The present invention relates generally to a locking apparatus as well as a locking system and methodology, and more specifically, it relates to a locking apparatus such as a disc tumbler lock and an improved key and keyway for the same adapted for securing at least one structure or a plurality of structures and which may be used in many various locking applications such as, but not limited to those described herein such as utility revenue protection, securing trucking, shipping, airline or other transportation or cargo containers or with door locking hardware, in a padlock or other locking hardware. In one example use, the locking apparatus may be used to secure a utility service enclosure, or for example, a watthour meter socket box to prevent unauthorized access as noted in more detail below.
As noted above, one common use relates to revenue protection in the utility industry. For example, in the electric utility industry, electrical service providers generally deliver electricity to their customers via power lines buried underground or distributed along poles or towers overhead. The provider's power lines are usually distributed from a power generation station to numerous sets of customer lines, so that customers can then use the power to satisfy their various electrical needs. To measure delivered power so that customers can be billed in proportion to their usage, service providers typically terminate their power lines at a customer's home or business facility through a metered socket box, various designs for which are well known.
A meter box is generally used by electric utility companies, however the invention herein may be used with other utility service enclosures in the gas, water, cable, TV utility industries, or in shipping or other industries as well.
An example of one previously known meter box consists of two sets of electrical posts, with a provider's transmission lines being connected to one set of posts, and the customer's service lines to the other set. In order to measure the amount of electricity a customer uses, the meter box is configured to accept a watt-hour meter or another electricity usage measurement device, which, when plugged into the socket box, permits transmission of electricity from the provider to the customer and allows the amount of transmitted electricity to be accurately measured, so that the provider can charge the customer for power usage at an appropriate rate.
Various designs and uses for watthour meters are also well known, and all such designs and uses are incorporated by reference into the teachings of the present invention. The present invention is also applicable in situations where the customer's service lines are routed from the meter box to a breaker box so that electricity can be distributed to multiple service locations using additional sets of electrical lines or wires. Presently, there are various types of meter socket boxes, each distinguished by the manner in which the meter is secured in place once it has been plugged into an electrical socket disposed in the meter box. For example, a ringed-type meter box fitted with a flanged front cover is known, within which a watthour meter is disposed so that a head portion of the meter passes out through a flanged opening in the front cover. In this configuration, the meter is generally held in place using an annular, lockable sealing ring.
Also known is a ringless type meter box, in which the box cover secures the meter in place. For example, a ringless type meter box may include a box cover and a box base. A ringless type meter box includes an installed meter and a box cover. Formed around an opening in a central portion of meter box cover is a flange; a complementary flange is disposed on meter such that, when meter box cover is installed over and around the head of meter, for example, then the meter complementary flange is encased by meter box cover flange, and complementary flange sections and join together, so that the meter cannot be easily removed from the electrical socket unless the cover is first removed from the meter box or meter box base.
The meter box cover is typically secured in place by means of a small latch assembly, which functions in structural cooperation with a complementary latch-receiving member disposed on the meter box or base. The meter box cover is used to secure the meter to the electrical socket (not shown), so that completion of an electrical circuit is ensured, and the meter is reliably prevented from falling out of the meter box socket.
The meter box cover also prevents unauthorized persons from tampering with the meter. For example, some customers have attempted to bypass the meter, so that unmeasured electricity could be used free of charge. Also, service providers are sometimes forced to disconnect service to customers, for example, due to non-payment of monthly bills. In this event, a locked meter box cover helps prevent a customer from entering the meter box and reconnecting electrical service. However, in instances where the small latch assembly on the meter box fails to provide sufficient security for preventing unauthorized access to the meter and meter box socket, a sturdier, more tamper resistant solution is required.
One of the problems presented by typical locking devices is that the keyway of the locking device can be readily accessed and sometimes a simple key blank can be used defeat these locking devices. Key control is an important aspect of lock security and control of the blanks used to make a key for a lock is important to help control security of the overall system.
There remains a need for a locking apparatus which provides a keyway and key for a disc tumbler locking system that prevents a user from using a simple blank to fabricate an un-authorized key. There is also a need to provide a restricted key aperture to prevent the insertion of pick tools, drills or other implements that may compromise the lock. There also remains a need, for example, for a locking apparatus and locking method adapted for restricting access to a keyway through the key aperture in order to prevent insertion of a key wide enough to create the appropriate cuts to open the lock.
Those of skill in the art will appreciate the example embodiments of the present invention which addresses the above needs and other significant needs the solution to which are discussed hereinafter.
One example embodiment of the present invention provides a keyway and key for a disc tumbler locking system that prevents a user from using a simple blank to fabricate an un-authorized key.
Another example embodiment of the present invention provides a restricted key aperture to prevent the insertion of pick tools, drills or other implements that may compromise the lock.
In an example embodiment, a locking apparatus is provided including at least a disc tumbler locking system adapted to secure a watthour meter box sealing ring to a watthour meter box.
In another example embodiment of the present invention, which will be described subsequently herein, a locking apparatus is used to secure at least one structure or a plurality of structures, to lock a utility service enclosure, such as for example, a meter box locking ring having flanged ends.
In this respect, before explaining the present invention in detail, it is to be understood that the invention is not limited in its application to the details of construction and to the arrangements of the components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments and of being practiced and carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein are for the purpose of the description and should not be regarded as limiting.
The content and disclosure of each of the following applications/publications, as well as their related parent or child continuation, continuation-in-part or divisional applications, as permitted are specifically hereby incorporated by reference: U.S. Pat. Nos. 4,742,703, 6,386,006, 7,213,424, 7,176,376; and U.S. patent application Ser. Nos. 12/380,938, 12/378,879, 12/317,086, 12/082,122, 13/174,776, 13/174,778, 61/316,851, 61/293,724; and U.S. Provisional Application No. 61/360,375, and U.S. Patent Application Nos. based on Attorney Docket Nos. PAT-017 DIVA and PAT-067 PPA.
Additionally, all written material, figures, content and other disclosure in each of the above-referenced applications, as well as their related parent or child continuation, continuation-in-part or divisional applications, is hereby incorporated by reference. In addition, the instant application claims priority as noted above.
There has thus been outlined, rather broadly, the more important features of the invention in order that the detailed description thereof may be better understood, and in order that the present contribution to the art may be better appreciated. There are additional features of the invention that will be described hereinafter.
These and other aspects, aspects, features, and advantages of example embodiments of the present invention will become apparent from the drawings, the descriptions given herein, and the appended claims. Further aspects, features, and aspects are also indicated herein in various example embodiments of the invention. However, it will be understood that objectives and/or advantages herein of example embodiments are intended only as an aid in quickly understanding aspects of the example embodiments, are not intended to limit the embodiments of the invention in any way, and therefore do not form a comprehensive or restrictive list of objectives, and/or features, and/or advantages.
To the accomplishment of the above and related aspects, this invention may be embodied in the form illustrated in the accompanying drawings, attention being called to the fact, however, that the drawings are illustrative only, and that changes may be made in the specific construction illustrated.
Various other aspects, features and attendant advantages of the embodiments of the invention will become fully appreciated as the same becomes better understood when considered in conjunction with the accompanying drawings, and wherein:
While various example embodiments of the invention will be described herein, it will be understood that it is not intended to limit the invention to those embodiments. On the contrary, it is intended to cover all alternatives, modifications, and equivalents included within the spirit of the invention.
Turning now descriptively to the drawings, in which similar reference characters may denote similar elements throughout the several views, the various figures attached illustrate a locking apparatus comprising a disc tumbler lock and key. In one example embodiment, the locking apparatus may be used for various locking applications such as, for example, securing a plurality of structures or a portion of a utility service enclosure as will explained further herein. Disc tumbler locks are well known for their excellent resistance to corrosion and reliable, long term operation. The geometry needed to make a key for a disc tumbler lock requires that there be sufficient material on the key, in the region that interacts with the tumbler, to allow cuts to be made of the appropriate depth to rotate the locking tumblers into position to allow the lock to be opened. This being the case, locks built previously have had keyways that have not restricted the keyways sufficiently to prevent simpler key blanks from being used. One example embodiment of the present invention is to provide geometry for the keyway in the code tumblers and the guard tumbler to prevent simpler key blanks from being used to fabricate a key for a lock in accordance with the present invention.
Referring to
In some example embodiments, it should be noted that anti-rotation features are used such that user does not have to grasp the lock body to prevent it from rotating. For example, in one embodiment as shown in
In another example embodiment, a flat or other suitable structure can be formed on the lock shank and adapted for use with a cooperative rotation restricting surface on lock receiving hardware so as to prevent rotation of the lock case while the key is being used to lock and unlock the lock, without having to grasp the key. For example, the configuration provided in U.S. Pat. No. 7213424 or U.S. application Ser. No. 11/800,862, incorporated by reference herein, could be used.
Referring now to
In the present embodiment the bottom tumbler 47 as shown in
False notches such as 104 shown in
To prevent a simple key blank from being used to create a key for a lock in accordance with the present invention the key aperture may be restricted at any point along its length to prevent insertion of a key wide enough to create the appropriate cuts to open the lock. Referring to
In the formula above:
For a key blank to be capable of opening a lock in accordance with the present invention it must have material in the tumbler engaging zone spanning an angular measure at least as great as the angular measure of the codes for the code tumblers. A key blank of simple construction cannot be used to make a key to open a lock of the current invention when the restrictive width of the key aperture is generally less than the sum of the radius of the major extent of the key aperture and the radius of the minor extent of the key aperture multiplied by the sine of one half of the following: the code range angle of the lock minus the angular measure between the last code angle for the lock and the second to last code angle for the lock minus the angular span of the key engaging surface. In one example embodiment, a key blank of simple construction cannot be used in a disc tumbler lock having a code range angle, the disc tumbler lock including at least: at least one tumbler and a guard tumbler, the at least one tumbler and the guard tumbler defining a keyway aperture there through; wherein the at least one tumbler includes at least: a key engaging surface defining a key engaging zone, the key engaging zone having a first radius defining the major extent of the key engaging zone, and the key engaging zone having a second radius defining the minor extent of the key engaging zone; wherein the guard tumbler defines: a restrictive aperture (or in some embodiments referred to as the restrictive width of the key aperture) including at least a restrictive width having a minimum dimension less than or equal to the sum of the first radius defining the major extent of the key engaging zone and the second radius of the minor extent defining the key engaging zone multiplied by the sine of one half of the following: the code range angle of the lock, minus the angular measure between a last code angle for the lock and a second to last code angle for the lock, minus the angular span of the key engaging surface. These relationships are illustrated by the equation explained above.
One example embodiment provides a keyway for a disc tumbler lock the disc tumbler lock comprising a code range angle, the keyway comprising: an aperture including at least: a key engaging zone; the key engaging zone comprising a radius defining its major extent and a radius defining its minor extent; a restrictive width comprising a minimum dimension less than or equal to the sum of the radius of the major extent of the key aperture and the radius of the minor extent of the key aperture multiplied by the sine of one half of the following: the code range angle of the lock minus the angular measure between the last code angle for the lock and the second to last code angle for the lock minus the angular span of the key engaging surface.
In an example embodiment a method is provided for restricting the use of an unauthorized key blank for a disc tumbler lock, the method including at least: restricting the width of at least one element defining a keyway or keyway aperture; providing a restrictive width of a key aperture less than the span necessary to provide tumbler engaging surfaces capable of opening the full ranges of code positions in the disc tumbler lock. In an example embodiment, the at least one element comprises at least one guard tumbler.
In an example embodiment, an method for restricting the use of an unauthorized key blank for a disc tumbler lock is provided, the method including at least: providing a plurality of keyway members (or in an example embodiment, at least one element, for example comprising at least one guard tumbler) defining a restrictive width of a restrictive aperture less than the span necessary to provide tumbler engaging surfaces capable of opening a full range of code positions in the disc tumbler lock; and providing a key having a restricted transverse cross-section complementary with the restrictive width of the restrictive aperture in order for it to be insertable into the key aperture. In an example embodiment, at least one guard tumbler is disposed at the entry of the keyway. In another example embodiment, at least one guard tumbler is disposed at the end of the keyway opposite the keyway entry. In yet another embodiment, a guard tumbler is disposed intermediate in the keyway. In a further embodiment, the guard tumbler may be disposed adjacent the anti drill member in the tumbler stack. In yet another embodiment a restrictive aperture is defined by the endcap and a guard tumbler may or may not be used.
As noted herein, in an example embodiment, the restricted keyway access into the lock body, as provided by the selectively configured guard tumbler, requires that the key also have a complimentarily restricted transverse cross-section in order for it to be insertable into the keyway. This constricted configuration helps to prevent tampering, drilling into the keyway, or unwanted access, and fosters security. In addition, in other embodiments, the guard tumbler protuberances or lobes may be sized, shaped, positioned, or configured to further restrict access thereby requiring a further restricted key cross-section.
In other embodiments certain high-strength materials may be used. For example, in some embodiments, materials such as the following could be used: high-strength steel such as 174PH stainless, carbon steel 4140, or 410 or 440 stainless, S7 tool steel or any other material with suitable properties. With such a configuration, there would be an inverse relationship between the strength of the material used versus the size of the keyway opening. For example, as the strength of the material used for the key is increased, the keyway opening size could suitably decrease.
In use, as noted briefly before, the disk tumbler lock may be used in many various locking applications such as, but not limited, for example, to lock, secure or seal for example, a trucking, shipping, airline or other transportation or security container or cargo containers or used with any disc tumbler, with barrel lock or other types of locks, or used in and with door locks and door locking or other locking hardware. In other example embodiment the locking apparatus can be configured for use in padlocks and other related locking systems and hardware, for shipping and cargo latches or hasps, with locking cables, and for other applications and purposes as well. It should be noted that the locking apparatus and method can be configured, in various nonlimiting example embodiments, for high-security, medium-security, low-security applications and uses as noted herein.
Although there are many possible locking applications, in one example embodiment, the apparatus may used for securing a watthour meter socket ring so as to prevent the separation of two opposing members of the watthour meter socket box ring. The apparatus may also be used as a locking assembly with at least one structure as will hereinafter be explained in further detail.
In one example embodiment, the locking apparatus may be used for securing a sealing ring for a ringed-type meter box. In order to hold a meter in place and prevent its removal from the meter box, both the meter and meter base incorporate a corresponding set of flanges that are retained together with an annular, lockable sealing ring. The lockable sealing ring is designed to encase and captivate the corresponding flanges of the meter and base when the ends of the sealing ring are held or connected together.
In another example embodiment, the locking apparatus may be used for securably connecting a plurality of structures with each of the plurality of structures defining an aperture therein. The plurality of structures preferably comprise first and second ends of a ring, which may be connected or disconnected, the ring being adapted to mount a meter to a meter box structure. Each of the first and second ends of the ring define apertures therein respectively adapted to receive the disk tumbler lock and retaining structure.
In one other example embodiment a system is provided for locking hardware and minimizing tampering with the lock, the system including at least: means for uniting a plurality of structures; means for retaining the means for uniting, wherein the plurality of structures is secured between at least a portion of the means for uniting and at least a portion of the means for retaining.
Various other example embodiments provide a locking apparatus and system that may be adapted for use on any suitable utility service enclosure. Such a utility service enclosure is used not only in the electric utility industry (e.g., a meter box) but also in the gas, water, cable, TV utility industries or in other utility industries.
The embodiments described herein are meant to be examples of the present invention and in no way are intended to limit the scope of the invention. Variation in shape and form of the keyway, number of codes in the lock, angular span of each code angle, geometry of the restrictive surfaces in the aperture and many other variations to other elements of the design are possible within the scope of the invention. The design described does not limit the scope of the embodiments of invention; the number of various elements may change, or various components may be added or removed to the above-described concept, for example, to aid in improved security and operation.
The foregoing disclosure and description of embodiments of the invention is illustrative and explanatory of the above and variations thereof, and it will be appreciated by those skilled in the art, that various changes in the design, organization, order of operation, means of operation, equipment structures and location, methodology, the use of mechanical equivalents, such as different types of fasteners and locking devices than as illustrated whereby different steps may be utilized, as well as in the details of the illustrated construction or combinations of features of the various elements may be made without departing from the spirit of the embodiments of the invention. As well, the drawings are intended to describe various concepts of embodiments of the invention so that presently preferred embodiments of the invention will be plainly disclosed to one of skill in the art but are not intended to be manufacturing level drawings or renditions of final products and may include simplified conceptual views as desired for easier and quicker understanding or explanation of embodiments of the invention. As well, the relative size and arrangement of the components may be varied from that shown and the embodiments of the invention still operate well within the spirit of the embodiments of the invention as described hereinbefore and in the appended claims. Thus, various changes and alternatives may be used that are contained within the spirit of the embodiments of the invention.
Accordingly, the foregoing specification is provided for illustrative purposes only, and is not intended to describe all possible aspects of the example embodiments of the invention. It will be appreciated by those skilled in the art, that various changes in the ordering of steps, ranges, interferences, spacings, hardware, and/or attributes and parameters, as well as in the details of the illustrations or combinations of features of the methods and system discussed herein, may be made without departing from the spirit of the embodiments of the invention. Moreover, while various embodiments of the invention have been shown and described in detail, those of ordinary skill in the art will appreciate that changes to the description, and various other modifications, omissions and additions may also be made without departing from either the spirit or scope thereof.
This application is a continuation-in-part of application Ser. No. 13/174,776 (entitled “Disk Lock”), filed Jul. 1, 2011 and this application is also a continuation-in-part of application Ser. No. 13/174,778 (entitled “Disc Tumbler Lock and an Improved Key and Keyway”), filed Jul. 1, 2011. All written material, figures, content and other disclosure in each of the above-referenced applications is hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 13174776 | Sep 2011 | US |
Child | 13175818 | US | |
Parent | 13174778 | Jul 2011 | US |
Child | 13174776 | US |