jan 1995 JP
7-029364 Jan 1995 JP
7-037376 Feb 1995 JP
7-056654 Mar 1995 JP
7-111078 Apr 1995 JP
7-115497 May 1995 JP
7-201082 Aug 1995 JP
7-226023 Aug 1995 JP
7-230669 Aug 1995 JP
7-257525 Oct 1995 JP
1982246 Oct 1995 JP
7-307059 Nov 1995 JP
8007994 Jan 1996 JP
8-030398 Feb 1996 JP
8-030407 Feb 1996 JP
8-079672 Mar 1996 JP
8-106776 Apr 1996 JP
8-110821 Apr 1996 JP
8-167231 Jun 1996 JP
8-212015 Aug 1996 JP
8-244313 Sep 1996 JP
8-263525 Oct 1996 JP
8-263909 Oct 1996 JP
8-297957 Nov 1996 JP
2553315 Nov 1996 JP
9-044445 Feb 1997 JP
9-064571 Mar 1997 JP
9-082081 Mar 1997 JP
2635127 Jul 1997 JP
9-306094 Nov 1997 JP
9-319466 Dec 1997 JP
10-040021 Feb 1998 JP
10-049365 Feb 1998 JP
10-064173 Mar 1998 JP
10-098521 Apr 1998 JP
2771297 Jul 1998 JP
10-275137 Oct 1998 JP
10-281799 Oct 1998 JP
10-320128 Dec 1998 JP
10-340139 Dec 1998 JP
2862679 Mar 1999 JP
11-134852 May 1999 JP
11-139839 May 1999 JP
2906930 Jun 1999 JP
11-203201 Jul 1999 JP
11-213182 Aug 1999 JP
11-327800 Nov 1999 JP
11-353128 Dec 1999 JP
11-353129 Dec 1999 JP
2000-056935 Feb 2000 JP
2000-066845 Mar 2000 JP
2000-112831 Apr 2000 JP
2000-113563 Apr 2000 JP
2000-114759 Apr 2000 JP
2000-125290 Apr 2000 JP
3052183 Apr 2000 JP
2000-132704 May 2000 JP
2000-149431 May 2000 JP
2000-228686 Aug 2000 JP
2000-235762 Aug 2000 JP
2000-236188 Aug 2000 JP
2000-242598 Sep 2000 JP
2000-278647 Oct 2000 JP
3097994 Oct 2000 JP
2000-305860 Nov 2000 JP
2001-005501 Jan 2001 JP
2001-023270 Jan 2001 JP
2001-100925 Apr 2001 JP
03-195697 Aug 2001 JP
2002-42446 Feb 2002 JP
2007-87498 Apr 2007 JP
2007-188615 Jul 2007 JP
2007-220184 Aug 2007 JP
2007-293936 Nov 2007 JP
2007-305206 Nov 2007 JP
2007-305290 Nov 2007 JP
2007-328761 Dec 2007 JP
2008-503824 Feb 2008 JP
10-1998-0035445 Aug 1998 KR
10-0176527 Nov 1998 KR
10-0214308 Aug 1999 KR
10-0403039 Oct 2003 KR
45223 Jan 1998 SG
387574 Apr 2000 TW
WO 8901682 Aug 1988 WO
WO 9706532 Feb 1997 WO
WO 0049487 Feb 2000 WO
WO 0067253 Nov 2000 WO
WO 0109627 Feb 2001 WO
WO 0141148 Jun 2001 WO
WO 03013783 Feb 2003 WO
WO 03021597 Mar 2003 WO
WO 03021598 Mar 2003 WO
WO 03067385 Aug 2003 WO
WO 2004006260 Jan 2004 WO
WO 2004114286 Dec 2004 WO
WO 2005024830 Mar 2005 WO
WO 2005024831 Mar 2005 WO
WO 2005109131 Nov 2005 WO
WO 2006030185 Mar 2006 WO
WO 2006048611 May 2006 WO
WO 2006100441 Sep 2006 WO
WO 2006100445 Sep 2006 WO
WO 2007031729 Mar 2007 WO
Related Publications (1)
Number Date Country
20090153992 A1 Jun 2009 US