The present invention relates to a variety of packages used to dispense or apply various products in a fluid state, whether they are cosmetics, drugs, food or chemicals, notably semi-solids and liquids.
More particularly, the present Invention relates to application PCT BR2018050189, filed on Jun. 12, 2018, and it is defined, initially, by an outlet chamber, vertical and hermetically controlled by two extremity valve blocks, the lower one constituting a “cup” shaped plug and the upper one forming an elastomeric valve. The exit chamber with the two locks is mounted inside any nozzle which, in turn, includes means to be coupled to the end of a necessarily flexible packaging body like tube in order to be pressed. The two valve blocks work according to the internal pressure of the flexible body, that is, when pressing said flexible body, an internal pressure is created and, consequently, its contents are forced to flow into the outlet chamber. In this phase, the lower plug is moved in order to open the passage for the product, which, in turn, moves along the outlet chamber and then stresses the elastomeric valve, at which point the product is ejected in a controlled manner according to the desired amount. After that, when the flexible body of the package is no longer pressed, an opposite effect occurs, that is, the memory of the material of the package's flexible body tries to return to its original position and practically inverts that pressure. After that, a suction effect is produced and, at this point, the two extremity blocks of the outlet chamber defined by the lower plug and the elastomeric valve return to the initial watertight closing state. This watertight effect achieved by the two blockages works exclusively in conjunction with the portion of the product maintained inside the outlet chamber. This portion also functions as a third “plug” and constitutes an element that guarantees the water tightness of the two blockages, keeping them in the closed and watertight position defined together with the suction provided by the flexibility of the package's flexible body.
Therefore, the application PCTBR2018050189, filed on Jun. 12, 2018, provides an automatic sealing system that works through the negative pressure generated inside the bottle. The bottle performs suction on the valve through a plug (2) to the closed position (bottle memory generates negative pressure) and, consequently, the plug (2) is displaced downwards or to be seated on the sealing seat (7) of the cylindrical capsule (4), thus generating the watertightness of the mechanism.
An important detail described in PCTBR2018050189 is that the automatic sealing system occurs only after the FIRST USE of the packaging, that is, the desired negative pressure occurs after the first pressing of the bottle or first use, consequently, after the packaging is made available for sale, the internal pressure of the packaging is atmospheric, that is, the same as when it was bottled, therefore, at that moment there is no negative pressure inside the packaging capable of promoting suction (negative pressure) and moving the valve or plug (2) according to a desired pressure up to the closed (sealed) position.
Therefore, it would be desirable for there to be an automatic seal also after the packaging is filled and before its first use.
In view of the above, the packaging described in application PCTBR2018050189 was modified to perform an automatic seal immediately after the packaging is filled. To meet this new feature, an elastic pad was inserted between the valve or plug and the fixed nozzle part. The elastic pad has the function of a spring, that is, it remains “compressed” in the assembly, consequently, it has sufficient expansion force to keep the valve or plug pressed against its sealing seat, ensuring the desired watertightness right after the filling of the packing. Said elastic pad also presents elasticity that enables it to be compressed by the valve itself when first used and subsequent uses, because, when the packaging is pressed, the internal pressure promotes the displacement of the valve enough so that it moves away from its sealing seat and, concomitantly, the product flows to the dispensing nozzle. Once the internal pressure has ceased, the packaging memory, as already mentioned, promotes the suction and displacement of the valve until it returns to its original watertight position. In this last phase, the sealing occurs automatically due to the presence of suction, however, the elastic pad also expands, which generates a faster and more precise sealing.
An elastic pad means any component with parts capable of being compressed and stretched elastically, such as a spring of any material and shape, elastomeric parts, flexible plastic parts and/or others.
For a better understanding of the present invention, a detailed description is given below, making reference to the attached drawings, all of which are exemplary:
According to these illustrations and in their details, more particularly the
As shown in
All material above from application PCTBR2018050189, filed on Jun. 12, 2018, has been included into this request for better understanding.
As already mentioned, the packaging from PCTBR2018050189 includes an automatic sealing system that works through the negative pressure generated by the container (10). The bottle performs suction on the plug (2) to the closed position and, consequently, the plug (2) is displaced downwards or to be seated on the sealing seat (7) of the cylindrical capsule (4), thus generating the watertightness of the mechanism.
An important detail described in PCTBR2018050189 is that the automatic sealing system occurs only after the FIRST USE of the packaging, that is, the desired negative pressure occurs after the first pressing of the bottle or first use, consequently, after the packaging is made available for sale, the internal pressure of the packaging is atmospheric, that is, the same as when it was bottled, therefore, at that moment there is no negative pressure inside the packaging capable of promoting suction (negative pressure) and moving the valve or plug (2) according to a desired pressure up to the closed (sealed) position.
Therefore, it would be desirable for there to be an automatic seal also after the packaging is filled and before its first use.
In view of the above, the packaging described in application PCTBR2018050189 was modified to perform an automatic seal immediately after the packaging is filled.
To meet this new characteristic, illustrated in
The elastic pad (18) is of a spring-type that, after the assembly, remains “compressed”, consequently, it has sufficient expansion force to keep the valve or plug (2) pressed against its sealing seat (7), ensuring the desired watertightness right after the filling of the packing.
Said elastic pad (18) also presents elasticity that enables it to be compressed by the plug itself (2) at the first use and subsequent uses, because, when pressing the container (10), the internal pressure displaces the plug (2) enough for it to move away from its sealing seat (7) and, concomitantly, the product flows to the dispensing nozzle. Once the internal pressure has ceased, the packaging memory, as already mentioned, promotes the suction and displacement of the valve until it returns to its original watertight position. In this last phase, the sealing occurs automatically due to the presence of suction, however, the elastic pad also expands, which generates a faster and more precise sealing.
An elastic pad (18) means any component with parts capable of being compressed and stretched elastically, such as a spring of any material and shape, elastomeric parts, flexible plastic parts and/or others.
In a preferred construction, illustrated in said
The drawings are merely illustrative, since, as it is known, the packaging itself can present a considerable range of variations and its construction details do not alter the functional concept of the device in question.
The illustrated packaging lacks an overcap, since such a detail does not interfere with the construction of the present device.
For example, the nozzle (5) can have variable external details according to the product and its application.
On the other hand, the lower capsule (4), although illustrated as an independent part, can be integrated into different parts that close the flexible container (10).
After what has been exposed and illustrated, the present device embodies the aforementioned advantages of PCTBR2018050189 and the application in question:
It will be understood that certain characteristics and combinations of the device in question with any nozzle (5) and with any flexible container (10) can vary considerably, maintaining the same functional concept for the assembly; consequently, it is noted that the construction that is hereby described in detail by way of example is clearly subject to constructive variations of such parts; however, this is all within the invention scope revealed initially and defined by an exit chamber, vertical and hermetically controlled by two extremity valve blocks, both driven by the internal pressure of the packaging itself, both at the opening as well as at the watertight closing, and as many modifications can be made in the configuration that is hereby detailed according to the descriptive requirements of the law; it must be understood that the details presented should be interpreted as illustrative and not limiting.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/BR2019/050219 | 6/12/2019 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/BR2018/050189 | Jun 2018 | US |
Child | 17251704 | US |