The invention relates to a disk storage drive for receiving at least one storage disk having a central opening, with an outer rotor type driving motor having a rotor casing mounted by means of a shaft in a bearing system so as to rotate relative to a stator and on which can be placed the storage disk for driving by the rotor casing, as described in U.S. patent application Ser. No. 353,584, now U.S. Pat. No. 4,438,542, issued Mar. 27, 1984.
The content of this patent is incorporated herein by reference to avoid unnecessary repetition. It relates to a storage drive for receiving at least one storage disk having a central opening. The driving motor extends coaxially at least partly through the central opening of the storage disk, and means are provided for connecting the storage disk and the driving motor rotor.
One problem of the present invention is to further simplify the construction of a disk storage described in the aforementioned U.S. Pat. No. 4,438,542, while improving its operation. For example, the storage disk is to be reliably protected against undesired influencing by the magnetically active parts of the driving motor. In addition, a particularly space-saving and robust construction of the driving motor are to be achieved.
According to the invention, this first problem is solved in that at least the part of the rotor casing receiving the storage disk is made from a non-ferromagnetic material and carries the shaft directly or by means of a hub and in that a magnetic shield made from a ferromagnetic material in the form of a drawn can projects into the storage disk receiving part of the rotor casing and is connected thereto. The shielding surrounds the periphery of the magnetically active parts of the driving motor and also envelops the parts at one end. The shield has a central opening whose edge is directly radially adjacent the shaft or parts of the driving motor carrying or supporting the shaft. A rotor casing constructed in this way can be easily manufactured, and it effectively protects the magnetically sensitive storage disks, particularly magnetic hard storage disks, against magnetic stray flux emanating from the magnetically active parts of the driving motor. The shield is preferably in the form of a deep-drawn can, and the part of the rotor casing receiving the storage disk can be made from a lightweight metal by die casting.
If, in the manner described in the aforementioned U.S. Pat. No. 4,438,542, the driving motor is constructed as a brushless direct current motor with a permanent magnet rotor, then in accordance with a further development of the invention a printed circuit board with at least one rotary position detector and perhaps other electronic components for the control and regulation of the driving motor are mounted on the side of the stator remote from the closed end of the shielding can. This ensures that the rotary position detector and any further circuit components of the magnetic shielding arrangement do not interfere with the rotating parts.
Further advantageous developments of the invention also are disclosed, including features that contribute to a compact construction of the disk storage drive. In connection with disk storage drives of the present type, high demands are made on the concentricity of the storage disks. It is therefore generally necessary to machine the storage disk receiving part or to work it in some other way so that it is dimensionally true. As a result of other features of the invention, the necessary machining is reduced to a relatively small part of the circumferential surface of the storage disk receiving part and a trouble-free engagement of a storage disk on the shoulder of the storage disk receiving part is permitted.
Other features of the invention provide a robust precision mounting support for utilizing the available axial overall length for maximizing the distance between the bearings; and permit particularly large distances between the bearings where the axial installation area between a mounting or assembly flange and the end of the storage disk receiving part is limited. Installation space is available on the other side of this flange. Still other features provide for alternative solutions leading to particularly small radial runouts of the rotor; ensure a space-saving housing of the circuit board; and for solutions where importance is attached to a particularly shallow construction.
In a further development of the invention, a disk storage drive of the type disclosed in U.S. Pat. No. 4,779,165, issued Oct. 18, 1988, now U.S. Pat. No. Re. 34,412, issued Oct. 19, 1993is considered. Some such disk storage drives have stationary shafts and a sealed off internal space within the motor.
In the construction of such data storage disk drives with stationary shafts, problems also have arisen in the following areas:
Yet another purpose of the present invention, therefore, is to provide a further development of the data storage disk drive of the above type having a stationary shaft by providing viable solutions for various combinations of the above problems, such as a and c; b and c; and a, b and c.
If the rotational position sensor device has several rotational position sensors, preferably of the type sensitive to magnetic fields, it is advantageous for these sensors to be supported on a common molded piece, especially if it is made by injection molding. The construction of the molded piece for the accommodation of several rotational position sensors in accordance with the invention simply ensures the precise mutual alignment of these sensors.
If required, the rotary position sensing arrangement can be mounted on a printed circuit board, together with any known type of commutation electronics. This printed circuit board can be supported on a fixed flange or bracket which is, in turn, connected to the shaft through which the connecting leads to the rotary position sensors may be brought out.
The control arrangement, which preferably takes the form of a control magnet device, can be mounted on the outside of a cover which seals off the space inside the motor. This cover may preferably serve as a bearing bracket as well. The control arrangement, however, also can be mounted on a part of the hub at a distance from the disk carrier stage outside the sealed internal space of the motor. A flange which serves to support the data storage disk or disks, may be connected to the remaining hub parts as one piece, or alternatively, this flange may form part of the cover which seals off the internal space of the motor.
In accordance with one variant of the present invention, at least the electric supply leads to the stator windings are brought out of the sealed internal space of the motor over a bearing support ring. This arrangement obviates the need to provide passages in the shaft to accommodate the winding connections. In yet another alternative arrangement, the rotary position sensing arrangement, together with the commutation electronics, if necessary, can both be housed in the sealed internal space of the motor with their leads and connections being brought out over the bearing support ring. In any event, none of the above arrangements requires the provision of passages formed through the stationary shaft, thus avoiding the need to weaken the shaft or to perform additional machining operations in the manufacturing thereof.
The bearing support ring can be a prefabricated component provided with recesses for the passage of the electric leads and connections. Alternatively, the aforesaid connections can be potted in situ inside the bearing support ring.
The invention is described in greater detail hereinafter relative to non-limitative embodiments and the attached drawings, wherein:
The disk storage drive illustrated in
The rotor casing 47 comprises a storage disk receiving part 25 and a shielding can 26, which are joined together, for example, by riveting. The storage disk receiving part 25 is made from a non-ferromagnetic material, preferably lightweight metal. The rotor shaft 46 is pressed into a central opening of the storage disk receiving part 25. As an alternative, the shaft can be cast into the receiving part.
The shielding can 26 is made from a ferromagnetic material and can in particular be constructed as a soft iron deep-drawn part. A plurality of permanent magnetic segments or a one-part permanent magnet 69 are fixed to the inner face of shielding can 26 radially facing the stator lamination 48. The permanent magnet 69 preferably comprises a mixture of hard ferrite, for example, barium ferrite, and an elastic material. Thus, it is a so-called rubber magnet. The latter is trapezoidally or approximately trapezoidally radially magnetized via the pole pitch in a motor construction having a relatively small pole clearance. At the same time, the shielding can 26 forms the magnetic return path for magnet 69. The shielding can 26 surrounds the magnetically active parts 48, 49, 69 of the driving motor 45 on the periphery thereof, as well as on one end thereof. The bottom 28 of shielding can 26 is adapted to the shape of the coil winding heads 27 of the stator winding 49 and contains a central opening 29, whose edge is in the immediate radial vicinity of the circumferential surface of the bearing tube 50. In this way, the shielding can effectively prevents the magnetic flux from straying towards the outside of the storage disk receiving part 25.
The storage disk receiving part 25 has two stepped stages 74 and 75, each of whose circumferential surfaces in the present embodiment carry a plurality of radially distributed and projecting bearing webs 79 or 80. The outsides of bearing webs 79, 80 are ground in a dimensionally true manner to accommodate the internal diameter of the hard storage disks to be placed on the receiving part 25. The stepped stages 74, 75 form shoulders 81, 82 and are provided respectively with an annular recess 83 and 84 at the foot axially of bearing webs 79, 80. This structure ensures that storage disks mounted on the bearing webs 79, 80, and having either one of two opening diameters, will cleanly engage against either the shoulder 81 or 82.
The assembly flange 24 is provided with a recess 85 in which is housed a printed circuit board 86. This printed circuit board carries a rotary position detector, for example a Hall IC, as well as other circuit components for the control and regulation of the driving motor 45. The Hall IC 63 extends up axially from the circuit board 86 to the immediate vicinity of the stator lamination 48. The permanent magnet 69 projects axially over the stator lamination 48 in the direction of circuit board 86 until it partly overlaps the Hall IC 63. In this way, the Hall IC 63 or, if desired, some other magnetic field-dependent semi-conductor component, determines the rotary position of the rotor of the driving motor 45.
In the illustrated embodiment, the two bearings 52, 53 are spaced approximately the same axial distance from the axial center of the permanent magnet 69 and the stator lamination 48.
Disk storages are most usually operated in “clean chamber” environments to protect them against contaminants. By means of the assembly flange 24, the storage drive is arranged on a partition (not shown) which separates the ultra-clean area for receiving the storage disks from the remainder of the interior of the equipment. Dirt particles, grease vapors and the like from bearing 52 and parts of the driving motor 45 are prevented from passing into the storage disk receiving area by labyrinth seals 90 and 91. The labyrinth seal 90 is formed in the end of the bearing tube 50 away from the assembly flange 24 that projects into an annular slot 87 on the inside of the storage disk receiving part 25, accompanied by the formation of sealing gaps. Similarly, for forming the labyrinth seal 91, the end of the shield can 26 projects into the annular slot 88 of the assembly flange 24. The labyrinth seals 90, 91 are preferably dimensioned in the manner described in the aforementioned U.S. Pat. No. 4,438,542.
The embodiment of
The bearing tube 50 projects in the axial direction on the side of the assembly flange 100 remote from the stator lamination 48. As a result, a particularly large axial spacing between the two bearings 52, 53 can be achieved. Axially, bearing 52 is in the vicinity of the axial center of the permanent magnet 69 and of the stator lamination 48. The axial spacing between bearings 52 and 53 is equal to or larger than double the bearing external diameter. To prevent electrical charging of the rotor which in operation rotates at high speed and which would disturb the operational reliability of the disk storage device, the rotor shaft 46 is electrically conductively connected to the equipment chassis by means of a bearing ball 78 and a spring contact (not shown). The printed circuit board 101, carrying the rotary position detector 63 and the other electronic components, is supported on the end of a spacer ring 102 facing an assembly flange 100 and is located between the flange and the stator lamination 48. An annular slot 103 is formed in assembly flange 100 and is aligned with the annular circuit board 101. The annular slot 103 provides space for receiving the wire ends and soldered connections projecting from the underside of the circuit board 101.
In
The stator poles 114A to 114F abut a total of six stator slots 123A to 123F. A three-phase stator winding is inserted into these slots. Each of the three phases comprises two 1200°-el fractional pitch windings or coils 124, 125; 126, 127; and 128, 129, each of which is wound around one of the stator poles 114A to 114F. Both of the coils of each phase, which are connected in series, lie, as depicted in
A hub 132, not depicted in
In a central aperture 137 of a frontal wall 138 of the hub 132, which is relatively heavy for reasons of stability, are a ball bearing 139 and a magnetic fluid seal 140 on the side of the support which is axially oriented away from the drive motor 110. The seal 140 consists of two annular pole pieces 141, 142, a permanent magnet ring 143 located between both these pole pieces, and a magnetic fluid (not shown), which is inserted into an annular gap 144 between the magnetic ring 143 and a stationary shaft 145. Seals of this type are known under the designation of “Ferrofluidic Seal”. An internal space 146 is located within the motor and is sealed on the side of the space oriented away from the frontal wall 138 by means of a motor cover 147, which is inserted into the outer rotor casing 121 and the hub 132, by means, for example, of adhesion. The internal space 146 includes the internal parts such as the stator 111 and permanent magnet 116 as well as bearings 139 and 149. The motor cover 147 abuts with its cylindrical outer edge 247 the lower edge of the rotor casing 121. This allows a particularly easy assembling of the cover 147 within the hub 132. For sealing purposes, adhesive material 190 is placed in a circumferential groove 191 between the cover 147 and the hub 132.
The motor cover 147 is supported on the shaft 145 by means of an additional ball bearing 149. On the side of the ball bearing 149 away from the drive motor 110, there is a magnetic fluid seal 150, which has a construction corresponding to the seal 140. The seals 140, 150 ensure an effective sealing of the motor internal space 146, including the bearings 139, 149, relative to a clean chamber 148 which accommodates the storage disks 134.
The motor cover 147 is provided on the frontal side facing away from the drive motor 110 with an annular groove 151 receiving a control magnet ring 152. The control magnet ring 152 has four sections of alternating circumferential magnetization corresponding to the rotor magnets 116, which run in sequence in the circumferential direction and extend over 90°, so that alternating north and south poles, aligned with poles 119, 120 in the circumferential direction, are provided on the bottom side of the control magnetic ring 152.
A stationary flange 154 is disposed on the lower end of the shaft 145 in FIG. 6. The flange 154 is provided with threaded bores 192 for receiving fastening screws by which the disk storage drive may be connected to the disk drive frame, for example, over a wall delimiting the clean chamber 148, or the like. The flange 154 supports a printed circuit board 155 on its frontal side relative to the motor cover 147. Three rotational position sensors 156, 157, 158 are mounted on the printed circuit board 155. In the embodiment shown, these magnetic field sensors may be Hall generators, Hall-IC's, magnetically controlled photocells, magnetic diodes, or the like, which interact with the control magnet ring 152. The rotational position sensors 156, 157, 158 are suitably positioned in the circumferential direction with regard to the coils 124 to 129 so that the changes of the sensor switching conditions essentially coincide with the zero passages of current in the correspondingly positioned coils. This is attained, in accordance with the embodiment shown in
The connections of the rotational position sensors 156, 157, 158 and/or commutational electronics likewise positioned on the printed circuit board are conducted through one or more apertures 161 of the flange 154 which open into peripheral cutouts of the ring 193. The connections of the stator winding coils 124 to 129 of the drive motor 110 are, on the other hand, conducted outwardly through bores 162, 163 of the stationary shaft 145 out of the internal space of the disk storage drive, which is sealed off by means of the magnetic fluid seals 140, 150. The bores 162, 163 can be dimensioned relatively narrowly, because they only have to accommodate the connections of the stator winding but not the connections of the rotational position sensors and/or the commutation electronics (not shown). Furthermore, the rotational position sensors 156 to 158 located outside of the sealed space 146 can be closely adjusted. An excessive weakening of the shaft 145 is thereby avoided.
In a further modified embodiment shown in
If it is desirable to manufacture the hub 132′ from magnetically non-conducting, or poorly conducting, materials, such as light metal or alloy, a separate iron shield can be provided. This can be seen in the embodiment in FIG. 8. There, the rotor magnet 116 is accommodated in an iron shielding ring 167. The flange 169 supporting the storage disk 134 forms a part, separated from the hub 132″, of the cover 170 which accommodates the ball bearing 149. The hub 132″ and the cover 170 are closely connected with one another, so that the axial end section of the hub 132″, which extends towards the cover 170, engages in an annular groove 171 of the cover 170.
In both embodiments of
In the embodiments shown in
The embodiment of
In an embodiment where the rotary position sensors are located externally, the winding leads can also be brought out through an inner bearing support ring encompassing the bearing 149, corresponding to the support ring 180 in FIG. 11. Furthermore, in an embodiment provided with an inboard rotary position sensing arrangment similar to that shown in
The metal support ring 185 according to
Instead of providing the bearing support rings 180 or 185 with apertures through which the connections can be brought out, the connections can also be potted in the bearing support ring directly.
A particular feature of this further embodiment is the provision of a flat air gap between rotational position indicator or magnetic control ring 152 and the rotational position sensor 156. The printed circuit board 155 is firmly fastened to a stationary flange part 154 with the screw 194. The outside edge of this flange 154 engages in a disk-shaped ring member 147″, which may be the motor cover 147 (
From the user's point of view, the entire motor assembly is fastened by use of appropriate fasteners in the hole 192. The connecting leads from the printed circuit board 155 to the rotational position sensor 156 are brought out through the passage or bore 161 shown with the disked lines, which extends outwardly from an oblique channel 161′ until it terminates in the peripheral apertures in the ring 193 which is brought to bear on the flange 154 by a screw 194.
The ring member 147″ corresponds to the elements described in the various embodiments and examples as the covers 170, 147, 147′ and the rings 53, 74. Preferably, therefore, only 2 parts are needed to completely enclose the inner space 146 of the motor other than the stationary shaft 145 and the bearings 139, 149; namely, the rotor casing 132 and the disk-shaped ring member 147″.
This invention is not restricted to the use of magnetic field-sensitive rotational position sensors. It can also be used, for example, with optical sensors.
Although the invention has been described in connection with a preferred embodiment and certain alternatives, other alternatives, modifications, and variations may be apparent to those skilled in the art in view of the foregoing description. Accordingly, it is intended to embrace all such alternatives, modifications, and variations as fall within the spirit and scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
3135385 | Sep 1981 | DE | national |
This is a continuation of application Ser. No. 819,099, filed Mar. 4, 1997, now U.S. Pat. No. Re. 37,058, issued Feb. 20, 2001, which is a continuation of application Ser. No. 360,226, filed Dec. 20, 1994, now abandoned, which is a broadening reissue application of U.S. Pat. No. 5,173,814, issued Dec. 22, 1992 from application Ser. No. 653,100, filed Feb. 8, 1991, said application Ser. No. 653,100 being is a continuation of application Ser. No. 07/402,917, filed Sep. 5, 1989, now U.S. Pat. No. 5,001,581, issued Mar. 19, 1991, which is a continuation of application Ser. No. 201,736, filed Jun. 2, 1988, now U.S. Pat. No. 4,894,738, issued Jan. 16, 1990, now U.S. Pat. No. Re. 35,792, issued May 12, 1998, which is a continuation-in-part of application Ser. No. 038,049, filed Apr. 14, 1987, now U.S. Pat. No. 4,843,500, issued Jun. 27, 1989, which is a continuation-in-part of application Ser. No. 767,671, filed Aug. 21, 1985, now U.S. Pat. No. 4,658,312, issued Apr. 14, 1987, which is a continuation of application Ser. No. 412,093, filed Aug. 27, 1982, now abandoned, which is a continuation-in-part of application Ser. No. 326,559, filed Dec. 2, 1981, now U.S. Pat. No. 4,519,010, issued May 21, 1985, said application Ser. No. 412,093 also being a continuation-in-part of application Ser. No. 244,971, filed Mar. 18, 1981, now abandoned, said application Ser. No. 201,736 also being a continuation-in-part of application Ser. No. 32,954, filed Mar. 31, 1987, U.S. Pat. No. 4,779,165, issued Oct. 18, 1988, now U.S. Pat. No. Re. 34,412, issued Oct. 19, 1993, which is a continuation of application Ser. No. 733,231, filed May 10, 1985, now abandoned, which is a continuation-in-part of the said application Ser. No. 412,093. A broadening reissue application for U.S. Pat. No. 5,173,814 was filed on Dec. 20, 1994 and assigned Ser. No. 08/360,226. On Mar. 4, 1997, a continuation of this application was filed and was assigned Ser. No. 08/819,099. On Jun. 9, 1999, five continuation applications from the 08/819,099 application were filed. On Nov. 17, 1999, a sixth continuation application from the 819,099 application was filed. These applications, as currently pending, are described below: a) “Disk Storage Device Having A Sealed Bearing Tube” (Ser. No. 09/333,399, now RE 38,662), inventors Elsässer and von der Heide, filed Jun. 9, 1999; b) “Disk Storage Device Having A Radial Magnetic Yoke Feature” (Ser. No. 09/333,338; now RE 38,601), inventors Elsässer, von der Heide, and Müller, filed Jun. 9, 1999; c) “Disk Storage Device Having A Hub Sealing Member Feature” (Ser. No. 09/333,397), inventors Elsässer and von der Heide, filed Jun. 9, 1999; d) “Disk Storage Device Having An Underhub Spindle Motor” (Ser. No. 09/333,396; now RE 38,178), inventors Elsässer, von der Heide, and Müller, filed Jun. 9, 1999; e) “Disk Storage Device Having a Particular Magnetic Yoke Feature” (Ser. No. 09/333,400; now RE 38,179), inventors Elsässer and von der Heide, filed Jun. 9, 1999; and f) “Disk Storage Device Having An Undercut Hub Member” (Ser. No. 09/441,504), inventors Elsässer and von der Heide, filed Nov. 17, 1999.
Number | Name | Date | Kind |
---|---|---|---|
3250929 | Maier | May 1966 | A |
3290525 | Sudmeier | Dec 1966 | A |
3329845 | Lear | Jul 1967 | A |
3527969 | Papst | Sep 1970 | A |
3596121 | Chang | Jul 1971 | A |
3634873 | Nishimura | Jan 1972 | A |
3691542 | Gabor | Sep 1972 | A |
3706085 | Mowrey | Dec 1972 | A |
3732025 | Miles, Jr. | May 1973 | A |
3805134 | Osamu | Apr 1974 | A |
3840761 | Müller | Oct 1974 | A |
3845339 | Merkle | Oct 1974 | A |
3849800 | Cuzner | Nov 1974 | A |
3860843 | Kawasaki | Jan 1975 | A |
3864610 | Kawamoto | Feb 1975 | A |
3864748 | Herdman | Feb 1975 | A |
3873897 | Müller | Mar 1975 | A |
3888403 | Yoshida | Jun 1975 | A |
3891905 | Müller | Jun 1975 | A |
3922590 | Warren | Nov 1975 | A |
3940670 | Tanikoshi | Feb 1976 | A |
3967200 | Tetsugu | Jun 1976 | A |
3977804 | Kitagawa | Aug 1976 | A |
3988024 | Watanabe | Oct 1976 | A |
4005490 | Duncan | Jan 1977 | A |
4008422 | Sodekoda | Feb 1977 | A |
4031558 | Kusaka | Jun 1977 | A |
4034411 | Kraemer | Jul 1977 | A |
4054931 | Bolton | Oct 1977 | A |
4062049 | Dirks | Dec 1977 | A |
4092572 | Murata | May 1978 | A |
4099104 | Müller | Jul 1978 | A |
4101945 | Butsch | Jul 1978 | A |
4115715 | Müller | Sep 1978 | A |
4130845 | Kulma | Dec 1978 | A |
4136366 | Ogiro | Jan 1979 | A |
4150406 | Stollorz | Apr 1979 | A |
4167692 | Sekiya | Sep 1979 | A |
4174484 | Schmider | Nov 1979 | A |
4181867 | Müller | Jan 1980 | A |
4185308 | Fujioka | Jan 1980 | A |
4190870 | Avina | Feb 1980 | A |
4193646 | Rocki | Mar 1980 | A |
4194225 | Hasler | Mar 1980 | A |
4194743 | Ohsawa | Mar 1980 | A |
4197489 | Dunn | Apr 1980 | A |
4205357 | Barton | May 1980 | A |
4216512 | Vidwans | Aug 1980 | A |
4228387 | Brown | Oct 1980 | A |
4249221 | Cox | Feb 1981 | A |
4252353 | Raj | Feb 1981 | A |
4268878 | Kearns | May 1981 | A |
4275339 | Burke | Jun 1981 | A |
4280072 | Gotou | Jul 1981 | A |
4280155 | Scott | Jul 1981 | A |
4282554 | Ho | Aug 1981 | A |
4283644 | Kondo | Aug 1981 | A |
4285016 | Gilovich | Aug 1981 | A |
4286184 | Kogler | Aug 1981 | A |
4307425 | Kaneko | Dec 1981 | A |
4317146 | Gervais | Feb 1982 | A |
4329604 | Dunstan | May 1982 | A |
4329722 | West | May 1982 | A |
4336470 | Gutris | Jun 1982 | A |
4337491 | Hasler | Jun 1982 | A |
4352133 | Hager | Sep 1982 | A |
4356437 | Saito | Oct 1982 | A |
4359761 | Papst | Nov 1982 | A |
4363046 | Saito | Dec 1982 | A |
4363057 | Silverling | Dec 1982 | A |
4365187 | McDaniel | Dec 1982 | A |
4365916 | Miyakawa | Dec 1982 | A |
4366516 | Ogata | Dec 1982 | A |
4394594 | Schmider | Jul 1983 | A |
4396959 | Harrison | Aug 1983 | A |
4396964 | Morehouse | Aug 1983 | A |
4398134 | Müller | Aug 1983 | A |
4417167 | Ishii | Nov 1983 | A |
4430603 | Müller | Feb 1984 | A |
4438542 | Schuh | Mar 1984 | A |
4445159 | Nemoto | Apr 1984 | A |
4471395 | Beck | Sep 1984 | A |
4497138 | Schriber | Feb 1985 | A |
4516177 | Moon | May 1985 | A |
4519010 | Elsässer | May 1985 | A |
4529900 | Uzuka | Jul 1985 | A |
4535373 | Schuh | Aug 1985 | A |
4553183 | Brown | Nov 1985 | A |
4554473 | Müller | Nov 1985 | A |
4562496 | Saito | Dec 1985 | A |
RE32075 | Harrison et al. | Jan 1986 | E |
4599664 | Schuh | Jul 1986 | A |
4607182 | Ballhaus | Aug 1986 | A |
4616538 | Hessbiiggen | Oct 1986 | A |
4656545 | Kakuta | Apr 1987 | A |
4658312 | Elsasser | Apr 1987 | A |
4672250 | Seitz | Jun 1987 | A |
4672487 | Brand | Jun 1987 | A |
4692827 | Biermeier | Sep 1987 | A |
4701653 | Merkle | Oct 1987 | A |
4717977 | Brown | Jan 1988 | A |
4725904 | Dalziel | Feb 1988 | A |
4739203 | Miyao | Apr 1988 | A |
4739425 | Dierkes | Apr 1988 | A |
4739427 | Kilmer | Apr 1988 | A |
4743995 | Castle | May 1988 | A |
RE32702 | Hasler | Jun 1988 | E |
4754351 | Wright | Jun 1988 | A |
4779165 | Elsässer | Oct 1988 | A |
4780777 | Biermeier | Oct 1988 | A |
4797762 | Levy | Jan 1989 | A |
4805055 | Wright | Feb 1989 | A |
4814652 | Wright | Mar 1989 | A |
4829657 | Wright | May 1989 | A |
4843500 | Elsässer | Jun 1989 | A |
4905110 | Krum | Feb 1990 | A |
4922406 | Schuh | May 1990 | A |
4928029 | Wright | May 1990 | A |
4949000 | Petersen | Aug 1990 | A |
4991211 | Cap | Feb 1991 | A |
5001581 | Elsässer | Mar 1991 | A |
5006943 | Elsässer | Apr 1991 | A |
5040085 | Elsässer | Aug 1991 | A |
5128819 | Elsässer | Jul 1992 | A |
5173814 | Elsässer | Dec 1992 | A |
5216557 | Elsässer | Jun 1993 | A |
RE34412 | Elsässer | Oct 1993 | E |
5251081 | Cossette | Oct 1993 | A |
5382853 | von der Heide | Jan 1995 | A |
5422769 | Elsässer | Jun 1995 | A |
5424887 | Schuh | Jun 1995 | A |
5446610 | Elsässer | Aug 1995 | A |
5557487 | Elsässer | Sep 1996 | A |
5661351 | von der Heide | Aug 1997 | A |
5708539 | Schuh | Jan 1998 | A |
5729403 | Schuh | Mar 1998 | A |
RE35792 | Elsässer | May 1998 | E |
5774302 | Elsässer | Jun 1998 | A |
5777822 | Schuh | Jul 1998 | A |
5801900 | Elsässer | Sep 1998 | A |
RE36016 | Cap | Dec 1998 | E |
5946161 | Schuh | Aug 1999 | A |
Number | Date | Country |
---|---|---|
654 455 | Feb 1986 | CH |
1244283 | Jul 1967 | DE |
1954409 | Jun 1970 | DE |
2028228 | Dec 1970 | DE |
2319579 | Apr 1973 | DE |
2225442 | Dec 1973 | DE |
2346380 | Nov 1974 | DE |
2639055 | Mar 1977 | DE |
2612464 | Aug 1977 | DE |
26 17 860 | Nov 1977 | DE |
2804787 | Sep 1978 | DE |
2840057 | Mar 1979 | DE |
2647675 | Apr 1979 | DE |
2749729 | May 1979 | DE |
2841137 | May 1979 | DE |
3049334 | Oct 1981 | DE |
3122049 | Jul 1982 | DE |
3144629 | Jul 1982 | DE |
3135385 | Mar 1983 | DE |
3314079 | Dec 1983 | DE |
3538480 | Apr 1986 | DE |
0 069 545 | Jan 1983 | EP |
0 015 739 | Apr 1983 | EP |
0094484 | Nov 1983 | EP |
0 107 380 | Feb 1984 | EP |
0 151 259 | Apr 1985 | EP |
0151258 | Aug 1985 | EP |
0151260 | Aug 1985 | EP |
0 172 459 | Feb 1986 | EP |
0 263 932 | Apr 1988 | EP |
2415859 | Aug 1979 | FR |
2453527 | Oct 1980 | FR |
393617 | Jun 1933 | GB |
1407431 | Aug 1972 | GB |
1328717 | Aug 1973 | GB |
1434192 | May 1976 | GB |
1486070 | Sep 1977 | GB |
2005482 | Apr 1979 | GB |
2013388 | Aug 1979 | GB |
2032197 | Apr 1980 | GB |
1572586 | Jul 1980 | GB |
2072924 | Oct 1981 | GB |
2075240 | Nov 1981 | GB |
1604121 | Dec 1981 | GB |
2092834 | Aug 1982 | GB |
2166586 | May 1986 | GB |
2195812 | Apr 1988 | GB |
53-55509 | Oct 1951 | JP |
41-015606 | Sep 1966 | JP |
41-021084 | Sep 1966 | JP |
49-34714 | Jun 1972 | JP |
48-86510 | Nov 1973 | JP |
48-87809 | Nov 1973 | JP |
49-46716 | May 1974 | JP |
49-71909 | Jul 1974 | JP |
49-85110 | Jul 1974 | JP |
50-90905 | Jul 1975 | JP |
50-128510 | Oct 1975 | JP |
50-146309 | Nov 1975 | JP |
50-152708 | Dec 1975 | JP |
50-159704 | Dec 1975 | JP |
51-33410 | Mar 1976 | JP |
50-128506 | Mar 1976 | JP |
51-57011 | May 1976 | JP |
51-62002 | May 1976 | JP |
51-26669 | Jul 1976 | JP |
51-84516 | Jul 1976 | JP |
51-121306 | Oct 1976 | JP |
51-151513 | Dec 1976 | JP |
52-6914 | Jan 1977 | JP |
52-004002 | Jan 1977 | JP |
52-42209 | Mar 1977 | JP |
52-50704 | Apr 1977 | JP |
52-048009 | Apr 1977 | JP |
52-145312 | Nov 1977 | JP |
52-170004 | Dec 1977 | JP |
53-23010 | Mar 1978 | JP |
53-39727 | Apr 1978 | JP |
53-51719 | May 1978 | JP |
53-55106 | May 1978 | JP |
53-57010 | May 1978 | JP |
53-055724 | May 1978 | JP |
53-70309 | Jun 1978 | JP |
53-76809 | Jul 1978 | JP |
54-41619 | Mar 1979 | JP |
54-9921 | May 1979 | JP |
54-58011 | May 1979 | JP |
55-170495 | May 1979 | JP |
52-099908 | Aug 1979 | JP |
54-111317 | Aug 1979 | JP |
54-121914 | Sep 1979 | JP |
54-139819 | Sep 1979 | JP |
54-136309 | Oct 1979 | JP |
54-156106 | Dec 1979 | JP |
55-43360 | Mar 1980 | JP |
55-141258 | Apr 1980 | JP |
55-139674 | Oct 1980 | JP |
55-25725 | Dec 1980 | JP |
56-9594 | Jan 1981 | JP |
56-107364 | Aug 1981 | JP |
56-166760 | Dec 1981 | JP |
57-53876 | Mar 1982 | JP |
57-171532 | Oct 1982 | JP |
58-22571 | Feb 1983 | JP |
58-30965 | Feb 1983 | JP |
58-30312 | Apr 1983 | JP |
58-159201 | Sep 1983 | JP |
58-200480 | Nov 1983 | JP |
59-22273 | Feb 1984 | JP |
59-207069 | Nov 1984 | JP |
61-34771 | Feb 1986 | JP |
61-20871 | Jun 1986 | JP |
WO 8001525 | Jul 1980 | WO |
8401863 | May 1984 | WO |
Number | Date | Country | |
---|---|---|---|
Parent | 08819099 | Mar 1997 | US |
Child | 07653100 | US | |
Parent | 08360226 | Dec 1994 | US |
Child | 08819099 | US | |
Parent | 07402917 | Sep 1989 | US |
Child | 08360226 | US | |
Parent | 07201736 | Jun 1988 | US |
Child | 07402917 | US | |
Parent | 06412093 | Aug 1982 | US |
Child | 06767671 | US | |
Parent | 06733231 | May 1985 | US |
Child | 07032954 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 07038049 | Apr 1987 | US |
Child | 07201736 | US | |
Parent | 06767671 | Aug 1985 | US |
Child | 07038049 | US | |
Parent | 06326559 | Dec 1981 | US |
Child | 06412093 | US | |
Parent | 06244971 | Mar 1981 | US |
Child | 06326559 | US | |
Parent | 07032954 | Mar 1987 | US |
Child | 07201736 | US | |
Parent | 06412093 | US | |
Child | 06733231 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 07653100 | Feb 1991 | US |
Child | 09441504 | US |