The present patent application relates to medical devices and methods of delivering at least two drug agents from separate reservoirs using a device having a programmable dose setting mechanism and a single dispense interface. Such drug agents may comprise a first and a second medicament. A single dose setting procedure initiated by the user causes the drug delivery device to compute a dose of a second drug agent based on a selected therapeutic dose algorithm. This single dose setting procedure initiated by the user may also cause the drug delivery device to compute a dose of a third drug agent based on a (potentially) different selected therapeutic dose algorithm. Such algorithms may either be previously selected prior to dose setting or at the time that the dose is set.
The drug agents may be contained in two or more multiple dose reservoirs, containers or packages, each containing independent (single drug compound) or pre-mixed (co-formulated multiple drug compounds) drug agents. The electro-mechanical dose setting mechanism is of particular benefit where a targeted therapeutic response can be optimized for a specific target patient group. This may be achieved by a microprocessor based drug delivery device that is programmed to control, define, and/or optimize a therapeutic dose profile. A plurality of potential dose profiles may be stored in a memory device operatively coupled to the microprocessor. For example, such stored therapeutic dose profiles may include, but are not limited to, a linear dose profile; a non-linear dose profile; a fixed ratio-fixed dose profile; a fixed dose-variable dose profile; a delayed fixed dose-variable dose profile; or a multi-level, fixed dose variable dose profile as discussed and described in greater detail below. Alternatively, only one dose profile would be stored in a memory device operatively coupled to the microprocessor.
A dispense interface component configured for attaching to a drug delivery device may be configured to only pierce the septa of the drug reservoirs of the drug delivery device when the drug delivery device is ready for use.
Certain disease states require treatment using one or more different medicaments. Some drug compounds need to be delivered in a specific relationship with each other in order to deliver the optimum therapeutic dose. The present patent application is of particular benefit where combination therapy is desirable, but not possible in a single formulation for reasons such as, but not limited to, stability, compromised therapeutic performance and toxicology.
For example, in some cases it might be beneficial to treat a diabetic with a long acting insulin (also may be referred to as the first or primary medicament) along with a glucagon-like peptide-1 such as GLP-1 or GLP-1 analog (also may be referred to as the second drug or secondary medicament). GLP-1 is derived from the transcription product of the proglucagon gene. GLP-1 is found in the body and is secreted by the intestinal L cell as a gut hormone. GLP-1 possesses several physiological properties that make it (and its analogs) a subject of intensive investigation as a potential treatment of diabetes mellitus.
There are a number of potential problems when delivering two active medicaments or “agents” simultaneously. The two active agents may interact with each other during the long-term, shelf life storage of the formulation. Therefore, it is advantageous to store the active components separately and only combine them at the point of delivery, e.g., injection, needle-less injection, pumps, or inhalation. However, the process for combining the two agents and then administering this combination therapy needs to be simple and convenient for the user to perform reliably, repeatedly and safely.
A further problem that may often arise is that the quantities and/or proportions of each active agent making up the combination therapy may need to be varied for each user or at different stages of their therapy. For example, one or more active agents may require a titration period to gradually introduce a patient to a “maintenance” dose. A further example would be if one active agent requires a non-adjustable fixed dose while the other active agent is varied. This other active agent may need to be varied in response to a patient's symptoms or physical condition. Because of such a potential problem, certain pre-mixed formulations comprising two or more active agents may not be suitable as these pre-mixed formulations would have a fixed ratio of the active components, which could not be varied by the healthcare professional or user.
Additional problems can arise where a multi-drug compound therapy is required, because many users cannot cope with having to use more than one drug delivery system or make the necessary accurate calculation of the required dose combination. Other problems arise where a drug delivery system requires the user to physically manipulate the drug delivery device or a component of the drug delivery device (e.g., a dose dialing button) so as to set and/or inject a dose. This may be especially true for certain users who are challenged with dexterity or computational difficulties.
Accordingly, there exists a need to provide devices and/or methods for the delivery of two or more medicaments in a single injection or delivery step that is simple for the user to perform without complicated physical manipulations of the drug delivery device. Applicants' proposed programmable electro-mechanical drug delivery device overcomes the above-mentioned problems. For example, the proposed drug delivery device provides separate storage containers or cartridge retainers for two or more active drug agents. These active drug agents are then only combined and/or delivered to the patient during a single delivery procedure. These active agents may be administered together in a combined dose or alternatively, these active agents may be combined in a sequential manner, one after the other. This may be just one programmable feature of Applicants' proposed electro-mechanical drug delivery device.
In addition, when a user sets a dose of the first or primary medicament, Applicants' proposed electro-mechanical micro-processor based drug delivery device automatically calculates the dose of the second medicament (i.e., non-user settable) based at least in part on a programmed therapeutic dose profile or programmed algorithm. In an alternative arrangement, Applicants' proposed electro-mechanical micro-processor based drug delivery device automatically calculates the dose of the second medicament and/or a third medicament based on a programmed therapeutic dose profile or programmed algorithm. The profile used to compute the dose of the third medicament may or may not be the same type of profile used to compute the dose of the secondary medicament.
Applicants' drug delivery device also allows for the opportunity of varying the quantity of the medicaments. For example, one fluid quantity can be varied by changing the properties of the injection device (e.g., setting a user variable dose or changing the device's “fixed” dose). The second medicament quantity can be changed by manufacturing a variety of secondary drug containing packages with each variant containing a different volume and/or concentration of the second active agent. The user, for example a patient, a healthcare professional or any other person using the device, would then select the most appropriate secondary package or series or combination of series of different packages for a particular treatment regime.
The present application allows for a combination of multiple drug compounds within a single electro-mechanical device to achieve a therapeutic dose profile. Such therapeutic dose profile may be a pre-selected profile and may be one of a plurality of dose profiles stored in a memory device contained within the drug delivery device. The electro-mechanical device may comprise two or more such medicaments. The device allows the user to set a multi-drug compound device through one single dose setting mechanism (such as a digital display, a soft-touch operable panel, and/or graphical user interface (GUI)). The device then allows the dispense of at least a plurality of medicaments through a single dispense interface (such as a double-ended needle assembly). This single dose setter can control the electro-mechanical drive unit of the device such that a predefined combination of the individual drug compounds may be administered when a single dose of one of the medicaments is set and dispensed through the single dispense interface. Although principally described in this application as an injection device, the basic principle could be applicable to other forms of drug delivery, such as, but not limited to, inhalation, nasal, ophthalmic, oral, topical, and like forms of drug delivery.
By defining the therapeutic relationship between at least a plurality of drug compounds, the proposed microprocessor based drug delivery device helps to ensure that a patient/user receives the optimum therapeutic combination dose from a multi-drug compound device. This microprocessor may comprise a microcontroller. This combination dose may be set and administered without the potential inherent risks that may be associated with multiple inputs, where the user is often called upon to calculate and set the correct dose combination each time that the device is used to administer a dose. The medicaments can be fluids, defined herein as liquids, gases or powders that are capable of flowing and that change shape when acted upon by a force tending to change its shape. Alternatively, one of the medicaments may be a solid where such a solid may be carried, solubilized or otherwise dispensed with another fluid, for example a fluid medicament or a liquid.
The proposed electro-mechanical device is of particular benefit to users with dexterity or computational difficulties as the single input and associated predefined therapeutic profile removes the need for a user to calculate a prescribed dose every time they use the device. In addition, the single input allows easier dose setting and dose administration of the combined compounds. The electro-mechanical nature of the preferred drug delivery device also benefits users with dexterity and visual challenges since the proposed drug delivery device may be operated and/or controlled by way of a micro-processor based operator panel.
In a preferred embodiment a master drug compound, such as insulin, contained within a multiple dose device could be used with at least a secondary medicament contained within the same device. A third medicament contained within the same device may also be provided. For example, this third medicament could be a long or a short acting insulin.
In a preferred arrangement, a computerized electro-mechanical drug delivery device delivers at least one dose of two or more medicaments. This dose may be a combined dose. The device comprises a main body comprising a microprocessor based control unit. An electro-mechanical drive unit is operably coupled to the control unit. The electro-mechanical drive unit is coupled to a primary reservoir and a secondary reservoir. Preferably, the electro-mechanical drive unit is coupled to the primary reservoir and the secondary reservoir by way of a first and second drive trains. The first and the second drive trains may be similar in operation.
An operator interface is in communication with the control unit. A single dispense assembly (such as a dispense interface and/or a needle assembly) may be configured for fluid communication with the primary and the secondary reservoir. Activation of the operator panel sets a dose of the primary medicament from the primary reservoir. Based on at least the selected dose of the primary medicament, the control unit computes a dose of the secondary medicament based at least in part on a therapeutic dose profile. In an alternative arrangement, based on at least the selected dose of the primary medicament, the control unit computes a range of a dose of the secondary medicament based at least in part on a therapeutic dose profile. A user may then select a dose of the secondary medicament within the determined range. Based on at least the selected dose of the primary medicament, the control unit may also compute a dose or a range of a dose of the third medicament based at least in part on a therapeutic dose profile. The primary medicament may or may not be administered to an injection site simultaneously with the secondary medicament.
In one arrangement, the selected profile may be determined when a cartridge of medicament is inserted into a cartridge retainer of the drug delivery device. A cartridge may comprise one or more reservoirs for storing and releasing one or more medicaments. Separate cartridges for each medicament may be used in a device, or a single cartridge with multiple reservoirs may be used. For example, the cartridge retainer of the device may contain a cartridge identification circuit that when or if the device ‘reads’ a cartridge identifier provided on the inserted cartridge, logic contained in the device could determine which of the plurality of stored profiles is the appropriate profile to select for the particular medicament contained within the cartridge. In one such arrangement, this selection process might therefore be fully automatic. That is, no user intervention is required to select the proper profile. In an alternative embodiment, cartridge identification information may be used to request a profile through a wired or wireless connection, for example a universal serial bus (USB) connection, a Bluetooth™ connection, a cellular connection and/or the like. The profile may be requested from an internet page. The profile may be received by the device through the same wired or wireless connection. The profile may then be stored and applied in the apparatus without any user intervention or after confirmation by a user.
Alternatively, this therapeutic profile selection process might be semi-automatic. For example, this therapeutic profile may be suggested and selected via a graphical user interface provided on a digital display. For example, the GUI may prompt the user to confirm which profile they want from a limited range of options or fully configurable by the user, for example by a patient or health care provider.
Although the present application specifically mentions insulin, insulin analogs or insulin derivatives, and GLP-1 or GLP-1 analogs as two possible drug combinations, other drugs or drug combinations, such as an analgesics, hormones, beta agonists or corticosteroids, or a combination of any of the above-mentioned drugs could be used with our invention.
For the purposes of the present application, the term “insulin” shall mean Insulin, insulin analogs, insulin derivatives or mixtures thereof, including human insulin or a human insulin analogs or derivatives. Examples of insulin analogs are, without limitation, Gly(A21), Arg(B31), Arg(B32) human insulin; Lys(B3), Glu(B29) human insulin; Lys(B28), Pro(B29) human insulin; Asp(B28) human insulin; human insulin, wherein proline in position B28 is replaced by Asp, Lys, Leu, Val or Ala and wherein in position B29 Lys may be replaced by Pro; Ala(B26) human insulin; Des(B28-B30) human insulin; Des(B27) human insulin or Des(B30) human insulin. Examples of insulin derivatives are, without limitation, B29-N-myristoyl-des(B30) human insulin; B29-N-palmitoyl-des(B30) human insulin; B29-N-myristoyl human insulin; B29-N-palmitoyl human insulin; B28-N-myristoyl LysB28ProB29 human insulin; B28-N-palmitoyl-LysB28ProB29 human insulin; B30-N-myristoyl-ThrB29LysB30 human insulin; B30-N-palmitoyl-ThrB29LysB30 human insulin; B29-N-(N-palmitoyl-Y-glutamyl)-des(B30) human insulin; B29-N-(N-lithocholyl-Y-glutamyl)-des(B30) human insulin; B29-N-(w-carboxyheptadecanoyl)-des(B30) human insulin and B29-N-(ω-carboxyhepta-decanoyl) human insulin.
As used herein the term “GLP-1” shall mean GLP-1, GLP-1 analogs, or mixtures thereof, including without limitation, exenatide (Exendin-4(1-39), a peptide of the sequence H-His-Gly-Glu-Gly-Thr-Phe-Thr-Ser-Asp-Leu-Ser-Lys-Gln-Met-Glu-Glu-Glu-Ala-Val-Arg-Leu-Phe-Ile-Glu-Trp-Leu-Lys-Asn-Gly-Gly-Pro-Ser-Ser-Gly-Ala-Pro-Pro-Pro-Ser-NH2), Exendin-3, Liraglutide, or AVE0010 (H-His-Gly-Glu-Gly-Thr-Phe-Thr-Ser-Asp-Leu-Ser-Lys-Gln-Met-Glu-Glu-Glu-Ala-Val-Arg-Leu-Phe-Ile-Glu-Trp-Leu-Lys-Asn-Gly-Gly-Pro-Ser-Ser-Gly-Ala-Pro-Pro-Ser-Lys-Lys-Lys-Lys-Lys-Lys-NH2).
Examples of beta agonists are, without limitation, salbutamol, levosalbutamol, terbutaline, pirbuterol, procaterol, metaproterenol, fenoterol, bitolterol mesylate, salmeterol, formoterol, bambuterol, clenbuterol, indacaterol.
Hormones are for example hypophysis hormones or hypothalamus hormones or regulatory active peptides and their antagonists, such as Gonadotropine (Follitropin, Lutropin, Choriongonadotropin, Menotropin), Somatropine (Somatropin), Desmopressin, Terlipressin, Gonadorelin, Triptorelin, Leuprorelin, Buserelin, Nafarelin, Goserelin.
In one preferred arrangement, the proposed electro-mechanical drug delivery device has a single dispense interface. This interface may be configured for fluid communication with the primary reservoir and with a secondary reservoir of medicament containing at least one drug agent. The drug dispense interface can be a type of outlet that allows the two or more medicaments to exit the system and be delivered to the patient.
In one preferred arrangement, the secondary reservoir contains multiple doses of medicament. The system may be designed such that a single activation of a dose button causes the user set dose of medicament to be expelled from the primary reservoir. As a result, a dose of medicament from the second reservoir is determined based on a preprogrammed therapeutic profile and this combination of medicaments will be expelled through the single dispense interface. By user settable dose it is meant that the user (e.g., patient or health care provider) can enter the dose of the primary medicament by way of the device so as to set a desired dose. Additionally, the user settable dose can be set remotely through a communications port such as a wireless communication port (e.g., Bluetooth, WiFi, satellite, etc.). Alternatively, the user settable dose can be set through a wired communications port such as a Universal Serial Bus (USB) communications port. Additionally, the dose may be set by another device, such as a blood glucose monitor after performing a therapeutic treatment algorithm.
By calculated dose, it is meant that the user (or any other input) cannot independently set or select a dose of medicament from the secondary reservoir but rather it is computed to achieve a predefined therapeutic profile of a combination of both primary and secondary medicaments. In other words, when the user (or another input as described above) sets the dose of the primary medicament in the primary reservoir, the dose of the second medicament is determined by the microprocessor control unit. This combination of medicaments is then administered via a single interface.
1. The combination of compounds as discrete units or as a mixed unit can be delivered to the body via a double-ended needle assembly. This would provide a combination drug injection system that, from a user's perspective, would be achieved in a manner that closely matches the currently available injection devices that use standard needle assemblies. One possible delivery procedure may involve the following steps:
2. Attach a dispense interface to a distal end of the electro-mechanical injection device. The dispense interface comprises a first and a second proximal needle. The first and second needles pierce a first reservoir containing a primary compound and a second reservoir containing a secondary compound, respectively.
The proposed drug delivery system may be designed in such a way as to limit its use to exclusive primary and secondary reservoirs through employment of dedicated or coded cartridge features. In some situations, it may be beneficial from a therapeutic and safety point of view to ensure that the primary reservoir can be a standard drug containing vial or cartridge. This would allow the user to deliver a combined therapy when a secondary reservoir is included in the device. It would also allow delivery of the primary compound independently through a standard dose dispenser in situations where the combined therapy is not required. This could include situations, such as, but not limited to, dose splitting (i.e., delivering the complete dose of the primary therapy in two separate injections) or top-up of the primary compound in a way that would prevent the potential risk of double dosing of the secondary compound that such scenarios might otherwise present.
In some cases, it may be beneficial for a dispense interface component to remain attached to the drug delivery device, but not pierce the cartridges when the drug delivery device is not being used for an injection. This may beneficially improve sterility of the drug delivery device and the medicament in the drug delivery device. Thus, a dispense interface component that is configured to only pierce the drug cartridges during use may be provided. The dispense interface may comprise an outlet needle. The dispense interface may be configured for attachment of a needle assembly.
Generally, the dispense interface component may include a main body, a first piercing portion, a second piercing portion, and a biasing element. The main body is configured for connection to the drug delivery device. The first piercing portion is for piercing a first cartridge contained within the drug delivery device, and the first piercing portion is connected to the main body. The second piercing portion is for piercing a second cartridge contained with the drug delivery device, and the second piercing portion is connected to the main body. The at least one biasing element is operably coupled to the main body, wherein the at least one biasing element is configured to, when the load on the at least one biasing element is less than or equal to a threshold load, bias (i) the first piercing portion away from the first cartridge and (ii) the second piercing portion away from the second cartridge, thereby preventing the first piercing portion from piercing the first cartridge and the second piercing portion from piercing the second cartridge. Conversely, when the load on the at least one biasing element is greater than the threshold load, as a result of the application of a axial force resulting from, for example, the attachment of a detachable single injection interface, the first and second piercing portions are forced towards the cartridge causing them to pierce the respective cartridge septums in preparation for dispense of the dose.
A particular benefit of the proposed drug delivery device is that the use of two or more multi-dose reservoirs makes it possible to tailor dose regimes when required, for example where a titration period is necessary for a particular drug. The secondary reservoir, third reservoir, and/or other reservoirs may be supplied in a number of titration levels with certain differentiation features such as, but not limited to, aesthetic design of features or graphics, numbering or the like symbols, so that a user could be instructed to use the supplied secondary reservoirs in a specific order to facilitate titration. Alternatively, a prescribing physician or health care provider may provide the patient with a number of “level one” titration secondary reservoirs and then when these were finished, the physician could then prescribe the next level. Alternatively, a single strength formulation could be provided and the device could be designed to deliver a pre-defined fraction of the full intended dose during the titration period. Such a fraction could be gradually increasing, stepped or any therapeutically beneficial or desirable variant thereof. One advantage of such a titration program is that the primary device remains constant throughout the administration process.
A further feature of a preferred arrangement is that both medicaments are delivered via one injection needle or dose dispenser and in one injection step. This offers a convenient benefit to the user in terms of reduced user steps compared to administering two separate injections. This convenience benefit may also result in improved compliance with the prescribed therapy, particularly for users who find injections unpleasant, or who have dexterity or computational difficulties. The use of one injection instead of two reduces the possibility for user errors and so may increase patient safety.
In a further aspect, an apparatus is described comprising a control unit configured to receive information on a dose of a primary medicament. The control unit is further configured to determine a dose of a fluid agent based at least in part on said dose of said primary medicament and a therapeutic dose profile. The fluid agent may be a medicament, for example a liquid medicament or a liquid solution of a medicament.
In a further aspect, a method is disclosed comprising receiving at a control unit information on a therapeutic dose profile. The method further comprises receiving at the control unit information on a dose of a primary medicament, determining at the control unit a dose of a fluid agent based at least in part on said information on said dose of said primary medicament and the therapeutic dose profile, and initiating administration of said dose of said primary medicament and said dose of said fluid agent in accordance with the therapeutic dose profile.
These as well as other advantages of various aspects of the present invention will become apparent to those of ordinary skill in the art by reading the following detailed description, with appropriate reference to the accompanying drawings.
Exemplary embodiments are described herein with reference to the drawings, in which:
a illustrates a plan view of a programmable drug delivery device in accordance with one aspect of the present invention and
a illustrates a plan view of a digital display of the delivery device after the device has been turned on but before a dose is set;
b illustrates a plan view of the digital display illustrated in
a and 24b illustrate a motion detection system that may be used with the drive mechanism illustrated in
a and 31b illustrates a first arrangement of a predefined therapeutic profile that may be programmed into Applicants' programmable drug delivery device;
a illustrates a cross-sectional view of the dispense interface component of
b illustrates a close-up cross-sectional view of an example sealed area of the dispense interface component of
c illustrates an example top-cross-sectional view of the dispense interface component of
Like elements, elements of the same kind and identically acting elements may be provided with the same reference numerals in the figures.
a and 1b illustrate plan views of a programmable drug delivery device 10 in accordance with one aspect of the present invention.
Referring now to
As will be described in greater detail below, the drug delivery device 10 contains a micro-processor control unit that operates an electro-mechanical drive that is used to deliver at least two drugs (a first or primary medicament and a second or secondary medicament) during a single dosing operation. This enables the drug delivery device 10 to provide, for example, a primary medicament such as a long acting insulin along with a secondary medicament such as a GLP1 as a combination therapy. Such combination therapy may be defined by one of a plurality of therapeutic profiles stored in a memory device that is coupled to the micro-processor contained within the device 10.
The drug delivery device illustrated in
As will be described in greater detail below, the main body 14 contains a micro-processor control unit, an electro-mechanical drive train, and at least two medicament reservoirs. When the end cap or cover 18 is removed from the device 10 (as illustrated in
A control panel region 60 is provided near the proximal end of the main body 14. Preferably, this control panel region 60 comprises a digital display 80 along with a plurality of human interface elements that can be manipulated by a user to set and inject a combined dose. In this arrangement, the control panel region comprises a first dose setting button 62, a second dose setting button 64 and a third button 66 designated with the symbol “OK.” As illustrated, the first dose setting button 62 resides above the second dose button 64 which is positioned above the OK button 66. Alternative button arrangements may also be used. As just one example, the first buttons 62 and a second button 64 may, as a pair, be rotated through 90 degrees and sit underneath the screen, with each button being adjacent to a screen area. In such an arrangement, the first and second buttons could be used as soft keys to interact with icons on the user digital display 80. In addition, along the most proximal end of the main body, an injection button 74 is also provided (see e.g.,
Utilizing micro-processor controlled human interface elements such as an operator panel (e.g., hard keys, buttons or soft keys with the key legend appearing on the display screen), setting the dose of the primary medicament allows the control unit to compute or determine the fixed dose of the second medicament. In one preferred arrangement, a computerized electronic control unit computes the dose of the second medicament. Most preferably, the computerized electronic control unit computes the dose of the second medicament based at least in part on a therapeutic dose profile that is stored in a memory device coupled to the micro-processor. Such a therapeutic profile may or may not be user or caregiver selectable. Alternatively, this profile may not be user selectable. As will be explained in greater detail below, a plurality of different such dose profiles may be stored on a memory storage device in the drug delivery device. In one arrangement, the preferred memory storage device comprises Flash memory of the micro-processor. An optional storage device could comprise an EEPROM that is coupled via a serial communication bus to the micro-processor of the control unit.
In one preferred arrangement, each cartridge retainer 50, 52 may be provided with a cartridge detecting system, such as the cartridge detecting system illustrated and described with respect to
In addition, at the distal end of the cartridge holder 40, the drug delivery device illustrated in
At a first end or a proximal end 16 of the main housing 14, there is provided a control panel region 60. This control panel region 60 comprises a digital display, preferably an Organic Light Emitting Diode (OLED) display 80 along with a plurality of user interface keys such as push buttons. Alternatively, this region could comprise a touch screen and icons on the display. A further option would be a display screen with a joystick, a control wheel and/or possibly push buttons. In addition, the control panel region may also comprise a swipe section so as to either increase or decrease the dose size or provide other means by which a user could operate the device 10. Preferably, the human interface controls may be configured to provide tactile, audible and/or visual feedback.
The digital display 80 may be part of a user interface that allows the user to interact with the device 10. As explained in greater detail below, this display provides a visual indication of device operation such as dose setting, dose administration, injection history, device errors, etc. The digital display 80 can also display various drug delivery device parameters. For example, the display can be programmed to display an identified medicament contained in either medicament containers and also provide a visual confirmation that the correct cartridge and therefore medicament is being used. In addition, the display can also provide dose history information such as the time since the last dose has been administered, battery level, dose size set, device status, dose dispense status, dose history information, warnings, and errors.
In addition, the display 80 may also provide the time and date and be used to set a current time and date. The display may also be used to provide the user with training information as to how the device should be used and operated. Alternatively, the display may be used to educate the user on diabetes or other therapy information via instructional videos. The display may also be used to communicate with, or receive feedback from a health care professional via the wireless or wired communication link such as USB to a PC and then potentially via the internet, or via a mobile phone coupled to the device using a wired or wireless link such as a Bluetooth™ link, a WLAN link, and/or the like. The display may also be used to configure a device communication link: that is, used for device set up and enter passwords for a data link, such as a Bluetooth data link. In addition, the display may be used to provide drug delivery device priming information or possibly an indication of the orientation and/or relative position of the device. For example, a micro-electro-mechanical accelerometer could be provided within the device so that the device will have the intelligence to know if the user is using the device to perform a safety or priming shot (i.e., having the distal end of the device pointing upwards) or using the device to perform a dose administration step (i.e., having the distal end of the device pointing downwards).
The display may also potentially be used as a diary or life style calendar and perhaps communicate with a patient's BGM and perhaps store and display blood glucose data. The display could also indicate a dwell period, possibly proportional to a dose size, following the delivery of a dose. The display could indicate if the device is armed i.e., ready to deliver a dose and also be used to provide an indication if the dose is outside of expected limits.
In addition, by manipulating certain other buttons, the display can be used to display information stored in the control unit. For example, such stored information could include user or patient information. Such user or patient information could include their name, their address, their health number, contact details, their prescribed medication or dosage regime.
In addition, there is also the opportunity to include calendar information, which could include blood glucose readings, the size of last dose taken, exercise taken, state of health, the time these events occurred including meal times, etc. Certain key events can also be stored and viewed. For example, such key events could include device failures that could potentially result in an over or under dose, cartridge changes, priming shots, reading the dose history, removing the cap, removing the dose dispenser, removing the dispense interface, time since manufacture, time since first use along with other similar types of information and data.
The digital display could also allow the user access to a time reference maintained by the device. Such a time reference could keep track of the current time and date. This clock may be set by the user via the interface or alternatively, via a data link (e.g., USB or IRDA) provided on the device. In addition, the time reference may be provided with a permanently connected battery backup so as to maintain the passage of time if and when the main battery has been removed or is flat. This time reference may be used to determine when the last dose was taken, which can then be displayed on the display. This time reference may also be used to store certain key events. Such events could include the time and date of the following: the last dose; whether any drug delivery device errors occurred; cartridge changes; any parameter changes, any changes in therapeutic profiles; dispense interface changes; and time since manufacture.
As previously mentioned,
Once the device is turned on, the digital display 80 illuminates and provides the user certain device information, preferably information relating to the medicaments contained within the cartridge holder 40. For example, as illustrated in
Where the size of the second dose is determined from the size of the first it may not be necessary to indicate the size of the second dose and hence an alternative embodiment of the display graphics may be used, for example an “O.k.” indication, such as a green dot, a green check mark, or the letters “O.k.”.
Aside from the digital display 80, the control panel region 60 further comprises various user interface keys. For example, as illustrated in
The first and second dose buttons 62, 64 may be manipulated so as to allow a user of the device 10 to either increase or decrease a selected dose of the primary medicament “Drug A” to be delivered. For example, to set or increase a primary medicament dose amount, a user could toggle the first dose setting button 62. The first display region 82 would provide a visual indication to the user of the amount he or she is setting.
In the event that a user wants to decrease a previously set dose, the second dose setting button 64 may be toggled or pushed so as to decrease the set dose. Once the user has selected the amount of the primary medicament, the user may then push the “OK” button 66. Pushing the OK button 66 may instruct the device 10 to compute the corresponding dose of the secondary medicament “Drug B”. Alternatively, the dose of the secondary medicament may be determined when the dose of the first medicament is set or changed.
In an alternative display arrangement, the display 80 can display the calculated amount of the secondary medicament Drug B for every incremental change of Drug A. Thereafter, the OK button 66 could then be used. For example, pressing and holding this OK button 66 for a certain period of (e.g., 2 seconds) could be used by the user to confirm the set and calculated dose and thereby arming the device 10 ready for delivery. The combined dose could then be dispensed through a single dose dispenser by pressing the injection button 74. In one preferred arrangement, the device armed condition may be available for a limited period, for example, 20 seconds or so. In an alternative arrangement, the arm feature may not be included.
a illustrates the display 80 of device 10 illustrated in
This combined dose, 15 Units of the primary medicament Drug A and 20μ Grams of the secondary medicament Drug B, can then be injected. As may be seen from
Other information that may be taken into account when calculating the amount of the second medicament may be the time interval since the previous dose of either the first or the second medicament. For example, the following description provides an example algorithm and process that may be used in the calculation of the size of the dose to be dispensed from the second medicament. This algorithm maybe illustrated in a flowchart 150 provided as
As may be seen from the flowchart 150 provided in
If the selected dose size is determined to be greater than or equal to this minimum dose threshold, the process 150 proceeds to step 140. At step 140, the microcontroller determines if the time interval since the previous injection is less than, or equal to the predefined threshold (e.g., 18 hours). If the answer to this inquiry is yes, the process 150 proceeds to step 144 where the size of the dose from the second medicament M2 would be calculated as equal to a zero (“0”) dose. Then, the process moves to step 146 where the dose (comprising only a selected dose of the primary medicament) is administered.
Alternatively, if the answer to both inquiries at steps 138 and 140 are no, then process 150 would proceed to the step 142. At step 142, the microcontroller would compute the dose of the secondary medicament M2 based at least in part on a stored therapeutic profile. If a third medicament would be provided in the drug delivery device, the microcontroller would compute a dose of a third medicament based at least in part on a stored therapeutic profile as well. This later profile may or may not be the same profile that is used to calculate the dose of the secondary medicament.
Therefore, if a user selects a dose size of the primary medicament M1 at step 136 that is equal to, or greater than, a certain minimum dose threshold for the first medicament (e.g., 5 units), and the time interval since the previous injections is greater than the predefined threshold (e.g., 18 hours) then the predefined dose of the secondary medicament from the second cartridge (e.g., 0.5 units) will be delivered when the injection is administered at step 146.
Applicants' drug delivery device 10 may also be programmed with an auto titration algorithm. As just one example, such an algorithm may be used where the dose of the second medicament needs to be increased over a period of time to allow a patient to get used to the second medicament, such as is the case for a GLP1 or GLP1 analogs. An exemplary auto titration algorithm is presented in a flowchart 160 illustrated in
In one arrangement, after the device is turned on at step 164, a user initiates an auto titration mode of operation by manipulating one of the keys provided on the control panel. This is represented at step 166. Alternatively, this auto titration mode of operation could be automatically activated. For example, the auto titration mode of operation could be automatically activated when the drug delivery device 10 is first used, for example, when a battery is first connected to the device, when the battery is first charged, or when a profile is loaded into the device and selected by a user. After step 166, a prompt on the digital display 80 may ask a user for a password and then to confirm that the auto titration algorithm is indeed desired by the patient. In an alternative embodiment, a prompt on the digital display 80 may ask the user for a confirmation only.
Aside from using a stored algorithm for operating the device in an auto titration mode, this auto titration mode might be achieved via providing a user with cartridges containing the same medicament but with different strengths or concentrations. One disadvantage of such a scenario is that the provider of such cartridges would have to produce cartridges in at least two different strength concentrations of drugs rather than through smaller doses from a standard strength cartridge. If different strength cartridges are used, then the device may be programmed not to provide the auto-titration functionality. If this functionality is optional and patient determined, then such a function could be accessed through the digital display 80 via a ‘menu’ button (or other similar user interface element).
At step 168, a user selects a dose of the primary medicament M1. Then, at step 170, the microcontroller determines if the selected dose size is less than a minimum dose threshold for the first medicament (e.g., 5 units). If the microcontroller determines that the selected dose size is less than a minimum dose threshold for the first medicament, the process 160 proceeds to step 176. At step 176, the microcontroller determines that the calculated dose of the secondary medicament M2 should be a zero (“0”) dose.
If at step 170 the microcontroller determines that the selected dose size of M1 is not less than a minimum dose threshold for the first medicament, the process 160 proceeds to step 172. At step 172, the microcontroller computes a time interval since the previous dose administration and determines if this computed time interval is less than, or equal to a predefined threshold (e.g., 18 hours). If at step 172 the microcontroller determines that this computed time interval is less than, or equal to a predefined threshold, the process 160 proceeds on to step 176. At step 176, the microcontroller determines that the calculated dose of the secondary medicament M2 should be a zero (“0”) dose.
Alternatively, if at step 172, the microcontroller determines that this computed time interval since the previous injection is not less than, or equal to a predefined threshold, the process proceeds to step 174.
If the microcontroller determines that the selected dose size is equal to, or greater than, the minimum dose threshold for the first medicament (e.g., 5 units) at step 170 and determines that the time interval since the previous injection is greater than the predefined threshold (e.g., 18 hours) at step 172, the process proceeds to step 174. At step 174, the microcontroller determines whether the time interval since the auto-titration feature was activated is less than a predefined threshold (e.g., 1 week). If at step 174 the microcontroller determines that the time interval since the auto-titration feature was activated is greater than this predefined threshold, the process 160 moves to step 176 where a zero “0” dose of M2 is determined.
Alternatively, if the microcontroller determines that the time interval since the auto-titration feature was activated is less than the predefined threshold at step 174, the process moves to step 178. At step 178, the microcontroller determines a predefined starting dose of the secondary medicament based in part on a therapeutic profile. Then, at step 180, the predefined starting dose from the second cartridge (e.g., 0.25 micro Grams) M2 along with the previously selected dose of the primary medicament M1 from step 168 will be delivered during an injection step.
Therefore, in accordance with the auto titration flowchart 160, if the selected dose size is equal to, or greater than, the minimum dose threshold for the first medicament (e.g., 5 units) and the time interval since the previous injections is greater than the predefined threshold (e.g., 18 hours) and the time interval since the auto-titration feature was activated is greater than a predefined threshold (e.g., 1 week) then the predefined maintenance dose from the second cartridge (e.g., 0.5 units) will be delivered when the injection is taken at step 180. If the calculated responses to the steps 170 and 172 are yes or if the response to step 174 is no, then the dose that is administered would comprise only the selected dose of the primary medicament from step 168.
Aside from the user interface keys, the drug delivery device may also comprise a sounder or a sound control. For example, the device may have a sounder that generates a range of tones. Such tones could be provided so as to indicate when a button is pressed, when certain key events occur (e.g., after a dose is set, after the completion of a dose delivery, etc.), warnings that the device is not working correctly or if an incorrect cartridge has been inserted, if the device experiences certain operational errors, or if an alarm condition is triggered. The volume of the sounder may be set or configured by using a menu system controlled by the human interface elements or alternatively through a dedicated volume control button.
The main housing portion is preferably coupled to a proximal end of the cartridge holder 40. Preferably, this cartridge holder 40 comprises at least two separate cartridge retainers that are configured to hold two reservoirs of medicament. Depending on the reservoirs, these two retainers may or may not be similarly sized. For example,
As illustrated in
In this illustrated arrangement, the first cartridge 90 contains a primary medicament 92 and the second cartridge 100 may contain a secondary medicament 102. Preferably, both the first and the second cartridges contain multiple doses of each medicament 92, 102, respectively. Each cartridge is self-contained and provided as a sealed and sterile cartridge. These cartridges can be of different volumes and replaceable when empty or they can be fixed (non-removable) in the cartridge holder 40. They can also have a pierceable seal or septa at a distal end of the cartridge and configured to accept needle cannula.
Various cartridge holder arrangements may be used with the drug delivery device illustrated in
As such, in one preferred arrangement, the volume of the first cartridge 90 may be a standard 300 Unit cartridge and therefore the first cartridge retainer 50 must be geometrically configured for such a volume. In contrast, the volume of the second cartridge 100 may be a smaller volume (e.g., in the order of 20 Units) and therefore must be geometrically configured to receive such a smaller volume cartridge. As those of ordinary skill in the art with recognize, other cartridge and cartridge retainer arrangements and geometries are possible as well.
In one preferred arrangement, the first and a second cartridge retainers 50, 52 comprise hinged cartridge retainers. These hinged retainers allow user access to the cartridges. For example,
As illustrated in at least
In one preferred arrangement, the first or primary cartridge 90 containing first medicament and the second or secondary cartridge 100 containing the second medicament are of similar dimensions. In a more preferred arrangement, the first cartridge 90 is a different size than the second cartridge. As just one example, the first medicament (e.g., a long acting insulin) could be provided within a 3 ml cartridge and this cartridge loaded into the first cavity. In addition, the second medicament (e.g., a GLP1) may be provided within a shortened 1.7 ml cartridge and could be loaded into the second cavity. Because the second hinged retainer contains a smaller sized cartridge, the second retainer would be sized differently than the first retainer. In a most preferred arrangement, the primary cartridge holder is designed so as to accept a 3 ml cartridge of insulin and the secondary holder is designed so as to accept a 1.7 ml cartridge of a GLP1. However, those of skill in the art will readily recognize, alternative cartridge holder structures and cartridge configurations could also be used.
In one arrangement, the cartridge holder 40 includes a cartridge dedication or coding system, such as a mechanical or an electronic cartridge dedication or coding system. Such a system would help to ensure that only a correctly coded cartridge and therefore the correct medicament could be loaded into each cartridge retainer. An electronic coding system that is able to detect a drug type, expiry date or other similar information would be a preferred arrangement. In such an electronic system, the microprocessor control unit could be programmed so that only a properly coded cartridge (and therefore the proper medicaments) would be acceptable in such a system. In such a coded system, the control unit could be programmed with an electronic lock-out so as to lock out or disable the operator interface if an improperly coded cartridge was detected. Preferably, if such an incorrect cartridge were loaded, an error message would be displayed on the digital display 80 so as to notify the user that an incorrect cartridge (and therefore perhaps an incorrect medicament) had been loaded. Most preferably, if such an incorrect cartridge were loaded, the drug delivery device 10 could be programmed so as to lockout the user interface keys and prevent the user from setting a dose.
In
As just one example, the cartridge holder 118 may comprise a bar code reader 126. In one arrangement, this reader could comprise a 1D bar code reader comprising a light source 128 and a photo diode 130 and these two elements could be provided along an inner surface of the cartridge housing 118 adjacent the cartridge retainer 116. As illustrated, the light source 128 and a photo diode 130 may placed next to each other and directed towards the barcode on the cartridge. To read the bar code 124 provided on the label 122 of the cartridge 120, the light source 128 illuminates various lines provided on the label 122 as the cartridge is inserted into the cartridge housing 118. This light is then reflected and the photo diode 130 measures the intensity of the light reflected back from the light source 128 and a waveform is generated. The micro-processor coupled to this cartridge identification system 110 uses this generated waveform to measure the widths of the bars and spaces of the bar code 124. For example, dark bars in the bar code absorb the illuminated light while the white spaces reflect light.
As such, the voltage waveform generated by the photo diode will represent a duplicate of the bar and space pattern in the bar code. This waveform is then decoded by an algorithm provided in the micro-processor. Alternatively, a 2D barcode reader could also be used. One advantage of such a reader is that relative motion between the cartridge and the cartridge holder would not be required.
Utilizing such cartridge identification in Applicants' proposed drug delivery device 10 results in certain advantages. For example, such a cartridge identification arrangement can provide a method of retrieving information from the cartridges to determine the manufacturer or supplier of the cartridge. Such a system could also determine the type of medicament contained within the cartridge and then may also determine information relating to the drug contained within the cartridge. For example, the cartridge identification system could determine whether the cartridge that was inserted into the first retainer that is supposed to contain the primary medicament actually comprises a cartridge containing such a primary medicament. Such an identification scheme could comprise either a passive or active type of identification scheme. For example, it could comprise a passively (typically mechanical) or active (typically electrical) identification scheme. Such cartridge identification schemes may comprise identification through a microchip interface or through a radio frequency identification (RF-ID) interface. The cartridge may then comprise a readable memory comprising information about the cartridge. The memory may also be writeable, for example to store information on the used number of units, or information on an estimated remaining content in the cartridge and the date first used. The remaining content may be given in number of units, mg, ml and/or the like. The information on the remaining content may be updated when content has been expelled from the cartridge.
In an alternative arrangement, the cartridge holder 40 may be provided as a disposable cartridge holder. For example, in such an arrangement, a medical device supplier or a medicament supplier could supply the cartridge holder containing the two medicaments and these would not be replaceable by the end user. Therefore, once either the primary or secondary medicament of such a cartridge holder has been expended, the entire cartridge holder is removed from the drug dispensing portion of the drug delivery device and is discarded. Thereafter, the user or patient could then attach a new cartridge holder containing two fresh cartridges to the drug dispensing portion of the drug delivery device.
The disposable nature of such a cartridge holder would provide a number of advantages. For example, such a cartridge holder would help to prevent inadvertent medicament cross use: that is, using an incorrect primary or secondary medicament within the cartridge housing. Such an arrangement could also help prevent tampering of the medicaments and could also help eliminate counterfeit products from being used with the drug delivery device. In addition, the cartridge holder may be connected to the device main body where the device main body comprise a one dimensional (“1D”) bar code reading system. Such a coding system could comprise a system similar to the coding system 110 discussed above.
As mentioned above when discussing
In
The needle assembly 400 illustrated in
Similarly, a second or proximal piercing end 406 of the needle assembly 400 protrudes from an opposite side of the circular disc so that it is concentrically surrounded by the sleeve 403. In one needle assembly arrangement, the second or proximal piercing end 406 may be shorter than the sleeve 403 so that this sleeve to some extent protects the pointed end of the back sleeve. The needle cover cap 420 illustrated in
The needle assembly of
The main outer body 210 comprises a main body proximal end 212 and a main body distal end 214. At the proximal end 212 of the outer body 210, a connecting member is configured so as to allow the dispense interface 200 to be attached to the distal end of the cartridge holder 40. Preferably, the connecting member is configured so as to allow the dispense interface 200 to be removably connected the cartridge holder 40. In one preferred interface arrangement, the proximal end of the interface 200 is configured with an upwardly extending wall 218 having at least one recess. For example, as may be seen from
Preferably, the first and the second recesses 217, 219 are positioned within this main outer body wall so as to cooperate with an outwardly protruding member located near the distal end of the cartridge housing 40 of the drug delivery device 10. For example, this outwardly protruding member 48 of the cartridge housing may be seen in
The main outer body 210 and the distal end of the cartridge holder 40 act to form an axially engaging snap lock or snap fit arrangement that could be axially slid onto the distal end of the cartridge housing. In one alternative arrangement, the dispense interface 200 may be provided with a coding feature so as to prevent inadvertent dispense interface cross use. That is, the inner body of the hub could be geometrically configured so as to prevent an inadvertent cross use of one or more dispense interfaces.
A mounting hub is provided at a distal end of the main outer body 210 of the dispense interface 200. Such a mounting hub can be configured to be releasably connected to a needle assembly. As just one example, this connecting means 216 may comprise an outer thread that engages an inner thread provided along an inner wall surface of a needle hub of a needle assembly, such as the needle assembly 400 illustrated in
The dispense interface 200 further comprises a first inner body 220. Certain details of this inner body are illustrated in
In addition, as can be seen in
Preferably, this dispense interface 200 further comprises a valve arrangement. Such a valve arrangement could be constructed so as to prevent cross contamination of the first and second medicaments contained in the first and second reservoirs, respectively. A preferred valve arrangement may also be configured so as to prevent back flow and cross contamination of the first and second medicaments.
In one preferred system, dispense interface 200 includes a valve arrangement in the form of a valve seal 260. Such a valve seal 260 may be provided within a cavity 231 defined by the second inner body 230, so as to form a holding chamber 280. Preferably, cavity 231 resides along an upper surface of the second inner body 230. This valve seal comprises an upper surface that defines both a first fluid groove 264 and second fluid groove 266. For example,
Together, the first and second grooves 264, 266 converge towards the non-return valves 262 and 268 respectively, to then provide for an output fluid path or a holding chamber 280. This holding chamber 280 is defined by an inner chamber defined by a distal end of the second inner body both the first and the second non return valves 262, 268 along with a pierceable septum 270. As illustrated, this pierceable septum 270 is positioned between a distal end portion of the second inner body 230 and an inner surface defined by the needle hub of the main outer body 210.
The holding chamber 280 terminates at an outlet port of the interface 200. This outlet port 290 is preferably centrally located in the needle hub of the interface 200 and assists in maintaining the pierceable seal 270 in a stationary position. As such, when a double ended needle assembly is attached to the needle hub of the interface (such as the double ended needle illustrated in
The hub interface 200 further comprises a second inner body 230. As can be seen from
Although not shown, the dispense interface 200 could be supplied by a manufacturer as being contained in a protective and sterile capsule or container. As such, where the user would peel or tear open a seal or the container itself to gain access to the sterile single dispense interface. In some instances it might be desirable to provide two or more seals for each end of the interface. The seal may allow display of information required by regulatory labeling requirements. When a double ended needle assembly is used as a single dispense assembly to deliver the single dose of both medicaments, it is preferred that the interface is designed to be economical and safe for allowing the user to attach a new hub for each injection.
Axially sliding the main outer body 210 over the distal end of the drug delivery device attaches the dispense interface 200 to the multi-use device. In this manner, a fluid communication may be created between the first needle 240 and the second needle 250 with the primary medicament of the first cartridge and the secondary medicament of the second cartridge, respectively.
When the interface 200 is first mounted over the distal end of the cartridge holder 40, the proximal piercing end 244 of the first piercing needle 240 pierces the septum of the first cartridge 90 and thereby resides in fluid communication with the primary medicament 92 of the first cartridge 90. A distal end of the first piercing needle 240 will also be in fluid communication with a first fluid path groove 264 defined by the valve seal 260.
Similarly, the proximal piercing end 254 of the second piercing needle 250 pierces the septum of the second cartridge 100 and thereby resides in fluid communication with the secondary medicament 102 of the second cartridge 100. A distal end of this second piercing needle 250 will also be in fluid communication with a second fluid path groove 266 defined by the valve seal 260.
As illustrated in
In one preferred arrangement, the dispense interface is configured so that it attaches to the main body in only one orientation, that is it is fitted only one way round. As such as illustrated in
In one arrangement, the drug delivery device 10 comprises a detection sensor so as to sense or confirm that the dispense interface 200 has been correctly mounted onto the cartridge housing 40. Such a detection sensor may comprise either a mechanical, an electrical, a capacitive, an inductive or other similar type sensor. As illustrated, this sensor may be provided near the distal end of the cartridge housing.
In addition, the drug delivery device may comprise a similar detection sensor for detecting the presence of the dose dispenser. For example, such a sensor may be provided adjacent the needle hub of the interface 200. Preferably, either or both of the detection sensors would be communicatively coupled to the micro-processor. Optionally, the micro-processor would be programmed so as prevent a user from setting a dose with the drug delivery device 10 unless the device has detected that both the dispense interface 200 has been properly mounted to the cartridge holder 40 and that a dose dispenser has been properly mounted onto the interface. If either the dispense interface or the dose dispenser has been detected as being incorrectly mounted, the user may be locked out of the device and a connection error may be shown on the digital display 80.
Additionally, the dispense interface 200 could incorporate a safety shield device that would prevent accidental needle sticks and reduce the anxiety experienced by users who suffer from needle phobia. The exact design of the safety shield is not critical to the presently described drug delivery device and system. However, a preferred design is one that is operably connected to drug delivery device 10. In such a design, the activation of the safety shield could unlock the drug delivery system or enable medicament to be dispensed via the dispense interface and dose dispenser. Another preferred design would physically prevent insertion of the used drug dispense interface into the patient (e.g., a single use needle-guard type arrangement). Preferably, the interface is configured to work with a conventional double ended needle assembly. Alternatively, the interface may be configured to work with a non-conventional needle assembly. One example of such a non-conventional-needle assembly may comprise a coded needle assembly.
In one preferred electro-mechanical drug delivery device, a single dispense assembly comprising a catheter may be coupled to the interface 200.
In one preferred arrangement, the dispense interface 200 is a disposable interface and as such, the needle hub comprises a disposable element that is discarded when either the first or the second cartridge in the device is replaced (e.g., when such cartridge is empty). In one arrangement, the dispense interface 200 may be provided in a drug delivery kit. For example, in one drug delivery kit arrangement, a needle assembly interface can be provided with each replacement cartridge. In an alternative kit arrangement, a plurality of double ended needle assemblies are provided with a multi-use dispense interface.
In some situations, it may be beneficial for a dispense interface component to remain on the drug delivery device (i.e., attached to the drug delivery device), but not pierce the cartridges of the drug delivery device when the device is not being used for an injection. Generally, such a dispense interface component may include a main body, a first piercing portion, a second piercing portion, and a biasing element. The main body is configured for connection to the drug delivery device. The first piercing portion is for piercing a first cartridge (i.e., first drug reservoir) contained within the drug delivery device, and the first piercing portion is connected to the main body. The second piercing portion is for piercing a second cartridge (i.e., second drug reservoir) contained with the drug delivery device, and the second piercing portion is connected to the main body.
The at least one biasing element is operably coupled to the main body, wherein the at least one biasing element is configured to, when the load on the at least one biasing element is less than or equal to a threshold load, bias (i) the first piercing portion away from the first cartridge and (ii) the second piercing portion away from the second cartridge, thereby preventing the first piercing portion from piercing the first cartridge and the second piercing portion from piercing the second cartridge.
In addition, the dispense interface component 1200 includes at least one biasing element operably coupled to the main body 1202. For instance, dispense interface component 1200 includes biasing elements 1216 and 1218. The biasing elements are configured to, when the load on the at least one biasing element is less than or equal to a threshold load, bias (i) the first piercing portion away from the first cartridge and (ii) the second piercing portion away from the second cartridge, thereby preventing the first piercing portion from piercing the first cartridge and the second piercing portion from piercing the second cartridge. The first piercing portion and the second piecing portion are sometimes herein be referred to as “septum needles,” as the portions are configured for piercing the septa of the drug cartridges in drug delivery device 1204. Further, in this example of
A user may attach the dispense interface component 1200 to the cartridge holder 1206 by passing the dispense interface component 1200 over the threaded boss 1220. A user may push the dispense interface component 1200 upward in proximal direction 1222 such that the two septum needles 1208, 1212 pierce the respective septa 1224, 1226 (see
It should be noted that in this example the threaded boss 1220 is part of the cartridge holder 1206. However, in other examples, the dispense interface component and the drug delivery device may be modified such that the threaded boss is part of the cartridge holder.
Returning to
As mentioned above, the biasing elements 1216, 1218 are configured to bias (i) the first piercing portion (i.e., septum needle 1208) away from the first cartridge and (ii) the second piercing portion (i.e., septum needle 1212) away from the second cartridge, thereby preventing the first piercing portion from piercing the first cartridge and the second piercing portion from piercing the second cartridge when the load on the at least one biasing element is less than or equal to a threshold load. In an example, the threshold load may be no load or a minimal load. For instance, in some situations, when the needle assembly 1230 is not attached, the septum needles may be biased in distal direction 1236 to the point where there is no load or minimal load on the biasing elements. For example, the compression springs 1216, 1218 may return to an unloaded, uncompressed state (i.e., an equilibrium or relaxed state). However, in other situations, the biasing elements may bias the septum needles, but the biasing elements may still have a threshold load even when a needle assembly is not attached to the drug delivery device. For instance, the compression springs 1216, 1218 may still be slightly compressed (i.e., they have a residual load as their movement is constrained before they reach a fully relaxed state), but the load is not enough to cause the septum needles to pierce the respective septum of the drug cartridges.
The biasing elements 1216, 1218 may bias the septum needles 1208, 1212 in the distal direction 1236 in numerous ways. For example, when biasing the septum needles in the distal direction, the biasing elements may bias the entire dispense interface component 1200 in the distal direction 1236 (e.g., as shown in
a shows an example cross section through the dispense interface component 1200, where the needle assembly 1230 is attached to the dispense interface component. In other words, the dispense interface component 1200 is in the upward, engaged position. As the needle hub assembly 1230 is threaded onto the cartridge holder 1206, the needle assembly 1230 forces the dispense interface component 1200, U-shaped needle 1217 and seal 1219 upward against the action of the springs 1216, 1218. Generally, a U-shaped needle is a needle that is generally in the shape of a “u”. The upwards movement of the dispense interface component forces both the first and second piercing ends of the U-shaped needle 1217 to pierce the septa 1224, 1226 of the cartridges 1210, 1214 and forces the outlet needle 1232 to pierce the seal 1219. At this point, a sealed fluidic path has been established between both cartridges 1210, 1214 and the outlet needle 1232. At this stage, the first medicament from the first cartridge and the second medicament from the second cartridge may be dispensed.
As shown in
The relative position between the U-shaped needle 1217, the seal 1219, and the outlet needle 1232 is shown in
With reference to
When the needle hub assembly 1280 is removed, the spring 1270 forces L-shaped needles 1265, 1267 downwards, thereby causing the L-shaped needles 1265, 1267 to be retracted from the septa 1274, 1276. This prevents fluid flow from the exit of the septum needles 1265, 1267, as the entrance to the cross hole 1294 is sealed by the sliding seals 1296.
The needle hub assembly provides a means of connecting and registering this dispense interface component to the drug delivery device. Once attached, a fluidic connection can be simultaneously established between both cartridges and the common outlet needle. On dispense of each medicament, the medicaments flow through the respective septum needle and then through the common outlet needle to a single injection site.
The system in accordance with Applicants' disclosure could be designed such that the dispense interface component, two septum needles and biasing element(s) are all integrated into the cartridge holder and are considered part of the overall drug delivery device. This potentially means that a device can have an integral 2 into 1 needle system that utilizes standard commercially available needles.
In other examples, the drug delivery device and dispense interface component may be separate, but the drug delivery device could include the biasing element (rather than the dispense interface component including the biasing element). That is, the biasing element may be provided on the distal end of the cartridge holder, and the dispense interface component may be provided without the at least one biasing element.
As mentioned above, one advantage of a dispense interface component such as the dispense interface components illustrated in
In addition to sterility of the drug cartridges, the prevention of potential exposure or ingress of foreign contaminant is also important for the needle elements of a drug delivery device. Generally, standard single needles are sterile upon attachment (e.g., per current commercial practice, needle assemblies are typically individually packaged and sterile). However the septum needle cleanliness on the sprung dispense interface component may also be an issue. For instance, the septum needle cleanliness on the sprung dispense interface component may need to be considered in two example scenarios discussed below.
When the sprung dispense interface component is integrated to a single-use device, the needles would typically remain sterile within the dispense interface component packaging until use. Once removed from the packaging, attachment of a standard single needle assembly would result in the sprung dispense interface component moving in the proximal direction, causing the two embedded needles to pierce their respective cartridges. In this instance, the sprung dispense interface component is providing a means of delivering two medicaments from two separate cartridges, and prevention of contamination is achieved through packaging and the inherency of a single-use device.
However, in a multi-use device, the sprung dispense interface component has the additional functionality of repeatedly making sure that the cartridges are not pierced unless a dispense interface (e.g., single needle assembly) is attached. That is, in between doses and where the standard single needle assembly has been removed, the sprung dispense interface component disengages the septum needles from their respective cartridges. Multiple attachments and detachments of standard single needle assemblies will cause multiple penetrations of the sprung dispense interface needles into their associated cartridges. Accordingly, although the needles may be sterile for the first penetration, once disengaged there is a potential risk of exposure to contaminants and therefore a risk of potentially compromising the cartridge contents each time the cartridge is re-pierced.
As a result, the dispense interface component in accordance with Applicants' disclosure may further comprise a cover that is configured for preventing contamination.
For example, as shown in
As another example, the cover could be a bellows-type cover, such as the covers illustrated in
In the example of
Referring now to both
The control unit further comprises a power management module 304 coupled to the microcontroller 302 and other circuit elements. The power management module 304 receives a supply voltage from a main power source such as the battery 306 and regulates this supply voltage to a plurality of voltages required by other circuit components of the control unit 300. In one preferred control unit arrangement, switched mode regulation (by means of a National Semiconductor LM2731) is used to step up the battery voltage to 5V, with subsequent linear regulation to generate other supply voltages required by the control unit 300.
The battery 306 provides power to the control unit 300 and is preferably supplied by a single lithium-ion or lithium-polymer cell. This cell may be encapsulated in a battery pack that contains safety circuitry to protect against overheating, overcharging and excessive discharge. The battery pack may also optionally contain coulomb counting technology to obtain an improved estimate of remaining battery charge.
A battery charger 308 may be coupled to the battery 306. One such battery charger may be based on Texas Instruments (TI) BQ24150 along with other supporting software and hardware modules. In one preferred arrangement, the battery charger 308 takes energy from the external wired connection to the drug delivery device 10 and uses it to charge the battery 306. The battery charger 308 can also be used to monitor the battery voltage and charge current to control battery charging. The battery charger 308 can also be configured to have bidirectional communications with the microcontroller 302 over a serial bus. The charge status of the battery 306 may be communicated to the microcontroller 302 as well. The charge current of the battery charger may also be set by the microcontroller 302.
The control unit may also comprise a USB connector 310. A micro USB-AB connector may be used for wired communications and to supply power to the device.
The control unit may also comprise a USB interface 312. This interface 312 may be external to the microcontroller 302. The USB interface 312 may have USB master and/or USB device capability. The USB interface 312 may also provide USB on-the-go functionality. The USB interface 312 external to the microcontroller also provides transient voltage suppression on the data lines and VBUS line.
An external Bluetooth interface 314 may also be provided. The Bluetooth interface 314 is preferably external to the microcontroller 302 and communicates with this controller 302 using a data interface.
Preferably, the control unit further comprises a plurality of switches 316. In the illustrated arrangement, the control unit 300 may comprise eight switches 316 and these switches may be distributed around the device. These switches 316 may be used to detect and or confirm at least the following:
These switches 316 are connected to digital inputs, for example to general purpose digital inputs, on the microcontroller 302. Preferably, these digital inputs may be multiplexed in order to reduce the number of input lines required. Interrupt lines may also be used appropriately on the microcontroller 302 so as to ensure timely response to changes in switch status.
In addition, and as described in greater detail above, the control unit may also be operatively coupled to a plurality of human interface elements or push buttons 318. In one preferred arrangement, the control unit 300 comprises eight push buttons 318 and these are used on the device for user input for the following functions:
These buttons 318 are connected to digital inputs, for example to general purpose digital inputs, on the microcontroller. Again, these digital inputs may be multiplexed so as to reduce the number of input lines required. Interrupt lines will be used appropriately on the microcontroller to ensure timely response to changes in switch status. In an example embodiment, the function of one or more buttons may be replaced by a touch screen.
In addition, the control unit 300 comprises a real time clock 320. Such a real time clock may comprise an Epson RX4045 SA. The real-time clock 320 may communicate with the microcontroller 302 using a serial peripheral interface or similar.
A digital display module 322 in the device preferably uses LCD or OLED technology and provides a visual signal to the user. The display module incorporates the display itself and a display driver integrated circuit. This circuit communicates with the microcontroller 302 using a serial peripheral interface or parallel bus.
The control unit 300 also comprises a memory device, for example volatile and non-volatile memory. Volatile memory may be random access memory (RAM), for example static RAM or dynamic RAM and/or the like, as working memory of microcontroller 302. Non-volatile memory may be read only memory (ROM), FLASH memory or electrically erasable programmable read-only memory (EEPROM), such as an EEPROM 324. Such an EEPROM may comprise an Atmel AT25640. The EEPROM may be used to store system parameters and history data. This memory device 324 communicates with the processor 302 using a serial peripheral interface bus.
The control unit 300 further comprises a first and a second optical reader 326, 328. Such optical readers may comprise Avago ADNS3550. These optical readers 326, 328 may be optional for the drug delivery device 10 and are, as described above, used to read information from a cartridge when such a cartridge is inserted into either the first or the second cartridge retainers 50, 52. Preferably, a first optical reader is dedicated for the first cartridge and the second optical reader is dedicated for the second cartridge. An integrated circuit designed for use in optical computer mice may be used to illuminate a static 2D barcode on the drug cartridge, positioned using a mechanical feature on the drug cartridge, and read the data it contains. This integrated circuit may communicate with the microcontroller 302 using a serial peripheral interface bus. Such a circuit may be activated and deactivated by the microcontroller 302 e.g., to reduce power consumption when the circuit is not needed, for example by extinguishing the cartridge illumination when data is not being read.
As previously mentioned, a sounder 330 may also be provided in the drug delivery device 10. Such a sounder may comprise a Star Micronics MZTO3A. Applicants' proposed sounder may be used to provide an audible signal to the user. The sounder 330 may be driven by a pulse-width modulation (PWM) output from the microcontroller 302. In an alternative configuration, the sounder may play polyphonic tones or jingles and play stored voice commands and prompts to assist the user in operating or retrieving information from the device.
The control unit 300 further comprises a first motor driver 332 and a second motor driver 334. The motor drive circuitry may comprise Freescale MPC17C724 and is controlled by the microcontroller 302. For example, where the motor drive comprises a stepper motor drive, the drive may be controlled using general purpose digital outputs. Alternatively, where the motor drive comprises a brushless DC motor drive, the drive may be controlled using a Pulse Width Modulated (PWM) digital output. These signals control a power stage, which switches current through the motor windings. The power stage requires continuous electrical commutation. This may for example increase device safety, decreasing the probability of erroneous drug delivery.
The power stage may consist of a dual H-bridge per stepper motor, or three half-bridges per brushless DC motor. These may be implemented using either discrete semiconductor parts or monolithic integrated circuits.
The control unit 300 further comprises a first and a second motor 336, 338, respectively. As explained in greater detail below, the first motor 336 may be used to move the stopper 94 in the first cartridge 90. Similarly, the second motor 338 may be used to move the stopper 104 in the second cartridge. The motors can be stepper motors, brushless DC motors, or any other type of electric motor. The type of motor may determine the type of motor drive circuit used. The electronics for the device may be implemented with one main, rigid printed circuit board assembly, potentially with additional smaller flexible sections as required, e.g., for connection to motor windings and switches.
The micro-processor provided on the PCBA 350 will be programmed to provide a number of features and carry out a number of calculations. For example, and perhaps most importantly, the micro-processor will be programmed with an algorithm for using a certain therapeutic dose profile to calculate at least a dose of the secondary medicament based at least in part on the selected dose of the primary medicament.
For such a calculation, the controller may also analyze other variables or dosing characteristics in calculating the amount of second medicament to administer. For example, other considerations could include at least one or more of the following characteristics or factors:
These parameters may also be used to calculate the size of both the first and the second dose size
In one arrangement, and as will be described in greater detail below, a plurality of different therapeutic dose profiles may be stored in the memory device or devices operatively coupled to the micro-processor. In an alternative arrangement, only a single therapeutic dose profile is stored in the memory device operatively coupled to the micro-processor.
The presently proposed electromechanical drug delivery device is of particular benefit to patients with dexterity or computational difficulties. With such a programmable device, the single input and associated stored predefined therapeutic profile removes the need for the user or patient to calculate their prescribed dose every time they use the device. In addition, the single input allows easier dose setting and dispensing of the combined compounds.
In addition to computing the dose of the second medicament, the micro-processor can be programmed to achieve a number of other device control operations. For example, the micro-processor may be programmed so as to monitor the device and shut down the various elements of the system to save electrical energy when the device is not in use. In addition, the controller can be programmed to monitor the amount of electrical energy remaining in the battery 306. In one preferred arrangement, an amount of charge remaining in the battery can be indicated on the digital display 80 and a warning may be given to the user when the amount of remaining battery charge reaches a predetermined threshold level. In addition, the device may include a mechanism for determining whether there is sufficient power available in the battery 306 to deliver the next dose, or it will automatically prevent that dose from being dispensed. For example, such a monitoring circuit may check the battery voltage under different load conditions to predict the likelihood of the dose being completed. In a preferred configuration the motor in an energized (but not moving) condition and a not energized condition may be used to determine or estimate the charge of the battery.
Preferably, the drug delivery device 10 is configured to communicate via a data link (i.e., either wirelessly or hard wired) with various computing devices, such as a desktop or laptop computer. For example, the device may comprise a Universal Serial Bus (USB) for communicating with a PC or other devices. Such a data link may provide a number of advantages. For example, such a data link may be used to allow certain dose history information to be interrogated by a user. Such a data link could also be used by a health care professional to modify certain key dose setting parameters such as maximum and minimum doses, a certain therapeutic profile, etc. The device may also comprise a wireless data link, for example an IRDA data link or a Bluetooth data link. A preferred Bluetooth module comprises a Cambridge Silicon Radio (CSR) Blue core 6.
In an example embodiment, the device has USB On-The-Go (USB OTG) capability. USB OTG may allow the drug delivery device 10 to generally fulfill the role of being slave to a USB host (e.g., to a desktop or notebook computer) and to become the host themselves when paired with another slave device (e.g. a BGM).
For example, standard USB uses a master/slave architecture. A USB Host acts as the protocol master, and a USB ‘Device’ acts as the slave. Only the Host can schedule the configuration and data transfers over the link. The Devices cannot initiate data transfers, they only respond to requests given by a host. Use of OTG in Applicants' drug delivery device 10 introduces the concept that the drug delivery device can switch between the master and slave roles. With USB OTG, Applicants' device 10 at one time be a ‘Host’ (acting as the link master) and a ‘Peripheral’ (acting as the link slave) at another time.
With reference to
In this preferred electro-mechanical system 500, the system comprises an independent mechanical driver for each cartridge 90, 100. That is, an independent mechanical driver 502 operates to expel a dose from the first cartridge 90 and an independent mechanical driver 506 operates to expel a dose from the second cartridge 100. In an alternative electro-mechanical system 500 operating on three different medicaments, three independent mechanical drivers could be provided. The independent mechanical drivers act under control of the motor drivers 332, 334 of the control unit 300 (see, e.g.,
The first independent mechanical driver 502 operates to expel a dose from the first cartridge 90. This first driver 502 comprises a first motor 530 that is operatively coupled to a first gearing arrangement 540. To energize this motor 530, a connector 532 is provided as a means of electrically connecting to the motor driver 332. This first gearing arrangement 540 is mechanically linked to a proximal portion of the first telescoping piston rod 514. The first telescoping piston rod 514 is illustrated in a fully extended position having a distal end 521 acting on the stopper 94 of the first cartridge 90.
As this gearing arrangement 540 is driven by the output shaft of the first motor 530, this arrangement 540 rotates the proximal portion 518 of the first telescoping piston rod 514. As this proximal portion 518 of the piston rod 514 is rotated, the second or distal portion 519 of the piston rod 514 is driven in a distal direction.
Preferably, the proximal portion 518 of the telescope piston rod 514 comprises an external thread 517. This thread 517 engages the distal portion 519 which has in integrated nut comprising a short threaded section at a proximal end of the distal portion 519. This distal portion 519 is prevented from rotating via a key acting in a keyway. Such a keyway may pass through the middle of first telescope 514. Therefore, when the first gearbox arrangement 540 causes rotation of the proximal section 518, rotation of the proximal portion 518 acts upon the distal end 521 to thereby drive the distal portion of telescope piston rod to extend along the longitudinal axis.
Moving in this distal direction, the distal end 521 of the second portion 519 of the piston rod 514 exerts a force on a stopper 94 contained within the first cartridge 90. With this distal end 521 of the piston rod 514 exerting a force on the stopper, the user selected dose of the first medicament 92 is forced out of the cartridge 90 and into an attached dispense interface 200 and consequently out an attached needle assembly 400 as previously discussed above.
A similar injection operation occurs with the second independent driver 506 when the controller first determines that a dose of the second medicament 102 is called for and determines the amount of this dose. As previously mentioned, in certain circumstances, the controller may determine that a dose of the second medicament 102 may not be called for and therefore this second dose would be “set” to a “0” dose.
Preferably, motors 530, 536 comprise motors suitable for electronic commutation. Most preferably, such motors may comprise either a stepper motor or a brushless DC motor.
To inject a dose of the primary and secondary medicaments 92, 102, a user will first select a dose of the primary medicament by way of the human interface components on the display 80. (see, e.g.,
When the dose sizes of the first and second medicaments have been established, the user can press the injection button 74 (see e.g.,
The piston rods 514, 516 are preferably movable between a first fully withdrawn position (not shown) and a second fully extended portion (as shown in
In one preferred arrangement, both the first and second motors 530, 536 operate simultaneously so as to dispense the user selected dose of the first medicament 92 and the subsequently calculated dose of the second medicament 102 simultaneously. That is, both the first and the second independent mechanical drivers 502, 506 are capable of driving the respective piston rods 514, 516 either at the same or a different time. In this manner, now referring to the dispense interface 200 previously discussed, the first medicament 92 enters the holding chamber 280 of the dispense interface 200 at essentially the same time as the second medicament. One advantage of such an injecting step is that a certain degree of mixing can occur between the first and second medicament 92, 102 prior to actual dose administration.
If after an injection, the patient determines that one or more of the cartridges 90,100 is spent and therefore needs to be exchanged, the patient can follow the following method of cartridge exchange:
One or more of the steps may be performed automatically, for example controlled by microcontroller 302, such as the step of rewinding the first and/or second piston rod.
In an alternative arrangement, the controller may be programmed so that the first and the second independent mechanical drivers 502, 506 may be operated to dispense either the first medicament 92 or the second medicament 102 prior to the other medicament. Thereafter, the second or the primary medicament may then be dispensed. In one preferred arrangement, the secondary medicament 102 is dispensed before the primary medicament 92.
Preferably, the first and second motors 530, 536 comprise electronic commutation. Such commutation may help to minimise the risk of a motor runaway condition. Such a motor runaway condition could occur with a system comprising a standard brushed motor experiencing a fault. In one embodiment of the motor drive system, a watchdog system may be provided. Such a system has the ability to remove power to either or both of the motors in the event of a software malfunction or a failure of the electronic hardware. To prevent the power from being removed, the correct input from a number of sections of the electronic hardware and/or the microcontroller software will need to be provided. In one of these input parameters is incorrect; power may be removed from the motor.
In addition, preferably both motors 530, 536 may be operated in a reverse direction. This feature may be required in order to allow the piston rods 514, 516 to be moved between a first and a second position.
Preferably, the first independent drive train 502 illustrated in
As illustrated in
Preferably, as the first and second flags 528a-b pass through the first optical encoder 534, the encoder 534 can send certain electrical pulses to the microcontroller. Preferably, the optical encoder 534 sends two electrical pulses per motor output shaft revolution to the microcontroller. As such, the microcontroller can therefore monitor motor output shaft rotation. This may be advantageous to detect position errors or events that could occur during a dose administration step such as jamming of the drive train, incorrect mounting of a dispense interface or needle assembly, or where there is a blocked needle.
Preferably, the first pinion 524 comprises a plastic injection molded pinion. Such a plastic injection molded part may be attached to the output motor shaft 531. The optical encoder 534 may be located and attached to a gearbox housing. Such a housing may contain both the first gearing arrangement 540 along with the optical encoder 534. The encoder 534 is preferably in electrical communication with the control unit potentially via a flexible portion of the PCB. In a preferred arrangement, the second independent drive train 506 illustrated in
As illustrated, both the first and second cartridges 90, 100 are shown in an expended state. That is, the first and second cartridges are illustrated in an empty state having a stopper at a most distal position. For example, the first cartridge 90 (which ordinarily contains the first medicament 92) is illustrated as having its stopper 94 at the end or most distal position. The stopper 104 of the second cartridge 100 (ordinarily containing the second medicament) is illustrated in a similar end position.
The first independent mechanical driver 602 operates to expel a dose from the first cartridge 90 and operates in a similar manner as the independent drivers 502, 506 described with reference to the drive train 500 illustrated in
Preferably, the first independent mechanical driver 602 comprises a bung or stopper detection system. Such a detection system may be used detect the position of the cartridge stopper 94 following a cartridge change event. For example, when a cartridge change event occurs, the piston rod is retracted in a proximal position so as to enable a user to open the cartridge retainer and thereby provide access to a spent cartridge. When the cartridge is replaced and the cartridge retainer door is shut, the piston rod will advance in a distal direction towards the stopper of new the cartridge.
In one preferred stopper detection system, a switch is provided at the distal end of the piston rod. Such a switch may comprise a mechanical, optical, capacitive, or inductive type switch. Such a switch would be in communication with the microcontroller and indicates when the piston rod is in contact with the stopper and hence may be used as a mechanism for stopping the drive system.
The second independent mechanical driver 606 operates to expel a dose from the second cartridge 100 in a different manner than the first independent driver 602. That is, this second mechanical driver 606 comprises a second motor 636 that is operatively coupled to a second gearing arrangement 646. To energize this motor 636, a connector 638 is provided as a means of electrically connecting to the motor driver 334.
This independent mechanical driver 606 comprises:
A motor 636;
A second gearing arrangement 646; and
A telescope piston rod 616.
The second gearing arrangement 646 is mechanically linked to a proximal portion of a nested piston rod 660. As this gearing arrangement 646 is driven by the output shaft of the second motor 636, this arrangement 646 rotates the proximal portion 660 of the telescoping piston rod 616.
The second gearing arrangement 646 comprises a motor pinion along with a plurality of compound gears (here four compound gears) along with a telescope input piston rod. Two of the compound gears are elongated to enable continuous mesh engagement with the input piston rod as the telescope extends in a distal direction to exert an axially pressure on the cartridge stopper 104 so as to expel a dose from the cartridge. The elongated gear may be referred to as a transfer shaft. The gearbox arrangement preferably has a ratio of 124:1. That is, for every revolution of the telescope input screw the output shaft of the second motor rotates 124 times. In the illustrated second gearing arrangement 646, this gearing arrangement 646 is created by way of five stages. As those skill in the art will recognize, alternative gearing arrangements may also be used.
The second gearing arrangement 646 comprises three compound reduction gears 652, 654, and 656. These three compound reduction gears may be mounted on two parallel stainless steel pins. The remaining stages may be mounted on molded plastic bearing features. A motor pinion 643 is provided on an output shaft of the second motor 636 and is retained on this shaft 637, preferably by way of an interference or friction fit connection.
As described above, the motor pinion 643 may be provided with two mounted “flag” features that interrupt the motion detect optical sensor. The flags are symmetrically spaced around the cylindrical axis of the pinion.
The drive train telescoping piston rod 616 is illustrated in
As illustrated, the outer elements (the telescope piston rod plunger 644 and telescope) create the telescopic piston rod 616 and react to the compressive axial forces that are developed. An inner element (telescope piston rod key 647 provides a means of reacting the rotational input force. This operates with a continuous motion and force since there will be no changes in drive sleeve diameter to generate varying levels of force.
The transfer shaft 670 is operatively linked to the gearing arrangement 646. The transfer shaft 670 can rotate but it cannot move in an axial direction. The transfer shaft 670 interfaces with the second gearing arrangement 646 and transfers the torque generated by the second gearbox arrangement 646 to the telescope piston rod 616.
Specifically, when the transfer shaft 670 is rotated by way of the gearing arrangement 646, the transfer shaft 670 will act on an integrated geared part 681 on a proximal end of the input screw 680. As such, rotation of the transfer shaft 670 causes the input screw 680 to rotate about its axis.
A proximal portion of the input screw 680 comprise a threaded section 682 and this threaded section is mated with a threaded section of the latch barrel 660. As such, when the input screw 680 rotates, it winds or screws itself in and out of the latch barrel 660. Consequently, as the input screw 680 moves in and out of the latch barrel, the screw 680 is allowed to slide along the transfer shaft 670 so that the transfer shaft and the gears remain mated.
The telescope plunger 644 is provided with a threaded section 645. This threaded section 645 is threaded into short section in distal end of the input screw 680. As the plunger 644 is constrained from rotating, it will wind itself in and out along the input screw 680.
A key 647 is provided to prevent the plunger 644 from rotating. This key 647 may be provided internal to the input screw 680 of the piston rod 616. During an injection step, this key 647 moves in the axial direction towards the stopper 104 of the cartridge 100 but does not rotate. The key 647 is provided with a proximal radial peg that runs in a longitudinal slot in the latch barrel 660. Therefore, the key 647 is not able to rotate. The key may also be provided with a distal radial peg that engage a slot in the plunger 644.
Preferably, the drug delivery device 10 comprises memory devices comprising enough memory storage capability so as to store a plurality of algorithms that are used to define a plurality of different therapeutic profiles. In one preferred arrangement, after a user sets a dose of the primary medicament, the drug delivery device will be preprogrammed so as to determine or calculate a dose of the secondary medicament and perhaps a third medicament based on one of the stored therapeutic profiles. In one arrangement, the healthcare provider or physician selects a therapeutic dose profile and this profile may not be user alterable and/or may be password protected. That is, only a password known by the user, for example a healthcare provider or physician, will be able to select an alternative profile. Alternatively, in one drug delivery device arrangement, the dose profile is user selectable. Essentially, the selection of the therapeutic dose profiles can be dependent upon the individualized targeted therapy of the patient.
As described above, certain known multi drug compound devices allow independent setting of the individual drug compounds. As such, the delivery of the combined dose in a combination is determined by a user. This is not ideal in all the therapeutic situations that a patient may face. For example,
One of the primary reasons for combining drug compounds is that generally all the pharmaceutical elements are required to ensure an increased therapeutic benefit to a patient. In addition, some compounds and some combinations of compounds need to be delivered in a specific relationship with each other in order to provide the optimum pharmacokinetic (“PK”) and pharmacodynamic (“PD”) response. Such complex relationships between one, two, or more (i.e., more than a plurality) of medicaments may not be achievable through a single formulation route and could potentially be too complex for the user to understand, or follow correctly, in all cases.
In an example embodiment of the invention, a multi drug compound device may be reliant upon the user input for each independent compound to control the delivered dose profile within predetermined thresholds. For example,
The lower limit 712 and the upper limit 714 may be represented by a curve as in
In further example embodiments, the presently proposed programmable electro-mechanical drug delivery device described in detail above uses only a single input in order to offer an innovative solution to these and other related problems. In further embodiments, the proposed programmable multi-drug compound device uses only a single dispense interface. As just one example, such a device is capable of delivering any of a plurality of predefined programmed therapeutic profiles for various drug combinations. As an alternative, such a device is capable of delivering only one predefined programmed therapeutic profile for various drug combinations.
By defining the ratio-metric relationship or relationships between the various individual drug compounds (2, 3, or more), the proposed device helps to ensure that a patient and/or user receives the optimum therapeutic combination dose from a multi drug compound device. This can be accomplished without the inherent risks associated with multiple inputs. This can be achieved since the patient and/or user is no longer called upon to set a first dose of medicament and then determine or calculate and then independently set a correct dose of a second and/or third medicament in order to arrive at the correct dose combination each time the device is used to administer a combination dose.
As just one example,
As such, the user merely needs to select a first dose of the first drug: Drug A or the primary medicament and Applicants' drug delivery device 10 automatically calculates the dose of the secondary medicament or Drug B based on this preselected dosing profile 760. For example, if the user selects a dose comprising “60 Units” for Compound A 764, the drug delivery device 10 will recall the selected dosing profile 760 from its memory device and then automatically calculate the dose value of “30 Units” for Compound B 766.
In an alternative drug delivery device arrangement, and as discussed in greater detail above, the drug delivery device may comprise a coding system. A coding system may be provided if coding means is provided on either the first or the second cartridge so that the drug delivery device could then identify the particular medicament contained within an inserted cartridge. After the drug delivery device undergoes a method or process for determining cartridge and/or medicament identification, the drug delivery device could then potentially automatically update the therapeutic profile or profiles. For example, a new or a revised/updated profile may be selected if required to reflect an updated or revised pharmaceutical philosophy so as to achieve an optimum medicament relationship. Alternatively, a new or a revised/updated profile may be selected if a health care provider has decided to alter a patient's therapy strategy. An updated or revised profile may be loaded into the device through a wired or wireless connection, for example from a memory comprised in the cartridge, from an external device, from the internet and/or the like. The updated or revised profile may be loaded automatically, for example after insertion of the cartridge, or only after user confirmation, for example after a user presses a button on the device to confirm a message shown in the display.
As another example of a therapeutic profile, the proposed drug delivery device 10 may be programmed to calculate a linear ratio profile for the delivered dose from the drug delivery device 10 that comprises two or more discrete medicament reservoirs.
For example, with such a programmed therapeutic profile, the constituent components of the dose would be delivered to a patient in a fixed, linear ratio. That is, increasing the dose of one element will increase the dose of the other constituent element(s) by an equal percentage. Similarly, reducing the dose of one element will reduce the dose of the other constituent element(s) by an equal percentage.
Therefore, when the device is then used to dispense the combination of medicaments, this combined dose comprising 60 Units of Drug A and 30 Units of Drug B would be administered. As those of skill in the art will recognize, the ratio of the two (or more) medications can be tailored according to the needs of the patient or therapy by a number of methods including changing the concentration of the medicaments contained within the primary or secondary reservoirs.
As just one example, the drug delivery device 10 may comprise three or more medicaments. For example, the device 10 may contain a first cartridge containing a long acting insulin, a second cartridge containing a short acting insulin, and a third cartridge containing a GLP-1. In such an arrangement, referring back to
As just one example,
Similarly,
A derivative therapeutic profile of the various profiles illustrated in
For example,
Applicants' proposed linear ratio profile discussed and described with respect to
In addition, the proposed linear ratio therapy profiles 760, 780, 800 and 820 are robust to a split dosing requirement. That is, the desired dose can potentially be split into multiple, smaller injections without compromising the total amount of each constituent medicament that is ultimately administered. As just one example, returning to
In addition, cognitively, the relationship between the various compounds or drugs is reasonably straightforward for a patient to understand. Moreover, with such profiles 760, 780, 800 and 820, the patient and/or health care provider is not called upon to perform profile calculations themselves since it is the microcontroller of the device 10 that computes the value of the secondary medicament automatically once the initial dose of the primary medicament has been set.
As described above, the delivery of a combination of drug products (i.e., single doses that are made up from the combination of two or more individual drug formulations) in a format where the ratio-metric profile is predefined, offers a number of benefits for both a patient and the treatment of a particular condition. For certain combinations, the ideal profile might be for the various individual formulations to be delivered in a defined, non-linear ratio to one another. Therapeutic profiles of this type are not achievable from a combination drug or drugs that is co-formulated into a single drug reservoir, such as, but not limited to, a standard 3 ml glass cartridge. In such situations, the concentration of the various constituent parts within the glass cartridge is constant (i.e., xmg/ml), and would be particularly difficult for a patient to calculate on certain known devices for each dose. To calculate or determine such concentration would be reliant on the patient or health care provider being able to look up the correct dose on a table (or similar lookup document or prescription) and this may be less desirable as such a method would be more prone to error.
Some of the advantages of using such a fixed, non-linear ratio of the constituent drug elements as illustrated include (but are not limited to) the fact that such profiles utilize a decreasing rate of change profile. These types of illustrated therapy profiles 860, 880 may be appropriate in situations where it is desirable to initially rapidly increase the dose of Compound B or the secondary medicament, relative to Compound A. However, once the desirable dose range has been reached to slow this rate of increase so that the dose does not then increase much further, even if the dose of Compound A doubles, for example. A profile of this type might be beneficial in therapeutic applications where there are a potentially wide range of doses of Compound A that patients might require (either as an individual, or across the therapy area as a whole), but where there is a much narrower therapeutically beneficial range of doses for Compound B.
The dose profiles 860, 880 illustrated in
Applicants' therapeutic profiles 900 and 920 illustrated in
Alternatively, the drug delivery device 10 may be programmed with an algorithm for computing a dose of the secondary medicament based on a fixed, linear ratio followed by a fixed dose profile. As just one example, such a stored profile may initially follow a fixed ratio profile for certain low doses of the primary medicament or Compound A. Then, above a certain threshold dose level of the Drug A, the profile switches to a fixed dose of the secondary medicament or Compound B. That is, for higher doses of the primary medicament/Compound A, the secondary medicament will comprise essentially a fixed dose.
For certain therapies, the delivery of combination drug products (i.e., single doses that are made up from the combination of two or more individual drug formulations) might be beneficial for the dose of the secondary medicament to initially rise rapidly relative to the primary medicament. Then, once a pre-determined threshold value of the primary medicament has been reached, the profile will then flatten out. That is, the calculated dose of the secondary medicament will remain constant regardless of further increases in the set dose of the primary medicament. Such fixed ratio followed by fixed dose-low dose threshold therapeutic profiles are not achievable from a combination drug that is co-formulated into a single primary pack (such as, but not limited to, a standard 3 ml glass cartridge) where the concentration of the various constituent parts is constant (xmg/ml). Achieving such profiles would also be particularly difficult for a patient to calculate on current devices for every dose.
Applicants' profiles 940, 950, and 960 delivering a fixed ratio up to a first point and thereafter delivering a fixed dose type of profile in a combination drug delivery device provide a number of advantages. For example, where priming of the drug delivery device may be required (either for initial first time use, or prior to each dose), these types of a predefined fixed ratio-fixed dose therapeutic profiles facilitate priming of both compounds with potentially minimal wastage. In this regard, these profiles have certain advantages over other programmable therapeutic profiles, such as the fixed dose profiles and the delayed fixed dose profiles described herein below. This may be especially true with regards to wastage of the secondary medicament or Compound B.
In addition, the various profiles described and illustrated in
An example of a particular combination therapy where profiles 940, 950 and 960 might be appropriate is for the combined delivery of a long acting insulin or insulin analog (i.e., Drug A or the primary medicament) in combination with an active agent, such as a GLP-1 or GLP-1 analog (i.e., Drug B or the secondary medicament). In this particular combination therapy, there is a reasonable variation in the size of the insulin dose across patient population, whereas the therapeutic dose of the GLP-1 may be considered as broadly constant (except during the titration phase) across the patient population.
Another preferred dose profile for use with the drug delivery device 10 comprises a fixed dose of the secondary medicament (i.e., Compound B) and a variable dose of the primary medicament (i.e., Compound A) profile. With such a therapeutic profile, the profile describes the delivery of a fixed dose of Compound B across the full range of potential doses of Compound A.
This fixed dose-variable dose therapeutic profile may be beneficial for the dose of Compound B to be constant for all potential doses of Compound A. One advantage of having the control unit programmed with such a profile is that fixed dose-variable dose therapeutic profiles are not achievable from a combination drug that is co-formulated into a single primary pack (such as, but not limited to, a standard 3 ml glass cartridge) where the concentration of the various constituent parts is constant (xmg/ml).
Two such fixed dose-variable dose profiles are illustrated in
Such fixed dose-variable dose profiles 980 and 990 offer a number of advantages. For example, one of the benefits of these types of delivery profiles is in treatment situations where it is therapeutically desirable to ensure that patients receive a specific dose of one drug compound, irrespective of the size of the variable dose selected of the other compound. This particular profile has specific advantages over other predefined profiles (e.g., the fixed ratio then fixed dose profiles described above, the delayed fixed dose of compound B, variable dose of compound A profiles described below and the controlled thresholds profiles described below), there is not a predetermined minimum dose threshold of primary medicament required to ensure a complete dose of the secondary medicament.
One example of a particular combination therapy where this type of fixed dose-variable dose profile might be particularly appropriate is for the combined delivery of a long acting insulin (i.e., the variable dose) with a GLP-1 (i.e., the fixed dose). In this particular combination, there is reasonable variation in the size of the insulin dose across the patient population, whereas the GLP-1 dose is broadly constant (except during the titration phase where it generally increases in stepped intervals) across the patient population. For this particular therapy regimen, titration of the GLP-1 dose may be needed during the early stages of treatment. This could be achieved with a combination device using different ‘strengths’ of drug within the GLP-1 primary pack (e.g., using 10, 15 or 20 g per 0.1 ml concentrations).
For certain therapies it might be beneficial for the dose of secondary medicament Compound B to be a constant dose once a minimum threshold dose of the primary medicament Compound A has been met and/or exceeded. Again, such profiles of this type are not achievable from a combination drug that is co-formulated into a single reservoir or cartridge (such as, but not limited to, a standard 3 ml glass cartridge). In such standard cartridges, the concentration of the various constituent parts is constant (xmg/ml).
In one arrangement, Applicants' drug delivery device 10 may also be programmed with a therapeutic profile that calculates a delayed fixed dose of a secondary medicament Compound B and variable dose of a primary medicament Compound A. Such a profile provides for the delivery of a fixed dose of Compound B but provides this fixed dose only after a minimum threshold dose of Compound A has been met or exceeded. Illustrative examples of four predefined delayed fixed dose-variable dose therapeutic profiles 1000, 1020, 1040 and 1060 are illustrated in Applicants'
For example,
As illustrated in
Similarly, if a user selects a dose of Drug A 1064 between 20 Units and 30 Units, again the drug delivery device 10 will calculate a dose of 30 Units for Drug B 1066 and calculate a dose of “0” Units for Drug C 1068. Then, it is only after a user selects a dose greater than 30 Units for Drug A 1064 thereby surpassing the second threshold 1063, the drug delivery device 10 will the calculate a dose of Drug C 1068. In this illustrated profile 1060, this dose of Drug C 1068 equals 19 Units. Although only two offset thresholds are illustrated in this profile 1060, those of skill in the art will recognize alternative threshold arrangements may also be utilized.
Applicants' preferred profiles 1000, 1020, 1040, and 1060 illustrated in
An additional benefit stems from the situation that patients are sometimes required to carry out a priming step with their drug delivery device. Such a priming step may be required either prior to a first use of the drug delivery device or perhaps prior to each time a dose is to be administered by the drug delivery device. In the example of pen type drug delivery devices, one of the principle reasons for the set up prime is to remove clearances/backlash in the mechanism, thereby helping ensure that the first dose delivered is within the required dose accuracy range. The in-use prime (sometimes referred to in certain relevant art and/or literature as a “safety shot”) is recommended for some pen type drug delivery devices. For example, such a safety shot may be recommended so as to confirm that the dose setting mechanism within the device is functioning properly. Such a safety shot is also often recommended so as to confirm that the delivered dose is accurately controlled and also to ensure that the attached dose dispenser (e.g., double ended needle assembly) is not blocked. Certain safety shots also allow the user to remove air from the dose dispenser prior to a user setting and therefore administering a dose. For a multi primary pack device, a profile of this type would enable the ‘in use safety’ prime to be undertaken using primary medicament only, thereby minimizing potential wastage of the secondary medicament.
For example, a particular combination therapy where this type of profile might be particularly appropriate is for the combined delivery of a long acting insulin or insulin analog along with a GLP-1 or a GLP-1 analog for early-stage diabetics. For example, there is a reasonably large variation in the size of the insulin doses across patient population, whereas GLP1 doses are broadly constant (except during the titration phase where is generally increases in stepped intervals) across the patient population. For this particular type of combination therapy, titration of the GLP1 dose is needed during the early stages of treatment. This could be achieved with a combination device through the use different ‘strengths’ of drug within the GLP1 cartridge or reservoir (e.g., using 10, 15 or 20 g per 0.2 ml concentrations for instance). The proposed delivery profiles illustrated in
As previously described, the delivery of combination drug products (i.e., single doses that are made up from the combination of two or more individual drug formulations) in a format where the delivered dose profile is predefined, offers a number of key benefits for both a patient and the treatment of a particular condition. For certain therapies it might be beneficial for the dose of the secondary medicament to increase in fixed stepped increments as the corresponding dose of primary medicament increases, but for each of these stepped increases to only occur once a specific predefined threshold dose of primary medicament has been exceeded. The relative ‘spacing’ between these threshold values of the primary medicament may or may not be regular. Again, such profiles of this type are not achievable from a combination drug that is co-formulated into a single primary pack (such as, but not limited to, a standard 3 ml glass cartridge) where the concentration of the various constituent parts is constant. Two exemplary profiles 1080 and 1100 are illustrated in
For example,
This particular delivery profile could provide the basis for a single device solution where it is therapeutically desirable for the dose of the secondary medicament to increase in a stepped (rather than linear) manner as the dose of primary medicament is increased. This may be related to the specific safety and efficacy characteristics of a prescribed therapy, or situations where titration of the secondary medicament is stepped, as is the case for the injection of GLP1 type drugs (for the treatment of early stage, Type II diabetes).
The illustrated profiles in
As just one example, consider a patient who generally takes between 50 and 80 units of Drug A (e.g., an insulin or insulin analog), and whose target dose of Drug B (e.g., a GLP-1 or GLP-1 analog) is 20 units. Assuming that the patient has been prescribed with a device utilizing the therapeutic profile detailed in
Applicants' electro-mechanical dose setting mechanism is of particular benefit where a targeted therapeutic response can be optimized for a specific target patient group. This may be achieved by a microprocessor based drug delivery device that is programmed to control, define, and/or optimize at least one therapeutic dose profile. A plurality of potential dose profiles may be stored in a memory device operatively coupled to the microprocessor. For example, such stored therapeutic dose profiles may include, but are not limited to, a linear dose profile; a non-linear dose profile; a fixed ratio fixed dose profile; a fixed dose variable dose profile; a delayed fixed dose variable dose profile; or a multi-level, fixed dose variable dose profile as discussed and described in greater detail below. Alternatively, only one dose profile would be stored in a memory device operatively coupled to the microprocessor. In one dual medicament drug delivery device arrangement, the dose of the second medicament may be determined by way of a first therapeutic profile such as those identified above. In one drug delivery device comprising three medicaments, the dose of the second medicament may be determined by way of a first therapeutic profile while the dose of the third medicament may be determined by either the same first therapeutic profile or a second different therapeutic profile. As those of ordinary skill in the art will recognize, alternative therapeutic profile arrangements may also be used.
Exemplary embodiments of the present invention have been described. Those skilled in the art will understand, however, that changes and modifications may be made to these embodiments without departing from the true scope and spirit of the present invention, which is defined by the claims.
Number | Date | Country | Kind |
---|---|---|---|
10192991.7 | Nov 2010 | EP | regional |
The present application is a U.S. National Phase Application pursuant to 35 U.S.C. §371 of International Application No. PCT/EP2011/071132 filed Nov. 28, 2011, which claims priority to European Patent Application No. 10192991.7 filed Nov. 29, 2010 and U.S. Provisional Patent Application No. 61/433,806 filed Jan. 18, 2011. The entire disclosure contents of these applications are herewith incorporated by reference into the present application.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2011/071132 | 11/28/2011 | WO | 00 | 5/17/2013 |
Number | Date | Country | |
---|---|---|---|
61433806 | Jan 2011 | US |