The present disclosure is directed to a disk drive with an oxygen diffusion unit. In one embodiment, a disk drive, has a housing structure enclosing a disk and at least one heat-assisted recording head. The drive includes a plurality of capsules each comprising oxygen gas enclosed within a membrane. An oxygen diffusion rate of the membrane is selected to release oxygen into the housing structure at a rate that compensates for oxygen depletion within the housing structure.
In another embodiment, a disk drive has a housing structure enclosing a disk, at least one recording head, and an environmental control module. The drive includes a plurality of capsules each comprising oxygen gas enclosed within a membrane. An oxygen diffusion rate of the membrane is selected to release oxygen into the housing structure at a rate that compensates for oxygen depletion caused by the environmental control module within the housing structure. These and other features and aspects of various embodiments may be understood in view of the following detailed discussion and accompanying drawings.
The discussion below makes reference to the following figures, wherein the same reference number may be used to identify the similar/same component in multiple figures.
The present disclosure is generally related to hard disk drives. One example of a disk drive is a drive that uses heat-assisted magnetic recording (HAMR), also referred to as energy-assisted magnetic recording (EAMR), thermally-assisted recording (TAR), thermally-assisted magnetic recording (TAMR), etc. In a HAMR device, a near-field transducer (NFT) concentrates optical energy into a tiny optical spot in a recording layer, which raises the media temperature locally, reducing the writing magnetic field required for high-density recording. A waveguide delivers light to the near-field transducer and illuminates the near-field transducer. In response to the illumination, the near-field transducer generates surface plasmons that are directed (via the shape of the transducer) out of the recording head to create the hotspot on the recording medium. The embodiments described below may be applicable to other assisted magnetic recording technologies, such as microwave assisted magnetic recording (MAMR).
One challenge in developing in HAMR products involves degradation of the read/write head at the head-to-media interface. The NFT and surrounding elements can reach high temperatures due to a high concentration of optical energy in a small volume. The optical components at the media-facing surface of the head (often referred to as an air-bearing surface or ABS) can be susceptible to voiding or separation due to these temperatures, which can degrade performance. Further it has been found that carbon from the disk can build up on the head near the NFT, further compromising performance.
It has been also found that depletion of oxygen from air within the hard drive enclosure can accelerate or exacerbated carbon buildup at the ABS. Hard drives typically include an environmental control module to manage the composition of the gases enclosed within the drive. The environmental control module may include filters to prevent particulates from entering the enclosure, as well as desiccants, adsorptive materials, etc., for removal of water vapor, hydrocarbons, reactive compounds (e.g. ammonia), and other gases from the air circulating within the drive enclosure. The environment control unit can cause oxygen depletion within the drive enclosure.
In the example embodiments described herein, a hard disk drive enclosure includes small capsules that enclose oxygen gas (O2) within a membrane. An oxygen diffusion rate of the membrane is selected to release oxygen into the housing structure at a rate that compensates for oxygen depletion within the housing structure from the environmental control module. This can be used for heat-assisted recording magnetic drives, and/or any disk drive or similar device for which oxygen depletion is a problem.
In reference now to
In order to prevent particles entering the enclosure as well as reduce the buildup of unwanted gases, the disk drive 100 includes an environmental control module 120. This module 120 is shown in greater detail in the cross-sectional view of
The environmental control module 120 consumes oxygen in a low humidity environment. Reduced oxygen concentration within the drive enclosure has been found to increase certain near-field transducer failure modes, e.g., carbon contamination of the near-field transducer near the media-facing surface. The oxygen diffusion unit 206 includes a plurality of capsules each comprising oxygen gas enclosed within a membrane. An oxygen diffusion rate of the membrane is selected to release oxygen into the housing structure (e.g., base 102 and cover 114) at a rate that compensates for oxygen depletion within the housing structure from the environmental control module 120.
Note that the oxygen diffusion unit 206 need not be co-located with or in the environmental control module 120. In some embodiments, the oxygen diffusion unit 206 could be located elsewhere within the drive enclosure. For example, the oxygen diffusion unit 206 could be located proximate a diffuser filter that cleans air that is circulated by the spinning disks.
In
The capsules as described herein may be formed of a number of different materials such as glasses, polymers, ceramics, and metals. For example, the walls/membranes 304 may be formed of silica glass, silica-free glass, aluminum oxides, titanium oxides, soda lime borosilicate glass, alkali-alumino silicate, polystyrene, polycarbonate, polypropylene, polyacrylate, and polyurethane. The capsules can be filled with oxygen during the manufacturing process or by pressurized diffusion after manufacturing. The oxygen in the capsules will diffuse out based upon the material and wall thickness. The microsphere materials and thicknesses and microsphere quantity are selected in order to provide the desired oxygen volume. The capsules may include other gases together with oxygen, such as helium.
The diffusion-supplied oxygen from the capsules replenishes the oxygen within the drive enclosure, the oxygen having been consumed over time by the materials in the environmental control unit. By way of example, assume the oxygen consumption rate is 0.1 mbar/day. The total gas volume in the drive is around 50 cubic centimeters for purposes of this example. That means the total 5-year consumption is 9000 mbar cc (0.1*365*5*50). If the capsule internal volume is ⅔ the volume of the pile of capsules, then 3 cubic centimeters of microspheres filled to 5 atmospheres (1000 mbar) provides the needed oxygen. That is 3 cc×5000 mbar×⅔ for 10,000 mbar cc.
Note that the diffusion rate of the oxygen from a diffusion capsule will generally not be constant over time. In
The oxygen diffusion capsules described herein may be packaged in a number of ways before being assembled into a disk drive unit. For example, loose capsules (e.g., beads, microspheres) may be enclosed in an air-permeable structure (e.g., a cage) that physically restrains the capsules from movement while allowing airflow around the capsules. In other embodiments, the capsules may be suspended in a porous matrix.
In
As noted above, the oxygen consumption within the hard drive may increase under low humidity condition, the lessening the need for the oxygen diffusion unit 500 to release oxygen. In some embodiments, the carrier material 504 can be selected such that it decreases permeability in response to higher levels of humidity. This can slow the release of oxygen from the capsules 502 under higher humidity conditions and increase the release of oxygen under lower humidity conditions. Such partial control the oxygen diffusion in the presence of humidity may be possible with polymers where the water vapor adheres to polymer's surface. Polyurethane, polyacrylate and polycarbonate are possible candidates.
In
Unless otherwise indicated, all numbers expressing feature sizes, amounts, and physical properties used in the specification and claims are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the foregoing specification and attached claims are approximations that can vary depending upon the desired properties sought to be obtained by those skilled in the art utilizing the teachings disclosed herein. The use of numerical ranges by endpoints includes all numbers within that range (e.g. 1 to 5 includes 1, 1.5, 2, 2.75, 3, 3.80, 4, and 5) and any range within that range.
The foregoing description of the example embodiments has been presented for the purposes of illustration and description. It is not intended to be exhaustive or to limit the embodiments to the precise form disclosed. Many modifications and variations are possible in light of the above teaching. Any or all features of the disclosed embodiments can be applied individually or in any combination are not meant to be limiting, but purely illustrative. It is intended that the scope of the invention be limited not with this detailed description, but rather determined by the claims appended hereto.
Number | Name | Date | Kind |
---|---|---|---|
5910238 | Cable et al. | Jun 1999 | A |
8481077 | Kheir et al. | Jul 2013 | B2 |
8663429 | Lipinska-Kalita et al. | Mar 2014 | B2 |
10734035 | Sun et al. | Aug 2020 | B1 |
Number | Date | Country |
---|---|---|
2017039435 | Mar 2017 | WO |
Entry |
---|
Campbell et al., “Preparation and Properties of Hollow Glass Microspheres for Use in Laser Fusion Experiments”, Nov. 1, 1983, 64 pages. |