Disk drive tolerance ring with edge rounding from opposite major faces

Information

  • Patent Grant
  • 9908167
  • Patent Number
    9,908,167
  • Date Filed
    Monday, March 2, 2015
    10 years ago
  • Date Issued
    Tuesday, March 6, 2018
    7 years ago
Abstract
A tolerance ring suitable for use in applications such as an actuator assembly for a disk drive, is disclosed. The tolerance ring may be fabricated by steps including stamping a sheet metal section from a strip of sheet metal that has first and second edges that are parallel to a strip axis. A leading axial edge may be rounded from an inner major face and from an outer major face. A plurality of protrusions may be formed from the first major face. The sheet metal section may be bent into a substantially cylindrical shape having a central axis that is normal to the strip axis.
Description
BACKGROUND

Information storage devices are used to retrieve and/or store data in computers and other consumer electronics devices. A magnetic hard disk drive is an example of an information storage device that includes one or more heads that can both read and write, but other information storage devices also include heads—sometimes including heads that cannot write. For example, in an optical disk drive, the head will typically include a mirror and objective lens for reflecting and focusing a laser beam on to a surface of the disk.


In a modern magnetic hard disk drive device, each head is a sub-component of a head gimbal assembly (HGA) that typically includes a suspension assembly with a laminated flexure to carry the electrical signals to and from the head. The HGA, in turn, is a sub-component of a head stack assembly (HSA) that typically includes a plurality of HGAs, an actuator, and a flexible printed circuit (FPC) that includes a flex cable. The plurality of HGAs are attached to various arms of the actuator, and each of the laminated flexures of the HGAs has a flexure tail that is electrically connected to the FPC of the HSA.


In magnetic recording applications, the head will typically include a transducer having an inductive writer and a magnetoresistive reader. The head may read and write data on a surface of one of a plurality of co-rotating disks that are co-axially mounted on a spindle motor. Magnetically-written transitions are thereby laid out in concentric circular tracks on the disk surface. In modern disk drives, the tracks must be extremely narrow and the transitions closely spaced to achieve a high density of information per unit area of the disk surface. Still, the disks must rotate quickly so that the computer user does not have to wait long for a desired bit of information on the disk surface to translate to a position under the head.


The required close spacing of data written on the disk surface has consequences on the design of the disk drive device and its mechanical components. Among the most important consequences is that the magnetic transducer on the head must operate in extremely close proximity to the magnetic surface of the disk. However, because there is relative motion between the disk surface and the head due to the disk rotation and head actuation, continuous contact between the head and disk can lead to tribological failure of the interface. Such tribological failure, known colloquially as a “head crash,” can damage the disk and head, and cause data loss. Therefore, the magnetic head is typically designed to be hydrodynamically supported by an extremely thin air bearing so that its magnetic transducer can operate in close proximity to the disk while physical contacts between the head and the disk are minimized or avoided.


The head-disk spacing present during operation of modern hard disk drives is extremely small—measuring in the tens of nanometers. Obviously, for the head to operate so closely to the disk, the head-disk interface must be kept clear of debris and contamination—even microscopic debris and contamination. Tribological problems in magnetic disk drives sometimes have non-obvious causes that, once known, understood, and accounted for, give one disk drive manufacturer a competitive edge over another. In addition to tribological consequences, contamination and debris at or near the head disk interface can force the head away from the disk. The resulting temporary increases in head-disk spacing cause magnetic read/write errors. Accordingly, magnetic hard disk drives are assembled in clean-room conditions and the constituent parts are subjected to pre-assembly cleaning steps during manufacture.


In many disk drives, the actuator arm (or arms) that positions the head(s) extends from an actuator body that is fixed to an actuator pivot bearing by a tolerance ring. Typically, tolerance rings include a cylindrical base portion and a plurality of contacting portions that are raised or recessed from the cylindrical base portion. The contacting portions are typically partially compressed during installation to create a radial preload between the mating cylindrical features of the parts joined by the tolerance ring. The radial preload compression provides frictional engagement that prevents axial slippage of the mating parts. For example, in disk drive applications, the radial compressive preload of the tolerance ring prevents separation and slippage at the interface between the actuator arm body and the pivot bearing during operation and during mechanical shock events. The tolerance ring also acts as a radial spring. In this way, the tolerance ring positions the interior cylindrical part relative to the exterior cylindrical part while making up for radial clearance and manufacturing variations in the radius of the parts.


State of the art tolerance rings are typically manufactured from a flat metal sheet with stamping, forming, rolling, and other steps to provide raised or recessed contacting regions and a final generally-cylindrical shape. Installation of the tolerance ring involves axial motion relative to a generally cylindrical hole in an exterior part (e.g. actuator arm) and/or relative to a generally cylindrical inner part (e.g. actuator pivot bearing). Such tolerance ring installation may shear metal fragments from either the actuator arm body or an outer surface of the actuator pivot bearing cartridge, and such fragments can later contaminate the head-disk interface and ultimately lead to a head crash and possibly to data loss.


The actuator arm structure is typically fabricated from aluminum or an alloy of aluminum and is therefore typically softer and more easily scratched by the tolerance ring than is the actuator pivot bearing cartridge, which may be fabricated from stainless steel. Still, the tolerance ring may scrape the outer surface of the actuator pivot bearing during installation, even if the actuator pivot bearing cartridge is fabricated from stainless steel. Consequently, the installation of a conventional tolerance ring is somewhat prone to generate debris.


Most state-of-the-art attempts to improve cleanliness of disk drive components have focused on pre- and post-assembly cleaning steps and on environmental cleanliness during assembly. Assembly in clean environments also does not eliminate or remove contaminates and debris thoroughly. Less frequently, disk drive designers consider the generation of debris and contamination earlier in the design of sub-components. Still, such consideration is often restricted to the selection of lubricants and adhesives. Consequently, there remains much scope in the art for reducing debris generation via novel changes to the basic design or assembly of various sub-components of the disk drive.


Therefore, there is a need in the art for a tolerance ring design and/or tolerance ring fabrication method that can reduce the creation of debris during disk drive assembly. Although the need in the art was described above in the context of magnetic disk drive information storage devices, the need is also present in other applications where a tolerance ring is used in a clean environment that must remain as free as possible of debris and contaminants.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of a conventional disk drive (without any cover shown so that interior parts may be viewed).



FIG. 2 is an exploded view of a disk drive actuator arm assembly including a tolerance ring that is capable of including an embodiment of the present invention.



FIG. 3 is a perspective view of a contemporary tolerance ring that is capable of including an embodiment of the present invention.



FIG. 4 depicts an intermediate stage of a tolerance ring fabrication process.



FIG. 5 is a cross-sectional depiction of an edge coining process that may be used according to an embodiment of the present invention.



FIG. 6 depicts an axially-leading or axially-trailing circumferential edge of a tolerance ring, according to an embodiment of the present invention.





DETAILED DESCRIPTION OF EXAMPLE EMBODIMENTS


FIG. 1 is top perspective view of a conventional disk drive 100. The disk drive 100 includes a disk drive base 102 and two annular magnetic disks 104. The disks 104 include opposing disk surfaces which may include one or more magnetic layers. Data may be recorded along data tracks on a single disk surface or both. The disk drive 100 further includes a spindle 106, rotatably mounted on the disk drive base 102, for rotating the disks 104. The rotation of the disks 104 establishes air flow through recirculation filter 108. Disk drives like disk drive 100 may have only a single disk 104, or alternatively, two or more disks 104.


The disk drive 100 further includes an actuator 110 that is pivotably mounted on the disk drive base 102. Specifically, the actuator 110 is pivotably attached to the disk drive base 102 by a pivot bearing cartridge 150 that is disposed within a cylindrical bore 140 of the actuator 110. Voice coil motor 112 rotates the actuator 110 through a limited angular range about an actuator pivot axis 116, so that at least one head gimbal assembly (HGA) 114 is desirably positioned relative to one or more tracks of information on a corresponding one of the disks 104. The actuator 110 may occasionally be latched at an extreme angular position within the limited angular range, by latch 120.


The disk drive of FIG. 1 includes four HGAs 114, each of which corresponds to a surface of one of the two disks 104. However fewer or more HGAs may be included depending on the number of disks 104 that are included and whether the disk drive 100 is depopulated. Each HGA 114 includes a read head (too small to be depicted in FIG. 1) with a transducer for at least reading data from a disk surface. The transducer may include both a read element and a writer, but the term read head will be used herein to refer to any head that can read, even if it also performs other functions such as writing, air bearing modulation, microactuation, etc. In optical and magneto-optical recording applications, the head may also include an objective lens and an active or passive mechanism for controlling the separation of the objective lens from a disk surface of the disk 104.


Electrical signals to/from the HGAs 114 are carried to other drive electronics via a flexible printed circuit 130, which includes a flex cable 132, a flex cable bracket 134 that is attached to the disk drive base 102, and a flex stiffener 136 that is attached to the body of the actuator 110. The flex cable 132 runs from the actuator 110 to the flex cable bracket 134. The flex cable bracket 134 may include a connector protruding from its underside, to electrically couple the flex cable 132 to a printed circuit board attached to the underside of the disk drive base 102 outside the disk drive enclosure.



FIG. 2 is an exploded view of a disk drive actuator arm assembly 200 including a tolerance ring 230 that is capable of including an embodiment of the present invention. Tolerance ring 230 may be designed to fit outside of actuator pivot bearing cartridge 250 and inside a cylindrical bore 240 in an actuator arm body 210. In this context, a bore is considered cylindrical if it has at least one inner surface that is cylindrical. The cylindrical bore 240 may have a tapered end, as shown in FIG. 2.


In the example of FIG. 2, at least one actuator arm 214 protrudes from the actuator body 210 in a direction approximately normal to an actuator pivot axis 290. A distal end 216 of the actuator arm 214 is adapted for attachment of a read head, for example by conventional swaging of a head gimbal assembly that includes the read head. The “tolerance ring” 230 may sometimes be referred to as being an “interference band,” and those terms are used synonymously herein. The tolerance ring 230 is disposed in a radial clearance space between an outer surface 252 of the pivot bearing 250 and an inner surface 242 of the cylindrical bore 240 in the actuator body 210.



FIG. 3 is a perspective view of a contemporary tolerance ring (i.e. interference band) 300 that is capable of including an embodiment of the present invention. The tolerance ring 300 has a cylindrical base portion 330 and a plurality of bumps 380 that protrude radially. In this context, the radial direction is normal to a central axis 390 of the cylindrical base portion 330. Note that the central axis 390 of the cylindrical base portion 330 is approximately coincident with the actuator pivot axis. Radial expansion and contraction of the tolerance ring 300 is facilitated by a gap 370 in the circumference of the tolerance ring 300. The gap 370 is disposed between gap edges 350, 360 that run parallel with the central axis 390 of the cylindrical base portion 330.


In the example of FIG. 3, the tolerance ring 300 includes an inner major face 340 that faces an outer surface of a pivot bearing (e.g. outer surface 252 shown in FIG. 2), and the tolerance ring 300 includes an outer major face 332 that faces an inner surface of an actuator cylindrical bore (e.g. inner surface 242 shown in FIG. 2). In the example of FIG. 3, the tolerance ring 300 includes axially-leading and axially-trailing circumferential edges 310, 320, that are each capable of being rounded from the inner major face 340 and from the outer major face 332 according to an embodiment of the present invention.


For example, one or both of the axially-leading and-axially trailing circumferential edges 310, 320 may be rounded from the inner major face 340 and from the outer major face 332 by coining or skiving. Specifically, and now referring additionally to FIG. 4, a tolerance ring fabrication process according to an embodiment of the present invention may include stamping a sheet metal section 400 from a strip of sheet metal. In certain embodiments, the sheet metal may comprise stainless steel that optionally has a sheet thickness in the range of 0.076 to 0.100 mm.


The sheet metal section 400 may have first and second edges 410, 420 that are parallel to a strip axis 480. The sheet metal section 400 (and the sheet metal strip from which it was stamped) may have a first major face 430 (facing the viewer in FIG. 4) that is opposite a second major face (facing away from the viewer in FIG. 4). In the example of FIG. 4, the sheet metal section 400 is a rectangular blank having third and fourth edges 450, 460 that are normal to the strip axis 480. However, other blank shapes are contemplated, such as other simple quadrilateral shapes or more complex shapes (e.g. in which the third and/or fourth edges 450, 460 may form acute or obtuse angles or include notches or tabs, etc.)


The first edge 410 and/or the second edge 420 may be rounded from the first major face 430 and from the second major face (facing away from the viewer in FIG. 4 by skiving of the sheet metal strip before the sheet metal section 400 is stamped therefrom). Alternatively, and as shown in FIG. 5, the first edge 410 may be rounded from the first major face 430 of the sheet metal section 400 and from the opposite second major face 440 of the sheet metal section 400 by coining, for example by violent compression of coining tool parts 502, 504 together.


Before or after the edge rounding process, a plurality of protrusions (e.g. bumps 380 of FIG. 3) may be formed from the first major face 430 of the sheet metal section depicted in FIG. 4. Alternatively, forming the plurality of protrusions from the first major face 430 may comprise forming a plurality of conventional full-length corrugations or waves in the sheet metal section 400.


Subsequently, the sheet metal section 400 of FIG. 4 may be bent into a substantially cylindrical shape having a central axis (e.g. central axis 390 of FIG. 3) that is normal to the strip axis 480. After such bending, the third and fourth edges 450, 460 of the sheet metal section 400 may optionally be parallel to the central axis of the cylindrical tolerance ring (e.g. central axis 390 of FIG. 3). A circumferential gap (e.g. circumferential gap 370 of FIG. 3) is preferably left between the third and fourth edges 450, 460 of FIG. 4, after bending, so that the resulting tolerance ring has a cross-section (taken normal to the central axis) that is C-shaped after bending.


After the edge rounding process, the axially-leading and/or axially-trailing circumferential edge 410 of the sheet metal section 400 may have a cross-sectional shape as depicted in FIG. 6. Now referring to FIGS. 4 and 6, the first edge 410 is rounded by a rounding depth E from the first major face 430. In the embodiment of FIG. 6, the first edge 410 is also rounded by a rounding depth D from the second major face 440. In certain embodiments the rounding depths D and E are each preferably at least 15% of the total sheet thickness A+E+D.


In the embodiment of FIGS. 4 and 6, the rounding of the first edge 410 from the first major face 430 extends away from the first edge 410 by a rounding distance C that is measured parallel to the central axis of the tolerance ring (e.g. central axis 390 of FIG. 3) Likewise, the rounding of the first edge 410 from the second major face 440 extends away from the first edge 410 by a rounding distance B that is similarly measured. In certain embodiments, the rounding distances B and C are each preferably in the range of 0.025 mm to 0.140 mm. The rounding of the second edge 420 may have a similar cross-section to that of the first edge 410.


In certain embodiments the foregoing dimensional limitations on the rounded cross-sectional profile of the axially-leading and axially-trailing edges may advantageously reduce debris generated by tolerance ring and/or pivot bearing installation during disk drive assembly.


In the foregoing specification, the invention is described with reference to specific exemplary embodiments, but those skilled in the art will recognize that the invention is not limited to those. It is contemplated that various features and aspects of the invention may be used individually or jointly and possibly in a different environment or application. The specification and drawings are, accordingly, to be regarded as illustrative and exemplary rather than restrictive. For example, the word “preferably,” and the phrase “preferably but not necessarily,” are used synonymously herein to consistently include the meaning of “not necessarily” or optionally. “Comprising,” “including,” and “having,” are intended to be open-ended terms.

Claims
  • 1. A disk drive, comprising: a disk drive base;a spindle rotatably mounted on the disk drive base;a disk attached to the spindle; anda head actuator pivotably mounted on the disk drive base by a pivot bearing defining a pivot axis, the pivot bearing secured within a bore of the head actuator by a tolerance ring;wherein the tolerance ring is formed from a metal sheet and comprises:a sheet-metal cylinder comprising a first side of the metal sheet forming an inner surface facing towards the pivot axis and extending along an axial length of the sheet-metal cylinder and an opposing second side of the metal sheet forming an outer surface facing away from the pivot axis towards the actuator bore and extending along the axial length of the sheet-metal cylinder; anda plurality of protrusions extending radially from the sheet-metal cylinder;wherein the sheet-metal cylinder has a substantially uniform thickness outside of the plurality of protrusions;wherein a first end of the sheet-metal cylinder comprises a first edge about the pivot axis, and the first end is rounded from the inner surface and from the outer surface.
  • 2. The disk drive of claim 1, wherein a second end of the sheet-metal cylinder comprises a second edge about the pivot axis, and the second end is rounded from the inner surface and from the outer surface.
  • 3. The disk drive of claim 2, wherein the second edge is rounded from the inner surface and from the outer surface for an axial rounding distance away from the second edge, measured parallel to the pivot axis, that is in the range of 0.025 mm to 0.140 mm.
  • 4. The disk drive of claim 1, wherein the sheet-metal cylinder includes a circumferential gap so that the sheet-metal cylinder does not completely encircle the pivot axis, the sheet-metal cylinder including third and fourth edges that are parallel to the pivot axis, the circumferential gap being disposed between the third and fourth edges.
  • 5. The disk drive of claim 1, wherein the plurality of protrusions comprise bumps that extend radially outward from the sheet-metal cylinder.
  • 6. The disk drive of claim 1, wherein the plurality of protrusions comprise corrugations.
  • 7. The disk drive of claim 1, wherein the sheet-metal cylinder comprises stainless steel having the substantially uniform thickness between the inner and outer surfaces that is in the range of 0.076 to 0.100 mm.
  • 8. The disk drive of claim 1, wherein the first edge is rounded by a rounding depth of at least 15% of the substantially uniform thickness, from each of the inner and outer surfaces.
  • 9. The disk drive of claim 8, wherein the substantially uniform thickness is greater than twice the rounding depth, so that a cross-section of the first edge includes a middle unrounded flat normal to the pivot axis.
  • 10. The disk drive of claim 1, wherein the first edge is rounded from the inner surface and from the outer surface for an axial rounding distance away from the first edge, measured parallel to the pivot axis, that is in the range of 0.025 mm to 0.140 mm.
  • 11. A tolerance ring formed from a metal sheet, the tolerance ring comprising: a sheet-metal cylinder defining a central axis, a first side of the metal sheet forming an inner surface facing towards the central axis and extending along an axial length of the sheet-metal cylinder, and an opposing second side of the metal sheet forming an outer surface facing away from the central axis and extending along an axial length of the sheet-metal cylinder; anda plurality of protrusions extending radially from the sheet-metal cylinder;wherein the sheet-metal cylinder has a substantially uniform thickness outside of the plurality of protrusions;wherein a first end of the sheet-metal cylinder comprises a first edge about the central axis, and the first end is rounded from the inner surface and from the outer surface.
  • 12. The tolerance ring of claim 11, wherein a second end of the sheet-metal cylinder comprises a second edge about the central axis, and the second end is rounded from the inner surface and from the outer surface.
  • 13. The tolerance ring of claim 12, wherein the second edge is rounded from the inner surface and from the outer surface for an axial rounding distance away from the second edge, measured parallel to the central axis, the axial rounding distance being in the range of 0.025 mm to 0.140 mm.
  • 14. The tolerance ring of claim 11, wherein the sheet-metal cylinder includes a circumferential gap so that the sheet-metal cylinder does not completely encircle the central axis, the sheet-metal cylinder including third and fourth edges that are parallel to the central axis, the circumferential gap being disposed between the third and fourth edges.
  • 15. The tolerance ring of claim 11, wherein the plurality of protrusions comprise bumps that extend radially outward from the sheet-metal cylinder.
  • 16. The tolerance ring of claim 11, wherein the plurality of protrusions comprise corrugations.
  • 17. The tolerance ring of claim 11, wherein the sheet-metal cylinder comprises stainless steel having the substantially uniform thickness between the inner and outer surfaces that is in the range of 0.076 to 0.100 mm.
  • 18. The tolerance ring of claim 11, wherein the first edge is rounded by a rounding depth of at least 15% of the substantially uniform thickness, from each of the inner and outer surfaces.
  • 19. The tolerance ring of claim 18, wherein the substantially uniform thickness is greater than twice the rounding depth, so that a cross-section of the first edge includes a middle unrounded flat normal to the central axis.
  • 20. The tolerance ring of claim 11, wherein the first edge is rounded from the inner surface and from the outer surface for an axial rounding distance away from the first edge, measured parallel to the central axis, that is in the range of 0.025 mm to 0.140 mm.
US Referenced Citations (359)
Number Name Date Kind
2508758 Hollerith May 1950 A
2919611 Nichols Aug 1955 A
2722047 Cousino Nov 1955 A
2931412 Wing Apr 1960 A
3061386 Dix et al. Oct 1962 A
3402586 Muller Sep 1968 A
3455004 Tethal Jul 1969 A
3456473 Kater et al. Jul 1969 A
3537292 Federspill Nov 1970 A
3700271 Blaurock et al. Oct 1972 A
3838928 Blaurock et al. Oct 1974 A
4248075 Whitley Feb 1981 A
4907625 Mori Mar 1990 A
4981390 Cramer, Jr. et al. Jan 1991 A
5216811 Jackson et al. Jun 1993 A
5235482 Schmitz Aug 1993 A
5999373 Allsup et al. Dec 1999 A
6046889 Berding et al. Apr 2000 A
6052890 Malagrino, Jr. Apr 2000 A
6061206 Foisy May 2000 A
6101876 Brooks et al. Aug 2000 A
6147831 Kennedy et al. Nov 2000 A
6151189 Brooks Nov 2000 A
6151197 Larson et al. Nov 2000 A
6185067 Chamberlain Feb 2001 B1
6185074 Wang et al. Feb 2001 B1
6208486 Gustafson et al. Mar 2001 B1
6215616 Phan et al. Apr 2001 B1
6272694 Knoth Aug 2001 B1
6288866 Butler Sep 2001 B1
6288878 Misso et al. Sep 2001 B1
6292333 Blumentritt et al. Sep 2001 B1
6333839 Misso et al. Dec 2001 B1
6344950 Watson et al. Feb 2002 B1
6349464 Codilian et al. Feb 2002 B1
6388873 Brooks et al. May 2002 B1
6417979 Patton, III et al. Jul 2002 B1
6421208 Oveyssi Jul 2002 B1
6441998 Abrahamson Aug 2002 B1
6462914 Oveyssi et al. Oct 2002 B1
6466398 Butler et al. Oct 2002 B1
6469871 Wang Oct 2002 B1
6502300 Casey et al. Jan 2003 B1
6519116 Lin et al. Feb 2003 B1
6529345 Butler et al. Mar 2003 B1
6529351 Oveyssi et al. Mar 2003 B1
6535358 Hauert et al. Mar 2003 B1
6545382 Bennett Apr 2003 B1
6549381 Watson Apr 2003 B1
6560065 Yang et al. May 2003 B1
6571460 Casey et al. Jun 2003 B1
6574073 Hauert et al. Jun 2003 B1
6580574 Codilian Jun 2003 B1
6594111 Oveyssi et al. Jul 2003 B1
6603620 Berding Aug 2003 B1
6618222 Watkins et al. Sep 2003 B1
6624966 Ou-Yang et al. Sep 2003 B1
6624980 Watson et al. Sep 2003 B1
6624983 Berding Sep 2003 B1
6628473 Codilian et al. Sep 2003 B1
6654200 Alexander et al. Nov 2003 B1
6657811 Codilian Dec 2003 B1
6661597 Codilian et al. Dec 2003 B1
6661603 Watkins et al. Dec 2003 B1
6674600 Codilian et al. Jan 2004 B1
6690637 Codilian Feb 2004 B1
6693767 Butler Feb 2004 B1
6693773 Sassine Feb 2004 B1
6697217 Codilian Feb 2004 B1
6698286 Little et al. Mar 2004 B1
6700736 Wu et al. Mar 2004 B1
6704167 Scura et al. Mar 2004 B1
6707637 Codilian et al. Mar 2004 B1
6707641 Oveyssi et al. Mar 2004 B1
6710980 Hauert et al. Mar 2004 B1
6710981 Oveyssi et al. Mar 2004 B1
6728062 Ou-Yang et al. Apr 2004 B1
6728063 Gustafson et al. Apr 2004 B1
6731470 Oveyssi May 2004 B1
6735033 Codilian et al. May 2004 B1
6741428 Oveyssi May 2004 B1
6751051 Garbarino Jun 2004 B1
6754042 Chiou et al. Jun 2004 B1
6757132 Watson et al. Jun 2004 B1
6759784 Gustafson et al. Jul 2004 B1
6781780 Codilian Aug 2004 B1
6781787 Codilian et al. Aug 2004 B1
6781791 Griffin et al. Aug 2004 B1
6790066 Klein Sep 2004 B1
6791791 Alfred et al. Sep 2004 B1
6791801 Oveyssi Sep 2004 B1
6795262 Codilian et al. Sep 2004 B1
6798603 Singh et al. Sep 2004 B1
6801389 Berding et al. Oct 2004 B1
6801404 Oveyssi Oct 2004 B1
6816342 Oveyssi Nov 2004 B1
6816343 Oveyssi Nov 2004 B1
6825622 Ryan et al. Nov 2004 B1
6826009 Scura et al. Nov 2004 B1
6831810 Butler et al. Dec 2004 B1
6839199 Alexander, Jr. et al. Jan 2005 B1
6844996 Berding et al. Jan 2005 B1
6847504 Bennett et al. Jan 2005 B1
6847506 Lin et al. Jan 2005 B1
6856491 Oveyssi Feb 2005 B1
6856492 Oveyssi Feb 2005 B2
6862154 Subrahmanyam et al. Mar 2005 B1
6862156 Lin et al. Mar 2005 B1
6862176 Codilian et al. Mar 2005 B1
6865049 Codilian et al. Mar 2005 B1
6865055 Ou-Yang et al. Mar 2005 B1
6867946 Berding et al. Mar 2005 B1
6867950 Lin Mar 2005 B1
6876514 Little Apr 2005 B1
6879466 Oveyssi et al. Apr 2005 B1
6888697 Oveyssi May 2005 B1
6888698 Berding et al. May 2005 B1
6891696 Ou-Yang et al. May 2005 B1
6898052 Oveyssi May 2005 B1
6900961 Butler May 2005 B1
6906880 Codilian Jun 2005 B1
6906897 Oveyssi Jun 2005 B1
6908330 Garrett et al. Jun 2005 B2
6922308 Butler Jul 2005 B1
6930848 Codilian et al. Aug 2005 B1
6930857 Lin et al. Aug 2005 B1
6934126 Berding et al. Aug 2005 B1
6937444 Oveyssi Aug 2005 B1
6940698 Lin et al. Sep 2005 B2
6941642 Subrahmanyam et al. Sep 2005 B1
6947251 Oveyssi et al. Sep 2005 B1
6950275 Ali Sep 2005 B1
6950284 Lin Sep 2005 B1
6952318 Ngo Oct 2005 B1
6954329 Ojeda et al. Oct 2005 B1
6958884 Ojeda et al. Oct 2005 B1
6958890 Lin et al. Oct 2005 B1
6961212 Gustafson et al. Nov 2005 B1
6961218 Lin et al. Nov 2005 B1
6963469 Gustafson et al. Nov 2005 B1
6965500 Hanna et al. Nov 2005 B1
6967800 Chen et al. Nov 2005 B1
6967804 Codilian Nov 2005 B1
6970329 Oveyssi et al. Nov 2005 B1
6972924 Chen et al. Dec 2005 B1
6972926 Codilian Dec 2005 B1
6975476 Berding Dec 2005 B1
6979931 Gustafson et al. Dec 2005 B1
6980391 Haro Dec 2005 B1
6980401 Narayanan et al. Dec 2005 B1
6982853 Oveyssi et al. Jan 2006 B1
6989953 Codilian Jan 2006 B1
6990727 Butler et al. Jan 2006 B1
6996893 Ostrander et al. Feb 2006 B1
7000309 Klassen et al. Feb 2006 B1
7006324 Oveyssi et al. Feb 2006 B1
7013731 Szeremeta et al. Mar 2006 B1
7031104 Butt et al. Apr 2006 B1
7035053 Oveyssi et al. Apr 2006 B1
7050270 Oveyssi et al. May 2006 B1
7057852 Butler et al. Jun 2006 B1
7062837 Butler Jun 2006 B1
7064921 Yang et al. Jun 2006 B1
7064922 Alfred et al. Jun 2006 B1
7064932 Lin et al. Jun 2006 B1
7085098 Yang et al. Aug 2006 B1
7085108 Oveyssi et al. Aug 2006 B1
7092216 Chang et al. Aug 2006 B1
7092251 Henry Aug 2006 B1
7099099 Codilian et al. Aug 2006 B1
7113371 Hanna et al. Sep 2006 B1
7142397 Venk Nov 2006 B1
7145753 Chang et al. Dec 2006 B1
RE39478 Hatch et al. Jan 2007 E
7161768 Oveyssi Jan 2007 B1
7161769 Chang et al. Jan 2007 B1
7180711 Chang et al. Feb 2007 B1
7193819 Chen et al. Mar 2007 B1
7209317 Berding et al. Apr 2007 B1
7209319 Watkins et al. Apr 2007 B1
D542289 Diebel May 2007 S
7212377 Ou-Yang et al. May 2007 B1
7215513 Chang et al. May 2007 B1
7215514 Yang et al. May 2007 B1
7224551 Ou-Yang et al. May 2007 B1
D543981 Diebel Jun 2007 S
7227725 Chang et al. Jun 2007 B1
7239475 Lin et al. Jul 2007 B1
7271978 Santini et al. Sep 2007 B1
7274534 Choy et al. Sep 2007 B1
7280311 Ou-Yang et al. Oct 2007 B1
7280317 Little et al. Oct 2007 B1
7280319 McNab Oct 2007 B1
7292406 Huang Nov 2007 B1
7298584 Yamada et al. Nov 2007 B1
7327537 Oveyssi Feb 2008 B1
7339268 Ho Mar 2008 B1
7342746 Lin Mar 2008 B1
RE40203 Hatch et al. Apr 2008 E
7353524 Lin et al. Apr 2008 B1
7369368 Mohajerani May 2008 B1
7372670 Oveyssi May 2008 B1
7375929 Chang et al. May 2008 B1
7379266 Ou-Yang et al. May 2008 B1
7381904 Codilian Jun 2008 B1
7385784 Berding et al. Jun 2008 B1
7388731 Little et al. Jun 2008 B1
7420771 Hanke et al. Sep 2008 B1
7434987 Gustafson et al. Oct 2008 B1
7436625 Chiou et al. Oct 2008 B1
7440234 Cheng et al. Oct 2008 B1
7477488 Zhang et al. Jan 2009 B1
7477489 Chen et al. Jan 2009 B1
7484291 Ostrander et al. Feb 2009 B1
7505231 Golgolab et al. Mar 2009 B1
7529064 Huang et al. May 2009 B1
7538981 Pan May 2009 B1
7554771 Hanrahan et al. Jun 2009 B2
7561374 Codilian et al. Jul 2009 B1
7567410 Zhang et al. Jul 2009 B1
7576955 Yang et al. Aug 2009 B1
7593181 Tsay et al. Sep 2009 B1
7605999 Kung et al. Oct 2009 B1
7609486 Little Oct 2009 B1
7610672 Liebman Nov 2009 B1
7633721 Little et al. Dec 2009 B1
7633722 Larson et al. Dec 2009 B1
7656609 Berding et al. Feb 2010 B1
7660075 Lin et al. Feb 2010 B1
7672083 Yu et al. Mar 2010 B1
7684155 Huang et al. Mar 2010 B1
7686555 Larson et al. Mar 2010 B1
7709078 Sevier et al. May 2010 B1
7715149 Liebman et al. May 2010 B1
7729091 Huang et al. Jun 2010 B1
7751145 Lin et al. Jul 2010 B1
7826177 Zhang et al. Nov 2010 B1
7852601 Little Dec 2010 B1
7864488 Pan Jan 2011 B1
7898770 Zhang et al. Mar 2011 B1
7903369 Codilian et al. Mar 2011 B1
7907369 Pan Mar 2011 B1
7911742 Chang et al. Mar 2011 B1
7926167 Liebman et al. Apr 2011 B1
7957095 Tsay et al. Jun 2011 B1
7957102 Watson et al. Jun 2011 B1
7961436 Huang et al. Jun 2011 B1
8004782 Nojaba et al. Aug 2011 B1
8009384 Little Aug 2011 B1
8018687 Little et al. Sep 2011 B1
8031431 Berding et al. Oct 2011 B1
8064168 Zhang et al. Nov 2011 B1
8064170 Pan Nov 2011 B1
8068314 Pan et al. Nov 2011 B1
8081401 Huang et al. Dec 2011 B1
8100017 Blick et al. Jan 2012 B1
8116038 Zhang et al. Feb 2012 B1
8125740 Yang et al. Feb 2012 B1
8142671 Pan Mar 2012 B1
8156633 Foisy Apr 2012 B1
8159785 Lee et al. Apr 2012 B1
8189298 Lee et al. May 2012 B1
8194348 Jacoby et al. Jun 2012 B2
8194354 Zhang et al. Jun 2012 B1
8194355 Pan et al. Jun 2012 B1
8203806 Larson et al. Jun 2012 B2
8223453 Norton et al. Jul 2012 B1
8228631 Tsay et al. Jul 2012 B1
8228640 Woodhead et al. Jul 2012 B2
8233239 Teo et al. Jul 2012 B1
8248733 Radavicius et al. Aug 2012 B1
8259417 Ho et al. Sep 2012 B1
8274760 Zhang et al. Sep 2012 B1
8276256 Zhang et al. Oct 2012 B1
8279560 Pan Oct 2012 B1
8284514 Garbarino Oct 2012 B1
8289646 Heo et al. Oct 2012 B1
8300352 Larson et al. Oct 2012 B1
8305708 Tacklind Nov 2012 B2
8320086 Moradnouri et al. Nov 2012 B1
8322021 Berding et al. Dec 2012 B1
8345387 Nguyen Jan 2013 B1
8363351 Little Jan 2013 B1
8369044 Howie et al. Feb 2013 B2
8385024 Schmidt et al. Feb 2013 B2
8411389 Tian et al. Apr 2013 B1
8416522 Schott et al. Apr 2013 B1
8416534 Heo et al. Apr 2013 B1
8422171 Guerini Apr 2013 B1
8422175 Oveyssi Apr 2013 B1
8432641 Nguyen Apr 2013 B1
8437101 German et al. May 2013 B1
8438721 Sill May 2013 B1
8446688 Quines et al. May 2013 B1
8451559 Berding et al. May 2013 B1
8467153 Pan et al. Jun 2013 B1
8472131 Ou-Yang et al. Jun 2013 B1
8477460 Liebman Jul 2013 B1
8488270 Brause et al. Jul 2013 B2
8488280 Myers et al. Jul 2013 B1
8499652 Tran et al. Aug 2013 B1
8514514 Berding et al. Aug 2013 B1
8530032 Sevier et al. Sep 2013 B1
8542465 Liu et al. Sep 2013 B2
8547664 Foisy et al. Oct 2013 B1
8553356 Heo Oct 2013 B1
8553366 Hanke Oct 2013 B1
8553367 Foisy et al. Oct 2013 B1
8616900 Lion Dec 2013 B1
8665555 Young et al. Mar 2014 B1
8667667 Nguyen et al. Mar 2014 B1
8693139 Tian et al. Apr 2014 B2
8693140 Weiher et al. Apr 2014 B1
8699179 Golgolab et al. Apr 2014 B1
8702998 Guerini Apr 2014 B1
8705201 Casey et al. Apr 2014 B2
8705209 Seymour et al. Apr 2014 B2
8717706 German et al. May 2014 B1
8743509 Heo et al. Jun 2014 B1
8755148 Howie et al. Jun 2014 B1
8756776 Chen et al. Jun 2014 B1
8760800 Brown et al. Jun 2014 B1
8760814 Pan et al. Jun 2014 B1
8760816 Myers et al. Jun 2014 B1
8773812 Gustafson et al. Jul 2014 B1
8780491 Perlas et al. Jul 2014 B1
8780504 Teo et al. Jul 2014 B1
8792205 Boye-Doe et al. Jul 2014 B1
8797677 Heo et al. Aug 2014 B2
8797689 Pan et al. Aug 2014 B1
8824095 Dougherty Sep 2014 B1
8824098 Huang et al. Sep 2014 B1
9022683 Nias et al. May 2015 B2
9255609 Araki et al. Feb 2016 B2
20030090114 Kang May 2003 A1
20060181811 Hanrahan et al. Aug 2006 A1
20060228174 Woodhead et al. Oct 2006 A1
20080199254 Baker et al. Aug 2008 A1
20100073820 Slayne Mar 2010 A1
20100321833 Woodhead et al. Dec 2010 A1
20110076096 Slayne Mar 2011 A1
20110150375 Jaeger et al. Jun 2011 A1
20110212281 Jacoby et al. Sep 2011 A1
20120087044 Schmidt et al. Apr 2012 A1
20120240350 Natu et al. Sep 2012 A1
20130038964 Garbarino et al. Feb 2013 A1
20130091698 Banshak, Jr. et al. Apr 2013 A1
20130155546 Heo et al. Jun 2013 A1
20130290988 Watson et al. Oct 2013 A1
20130315664 Nias Nov 2013 A1
20140185164 Nias Jul 2014 A1
20140205374 Nias Jul 2014 A1
20140313618 Araki et al. Oct 2014 A1
20150000098 Slayne Jan 2015 A1
20150001025 Slayne Jan 2015 A1
20150060621 Sabounjian Mar 2015 A1
20150306655 Poliquin Oct 2015 A1
20160061270 James Mar 2016 A1
20170011761 Araki Jan 2017 A1
Foreign Referenced Citations (3)
Number Date Country
3338507 Nov 1984 DE
687691 Feb 1953 GB
2342425 Apr 2000 GB