The present invention relates to aerosol systems having variable outlet openings.
Aerosol systems comprise an aerosol assembly and a liquid product to be dispensed. The aerosol assembly conventionally comprises a container, a valve assembly, an actuator assembly, and a cap. The liquid product is disposed within the container along with a propellant material that pressurizes the product. The valve assembly is normally in a closed configuration but may be placed in an open configuration to allow pressurized product to exit the container. The actuator assembly engages the valve assembly such that pressing the actuator assembly places the valve assembly in the open configuration to allow the product to be dispensed through a nozzle formed by the actuator assembly. The cap engages the container to protect the actuator assembly when the aerosol system is not in use.
For some materials being dispensed, the actuator assembly defines an outlet opening having an effective cross-sectional area that may be varied. Examples of actuators that define outlet openings the effective cross-sectional areas of which may be varied are described in the Applicant's U.S. Pat. No. 6,328,185, the specification of which is incorporated herein by reference. In the systems described U.S. Pat. No. 6,328,185, the outlet opening is changed to obtain different spray patterns and the like; this structure is of particular significance when the material to be dispensed is texture material. Texture material is deposited on a surface in a texture pattern for aesthetic purposes. The invention will be described herein in the context of an actuator assembly having a variable outlet opening, but certain aspects of the present invention may be applied to other types of actuators as will become apparent from the following discussion.
The cap employed by many aerosol systems prevents accidental discharge of product in many situations. However, it is possible that the cap may deformed by a load thereon sufficiently that product will be dispensed accidentally. In addition, the cap itself will not prevent malicious tampering with the product. A person wishing to tamper with the aerosol system can simply remove the cap and depress the actuator button.
Tampering is an even greater concern with a certain class of aerosol systems. In particular, certain aerosol systems employ a compressed inert gas such as air or nitrogen as the propellant material. The inert gas is typically lighter than the product being dispensed and will collect at the upper end of the container, so the aerosol assembly is designed with a dip tube that extends to the bottom of the container. When container is upright and the valve assembly is in the open configuration, the pressurized inert gas forces the product out of the container through the dip tube. However, if the container is inverted when the valve assembly is in the open configuration, the inert gas is free to flow out of the container through the dip tube in a very short time and without clear evidence that tampering has taken place. Once the compressed inert gas is dispensed, the aerosol system cannot dispense any of the product within the container and is considered defective.
The present invention may be embodied as an aerosol system for dispensing liquid material comprising a container assembly and an actuator assembly. The actuator assembly comprises an outlet member defining an outlet opening, a collar member, an actuator member, and a selector member. The actuator member is supported by the container assembly in first and second positions and supports the collar member and the outlet member such that movement of the collar member relative to the actuator member causes the collar member to deform the outlet member. Movement of the selector member relative to the collar member causes movement of the collar member relative to the actuator member. Deformation of the outlet member alters a cross-sectional area of the outlet opening. When the actuator assembly is in the first position, the liquid material is prevented from flowing out of the container. When the actuator assembly is in the second position, the liquid material is allowed to flow out of the container assembly through the outlet opening.
The present invention may also be embodied as a method of dispensing liquid material comprising the following steps. A container assembly, an outlet member defining an outlet opening, a collar member, an actuator member, and a selector member are provided. The collar member and the outlet member are supported on the actuator member. The selector member is supported relative to the collar member such that movement of the selector member relative to the collar member causes movement of the collar member relative to the actuator member. The actuator member is supported relative to the container assembly. The selector member is moved relative to the collar member to move the collar member relative to the actuator member to cause the collar member to deform the outlet member and thereby alter a cross-sectional area of the outlet opening. The actuator member is displaced to allow the liquid material to flow out of the container assembly through the outlet opening.
1. First Embodiment
Turning now to the drawing, depicted at 20 in
The actuator assembly 24 is mounted on the container assembly 22 for movement between first and second positions. In the first position, the valve assembly is closed and the liquid product cannot flow out of the container assembly 22. In the second position, the valve assembly is opened and the liquid product is allowed to flow out of the container assembly 22 as will be described in further detail below.
The actuator assembly 24 comprises an actuator member 30, a nozzle member 32, a slide member 34, and a collar member 36. A base member 38 is mounted on the container assembly 22 and engages the actuator assembly as will be described in further detail below.
The actuator member 30 comprises a nozzle portion 40 and a stem portion 42 and defines at least a portion of a discharge passageway 44. In the exemplary aerosol system 22, the nozzle member 32 is mounted on the nozzle portion 40 to define an outlet portion 50 of the discharge passageway 44; the portion of the discharge passageway 44 defined by the nozzle member 32 terminates in an outlet opening 52. The exemplary nozzle member 32 is a flexible, hollow cylindrical member and may be deformed to change an effective cross-sectional area of the outlet opening 52 of the discharge passageway 44.
The slide member 34 comprises a finger portion 60, a male threaded portion 62, a locking tab portion 64, and a button portion 66. The collar member 36 defines a rail portion 70 and a female threaded portion 72. The finger portion 60 of the slide member 34 extends around at least a portion of the nozzle member 32 that defines the outlet portion 50 of the discharge passageway 44. The threaded portions 62 and 72 of the slide member 34 and collar member 36 engage each other to allow displacement of the slide member 34 along an outlet axis A relative to the collar member 36 when the collar member 36 is rotated about the outlet axis A.
Under certain conditions, depressing the button portion 66 in the direction shown by arrow B in
The base member 38 comprises a mounting portion 80 and defines groove portions 82 and through opening 84. The exemplary base member 38 further comprises ear portions 86 that extend the surface area in which the groove portions 82 are formed. The mounting portion 80 engages the container 22 below the actuator assembly 24. The stem portion 42 of the actuator member 30 extends through the through opening 84 and into the container 22 to engage the valve assembly.
The rail portion 70 on the collar member 36 is annular, and the groove portions 82 in the base member 38 are arcuate. The rail portion 70 engages the groove 82 to allow the collar member 36 to rotate about the outlet axis A but prevent movement of the collar member 36 along this axis A. Because the collar member 36 cannot move along the outlet axis A, when the collar member 36 is rotated about the axis A the threaded portions 62 and 72 engage each other to cause the slide member 34 to move along this axis A relative to the base member 38, the actuator member 30, and the nozzle member 32.
The stem portion 42 of the actuator member 30 supports the actuator assembly 24 above the base member 38 such that the actuator assembly 24 moves within a defined range along a predetermined path relative to the base member 38. Referring again for a moment to
When the actuator member 30 is mounted on the container assembly 22, the locking tab portion 64 of the slide member 34 is arranged between the nozzle portion 40 of the actuator member 30 and the base member 38. The locking tab portion 64 is sized and dimensioned to prevent downward movement of the actuator member 30 relative to the base member 38. The locking tab portion 64 thus prevents the movement of the actuator assembly 24 from the first position to the second position that would cause the valve assembly of the aerosol system 20 to open.
In particular, an effective thickness D of the locking tab portion 64 (between the actuator member 30 and base member 38) is approximately equal to the range or distance C along which the actuator assembly 24 travels. Accordingly, as long as the locking tab portion 64 is attached to the slide member 34, the nozzle assembly 24 cannot move relative to the container assembly 22 and the aerosol system 20 cannot dispense texture material.
Referring now to
The actuator assembly 24 thus operates in a locked state in which the locking tab portion 64 is arranged to prevent movement of the actuator member 30 towards the base member 38 and an unlocked state in which the locking tab portion 64 is detached from the slide member 34.
The exemplary locking tab portion 64 is formed as part of the slide member 34, and this structure is preferred; however, the locking tab portion 64 may be formed on any member of the actuator assembly 24 or even on the base member 38 or the container assembly 22. In any configuration, the locking tab portion 64 is arranged to prevent movement of the actuator assembly 24 from its first position to its second position and then detached to allow such movement.
The finger portion 60 of the slide member 34 is sized and dimensioned to engage the nozzle member 32 as the slide member 34 moves along the outlet axis A. In particular, when the slide member 34 is in a first end position relative to the nozzle member 32, the outlet portion 50 of the nozzle member 32 is not deformed; the effective area of the outlet opening 52 is thus determined by the diameter of the nozzle member 32 when not deformed. As the slide member 34 moves from the first end position to a second end position, the finger portion 60 engages and deforms the nozzle member 32 such that the effective area of the outlet opening 52 reduces. And as the slide member 36 moves back to the first end position from the second end position, the resilient nozzle member 32 returns to its original, non-deformed configuration.
Accordingly, when rotated about the outlet axis, the collar member 36 causes the effective area of the outlet opening 52 to vary continuously from a first value corresponding to the first end position of the slide member 36 down to a second value corresponding to the second end position of the slide member 36.
The ability to vary the effective cross-sectional area of the outlet opening 52 is important with certain materials. For example, texture material may be dispensed in different texture patterns to match an existing texture pattern.
The structure employed to vary the cross-sectional area of the outlet opening may be different from that disclosed above. In addition, the present invention in its broadest form does not require the use of an actuator assembly having a variable outlet opening. The actuator assembly 24 depicted herein, while desirable for dispensing texture material, is not the only actuator assembly that may be used to implement the principles of the present invention.
The actuator assembly 24 is assembled as follows. The base member 38 is first attached to the container assembly 22. The stem portion 42 of the actuator member 30 is then inserted through the through opening 84 in the base member 38 until it engages the valve assembly within the container assembly 22. The collar member 36 is then arranged behind the actuator member 30 with the rail portion 70 thereof engaging the groove 82 in the base portion 38. The slide member 34 is then displaced along the outlet axis A towards the collar member 36 until the male threaded portion 62 of the slide member 34 engages the female threaded portion 72 of the collar member 36. The collar member 36 is then rotated relative to the slide member 34 such that the slide member 34 is drawn towards the collar member 36. The slide member 34 eventual reaches a locked location at which a notch 90 in the locking tab portion 64 engages a projection 92 on the base member 38.
Accordingly, with the actuator assembly 24 in its locked stated, the projection 92 engages the notch 90 to prevent further movement of the slide member 34 towards the collar member 36. The projection 92 also engages the notch 90 to prevent the slide member 34 from rotating up relative to the base member 38.
The aerosol system 20 will normally be shipped and stored with the actuator assembly 24 in its locked state. The locking tab portion 64 will help prevent accidental discharge of the liquid product. The locking tab portion 64 ensures that tampering without leaving evidence of such tampering takes significant effort (i.e., disassembly of the actuator assembly). Further, if the locking tab portion 64 is removed, this is evidence of tampering that allows manufacturers, distributors, and retailers to determine when and where the tampering is occurring.
2. Second Embodiment
Referring now to
The aerosol system 120 comprises a container assembly 122, an actuator assembly 124, and a valve assembly (not shown). The actuator assembly 124 comprises an actuator member 130, a nozzle member 132, a slide member 134, and a collar member 136. A base member 138 is mounted on the container assembly 122.
The actuator member 130 comprises a nozzle portion (not shown) and a stem portion (not shown) and defines at least a portion of a discharge passageway. The slide member 134 comprises a finger portion 160, a male threaded portion (not shown), a locking tab portion 164, and a button portion 166. The collar member 136 defines a rail portion 170 and a female threaded portion (not shown). The base member 138 comprises a mounting portion 180 and defines groove portions 182, a through opening (not shown), and a pair of ear members 186.
As with the aerosol system 20 described above, under certain conditions depressing the button portion 166 places the valve assembly in an open configuration to allow liquid product to be dispensed from the container 122 through the discharge passageway.
The aerosol system 120 differs from the system 20 in that the ear members 186 extend from the mounting portion 180 a distance F that is significantly larger than the distance that the ear members 86 extend from the mounting portion 80. As perhaps best shown in
A load applied on the top of the aerosol system 20 will thus engage the ear members 186 before engaging the button upper surface 192. The ear members 186 can be made in a geometric configuration that can bear loads that are significantly greater than the loads that can be carried by, for example, a conventional cap (not shown) commonly used to cover and protect the actuator assembly of an aerosol system. The ear members 186 can also be made to bear loads larger than those that can be borne by the tab portion 164 of the slide member 132. The ear members 186 thus significantly increase the ability of the aerosol system 20 to bear top loads such as those that would be created by stacking heavy items on a container carrying a plurality of systems 120.
3. Third Embodiment
Referring now to
The aerosol system 220 comprises a container assembly 222, an actuator assembly 224, and a valve assembly (not shown). The actuator assembly 224 comprises an actuator member 230, a nozzle member 232, a slide member 234, and a collar member 236. A base member 238 is mounted on the container assembly 222.
The actuator member 230 comprises a nozzle portion (not shown) and a stem portion (not shown) and defines at least a portion of a discharge passageway. The slide member 234 comprises a finger portion 260, a male threaded portion (not shown) and a button portion 266. The collar member 236 defines a rail portion 270 and a female threaded portion (not shown). The base member 238 comprises a mounting portion 280 and defines groove portions 282, a through opening (not shown), and ear portions 286.
As with the aerosol systems 20 and 120 described above, under certain conditions depressing the button portion 266 places the valve assembly in an open configuration to allow liquid product to be dispensed from the container 222 through the discharge passageway.
The aerosol system 120 differs from the systems 20 and 120 in that the actuator assembly 224 further comprises a tab member 290. The actuator assembly 224 is placed in its locked configuration by arranging the tab member 290 to engage the button portion 266 and the ear members 286. When the actuator assembly 24 is in its locked configuration, the button portion 266 cannot move relative to the ear members 286 under normal conditions. The tab member 290 thus functions as a tab portion that prevents movement of the actuator assembly 24 from its first position to its second position when attached to the button portion 266.
More specifically, the tab member 290 defines a locking channel 292 and a pair of elbow portions 294. The button portion 266 is sized and dimensioned to be received within the locking channel 292. The tab member 290 is moved into a locked position by displacing the member 290 such that the locking channel 292 receives at least a portion of the button portion 266. The tab member 290 can move only in a removal direction from the locked position, with friction maintaining the tab member on the button portion 266. When the tab member 290 is in the locked position, the elbow portions 294 engage upper surfaces 296 formed on the ear members 286. The elbow portions 294 bridge over the top of the button portion 266 and suspend the button portion 266 below the locking channel 292.
The tab member 290 thus protects the button portion 266 from top loads by forming a structural member that extends over the top of the button portion 266 and also prevents inadvertent depressing of the button portion 266. A tamper seal may be adhered to the tab member 290 and the button portion 266 such that the tamper seal must be destroyed before the tab member 290 is detached from the button portion 266. Such a tamper seal will allow detection of tampering.
The exemplary tab member 290 engages the button portion 266 using a rail and channel, other attachment systems may be used. For example, a peg that frictionally engages a peg, a snap fit, a temporary adhesive or the like may be used as attachment systems. Generally speaking, any such attachment system should require the tab member 290 to be displaced relative to the button portion in a direction perpendicular to the direction in which the button portion 266 is pressed. This avoids moving the actuator assembly 24 from its first to its second position while attaching the tab member 290 to the button portion 266.
4. Fourth Embodiment
Referring now to
The aerosol system 320 comprises a container assembly 322, an actuator assembly 324, and a valve assembly (not shown) mounted on the container assembly 322. The container assembly 322 and valve assembly are or may be conventional and will not be described herein in detail. As shown in
The actuator assembly 324 comprises an actuator member 330 and a nozzle member 332. The actuator member 330 defines at least a portion of a discharge passageway and comprises a nozzle portion 340 and a stem portion (not shown in
The discharge passageway defined by the actuator member 330 and nozzle member 332 may define a fixed outlet opening, or the outlet opening defined thereby may be adjustable as with the systems 20, 120, and 220 described above. If the discharge passageway is fixed, the functions of the actuator member 330 and nozzle member 332 may be implemented in a single part.
Initial fabrication of the aerosol system 320 is accomplished by engaging the male threaded portion 354 of the nozzle member 332 with the internal threaded portion of the actuator member 330 to form the actuator assembly 324. The stem portion of the actuator member 330 is then engaged with the valve assembly to form the aerosol system 320.
When the actuator assembly 324 is initially placed on the container assembly 322, the system 320 is in a locked configuration. In particular, the locking tab portion 350 comprises a lock portion 370, a connecting portion 372, and a handle portion 374. The lock portion 370 is connected to or integrally formed with the nozzle portion 340 of the actuator member 330 at a break line 376. The connecting portion 372 connects the lock portion 370 to the handle portion 374.
When the system 320 is in the locked configuration, the lock portion 370 is arranged between the nozzle portion 352 of the actuator member 330 and the container assembly 322. When an actuating force is applied to the button portion 356, the lock portion 370 prevents the actuator member 330 from moving towards the container assembly 322. The lock member 370 thus prevents movement of the actuator member 330 relative to the container assembly 322 that would place the valve assembly in its open configuration and cause product within the container assembly 322 to be dispensed.
To remove the system 320 from the locked configuration, the handle portion 374 is rotated or twisted to cause the locking tab portion 350 separate from the nozzle portion 340 at the break line 376. With the lock portion 370 no longer arranged between the container assembly 322 and the nozzle portion 352 of the actuator member 330, the aerosol assembly 320 is in an unlocked configuration. When the aerosol assembly is in the unlocked configuration, the actuator member 330 is free to travel toward the container assembly 322. Depressing the button portion 356 of the nozzle member 332 when the system 320 is in the unlocked position thus causes the valve assembly to open, thereby allowing material within the container assembly 322 to be dispensed along the discharge passageway.
If used, the base member 326 is secured to the container assembly 322 such that the lock member 370 engages the stop surface 364 of the base member 326 when the system 320 is in the locked configuration. In this case, the lock member 370 indirectly engages the container assembly 322 through the base member 326.
The ear portions 362 of the base member 326 extend at least partly along opposing sides of the actuator assembly 324. The ear portions 362 thus protect the actuator assembly 324 from at least side impacts.
5. Fifth Embodiment
Referring now to
The aerosol system incorporating the example actuator system 420 comprises a container assembly and a valve assembly mounted on the container assembly as generally described above. The container assembly and valve assembly are or may be conventional and will not be described herein in detail.
The dispensing assembly 420 comprises a base member 430, an actuator member 432, an outlet member 434, a collar member 436, and a selector member 438. The base member 430 is adapted to engage the container assembly of the aerosol system. The actuator member 432 extends through the base member 430 to engage the valve assembly of the aerosol system. The actuator member 432 further supports the resilient outlet member 434.
With the actuator member 432 supporting the outlet member 434, the actuator member 432 and outlet member 434 define an outlet passageway through which material is dispensed from the container assembly and through the valve assembly. The outlet passageway terminates in an outlet opening defined by the outlet member 434. The collar member 436 extends around a portion of the actuator member 432. The selector member 438 engages the base member 430 and the collar member 436 such that rotation of the selector member 438 relative to the collar member 436 displaces the collar member 436 relative to the actuator member 432. As the collar member 436 is displaced relative to the actuator member 432, the collar member 436 acts on the actuator member 432 such that the outlet member 434 is deformed. Deforming the outlet member 434 alters the cross-sectional area of the outlet opening defined by the outlet member 434.
Referring for a moment now to
As shown by a comparison of
Turning now to
The internal selector threaded portion 466 is sized and dimensioned to receive the collar threaded portion 446. When the collar threaded portion 446 is received by the selector threaded portion 466, rotation of the selector member 438 relative to the collar member 436 displaces the collar member 436 relative to the selector member 438 as will be described in further detail below.
In addition, when the threaded portions 466 and 446 engage each other, the lock projection 448 of the collar member 436 is located to engage the flange portion 464 of the selector member 438. Depending upon an angular relationship between the collar member 436 and selector member 438, the lock projection 448 may extend into the storage notch 464a or one of the ratchet notches 464b in the flange portion 464.
The engagement of the lock projection 448 with the notch 464a or one of the notches 464b in the flange portion 464 can fix an angular relationship between the collar member 436 and the selector member 438 against inadvertent movement. However, the deliberate application of manual force can rotate the selector member 438 relative to the collar member 436 when a change in the angular relationship therebetween is desired.
Turning now to
The first and second supports 472 and 474 extend from the container engaging portion 470. The alignment groove 476 extends along the inner surfaces of the supports 472 and 474. The bottom opening 478 allows access through the base member 430 as will be described in detail below.
Turning now to
The example outlet member 434 is a cylindrical tube 490 made of resilient material that defines an outlet passageway 492. One end of the outlet member 434 defines an outlet opening 494. The other end of the outlet member 434 defines a seat opening 496 that is sized and dimensioned to receive the outlet seat 486.
To combine the members 430, 432, 434, 436, and 438 to obtain the dispensing assembly 420, the outlet member 434 is first placed within the finger portions 482 of the actuator member 432 such that the seat opening 496 snugly fits over the outlet seat 486 as shown in
The actuator member 432, with the outlet member 434 supported thereby, is then placed within the collar chamber 450 defined by the collar member 436 as perhaps best shown in
Again as shown in
The actuator member 432, outlet member 434, collar member 436, and selector member 438 are then displaced such that the valve stem 484 extends through the bottom opening 478 in the base member 430 (
Initially, with the security tab 442 in place as shown, as examples, in
As shown in
To change a cross-sectional area of the outlet opening 494, selector member 438 is rotated as shown by arrow A in
As shown in
As perhaps best shown in
Because the outlet member 434 is arranged within the finger portions 482, the finger portions 482 squeeze the outlet member 434 when the selector member 438 is rotated in the direction shown by arrows A and B in
Further, when the angular orientation of the selector member 438 relative to the collar member 436 is between the positions shown in
From the foregoing, it should be clear that the present invention may be embodied in forms other than those described above. The above-described systems are therefore to be considered in all respects illustrative and not restrictive, the scope of the invention being indicated by the appended claims rather than the foregoing description. All changes that come within the meaning and scope of the claims are intended to be embraced therein.
This application, U.S. patent application Ser. No. 13/742,232 filed Jan. 15, 2013, is a continuation of U.S. patent application Ser. No. 13/271,045 filed Oct. 11, 2011. U.S. patent application Ser. No. 13/271,045 is a continuation of U.S. patent application Ser. No. 12/401,495 filed Mar. 10, 2009, now U.S. Pat. No. 8,033,484, which issued on Oct. 11, 2011. U.S. patent application Ser. No. 12/401,495 is a continuation of U.S. application Ser. No. 11/502,250, filed Aug. 9, 2006, now U.S. Pat. No. 7,500,621, which issued on Mar. 10, 2009. U.S. application Ser. No. 11/502,250 is a continuation-in-part of U.S. patent application Ser. No. 10/411,779, filed on Apr. 10, 2003, now abandoned. The contents of all related applications are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
208330 | Palmer | Sep 1878 | A |
351968 | Derrick | Nov 1886 | A |
D25916 | Woods | Aug 1896 | S |
568876 | Regan | Oct 1896 | A |
579418 | Bookwalter | Mar 1897 | A |
582397 | Shone | May 1897 | A |
604151 | Horn | May 1898 | A |
625594 | Oldham | May 1899 | A |
658586 | Reiling | Sep 1900 | A |
930095 | Seagrave | Aug 1909 | A |
931757 | Harmer | Aug 1909 | A |
941671 | Campbell | Nov 1909 | A |
1093907 | Birnbaum | Apr 1914 | A |
1154974 | Custer | Sep 1915 | A |
1162170 | Johnson | Nov 1915 | A |
1294190 | Sturcke | Feb 1919 | A |
1332544 | Davis | Mar 1920 | A |
1486156 | Needham | Mar 1924 | A |
1590430 | Erby | Jun 1926 | A |
1609465 | Day | Dec 1926 | A |
1643969 | Tittemore et al. | Oct 1927 | A |
1650686 | Binks | Nov 1927 | A |
1656132 | Arrasmith et al. | Jan 1928 | A |
1809073 | Schylander | Oct 1928 | A |
1755329 | McCormack | Apr 1930 | A |
1770011 | Poston | Jul 1930 | A |
1863924 | Dunn | Jun 1932 | A |
1988017 | Norwick | Jan 1935 | A |
2127188 | Schellin et al. | Aug 1938 | A |
2149930 | Plastaras | Mar 1939 | A |
2198271 | McCallum | Apr 1940 | A |
D134562 | Murphy | Jul 1942 | S |
2305269 | Moreland | Dec 1942 | A |
2307014 | Becker et al. | Jan 1943 | A |
2320964 | Yates | Jun 1943 | A |
2353318 | Scheller | Jul 1944 | A |
2388093 | Smith | Oct 1945 | A |
2530808 | Cerasi | Nov 1950 | A |
2565954 | Dey | Aug 1951 | A |
2612293 | Michel | Sep 1952 | A |
2686652 | Carlson et al. | Aug 1954 | A |
2704690 | Echenauer | Mar 1955 | A |
2723200 | Pyenson | Nov 1955 | A |
2763406 | Countryman | Sep 1956 | A |
2764454 | Edelstein | Sep 1956 | A |
2923481 | Pinke | Feb 1957 | A |
2785926 | Lataste | Mar 1957 | A |
2790680 | Rosholt | Apr 1957 | A |
2801880 | Rienecker | Aug 1957 | A |
2831618 | Soffer et al. | Apr 1958 | A |
2839225 | Soffer et al. | Jun 1958 | A |
2887274 | Swenson | May 1959 | A |
2908446 | Strouse | Oct 1959 | A |
2932434 | Abplanalp | Apr 1960 | A |
2965270 | Soffer et al. | Dec 1960 | A |
2968441 | Holcomb | Jan 1961 | A |
2976897 | Beckworth | Mar 1961 | A |
2997243 | Kolb | Aug 1961 | A |
2999646 | Wagner | Sep 1961 | A |
3027096 | Giordano | Mar 1962 | A |
3083872 | Meshberg | Apr 1963 | A |
3107059 | Frechette | Oct 1963 | A |
3116879 | Wagner | Jan 1964 | A |
3157360 | Heard | Nov 1964 | A |
3167525 | Thomas | Jan 1965 | A |
3191809 | Schultz et al. | Jun 1965 | A |
3196819 | Lechner et al. | Jul 1965 | A |
3198394 | Lefer | Aug 1965 | A |
3207444 | Kelley et al. | Sep 1965 | A |
3216628 | Fergusson | Nov 1965 | A |
3236459 | McRitchie | Feb 1966 | A |
3246850 | Bourke | Apr 1966 | A |
3258208 | Greenebaum, II | Jun 1966 | A |
3284007 | Clapp | Nov 1966 | A |
3307788 | Ingram | Mar 1967 | A |
3314571 | Greenebaum, II | Apr 1967 | A |
3317140 | Smith | May 1967 | A |
3342382 | Huling | Sep 1967 | A |
3346195 | Groth | Oct 1967 | A |
3373908 | Crowell | Mar 1968 | A |
3377028 | Bruggeman | Apr 1968 | A |
3390121 | Burford | Jun 1968 | A |
3414171 | Grisham et al. | Dec 1968 | A |
3415425 | Knight et al. | Dec 1968 | A |
3425600 | Abplanalp | Feb 1969 | A |
3428224 | Eberhardt et al. | Feb 1969 | A |
3433391 | Krizka et al. | Mar 1969 | A |
3445068 | Wagner | May 1969 | A |
3450314 | Gross | Jun 1969 | A |
3467283 | Kinnavy | Sep 1969 | A |
3472457 | McAvoy | Oct 1969 | A |
3482738 | Bartels | Dec 1969 | A |
3491951 | Knibb | Jan 1970 | A |
3498541 | Taylor, Jr. et al. | Mar 1970 | A |
3513886 | Easter et al. | May 1970 | A |
3514042 | Freed | May 1970 | A |
3544258 | Presant et al. | Dec 1970 | A |
3548564 | Bruce et al. | Dec 1970 | A |
3550861 | Teson | Dec 1970 | A |
3575319 | Safianoff | Apr 1971 | A |
3592359 | Marraffino | Jul 1971 | A |
3596835 | Smith | Aug 1971 | A |
3608822 | Berthoud | Sep 1971 | A |
3613954 | Bayne | Oct 1971 | A |
3647143 | Gauthier et al. | Mar 1972 | A |
3648932 | Ewald et al. | Mar 1972 | A |
3653558 | Shay | Apr 1972 | A |
3680789 | Wagner | Aug 1972 | A |
3698645 | Coffey | Oct 1972 | A |
3700136 | Ruekberg | Oct 1972 | A |
3703994 | Nigro | Nov 1972 | A |
3704811 | Harden, Jr. | Dec 1972 | A |
3704831 | Clark | Dec 1972 | A |
3705669 | Cox et al. | Dec 1972 | A |
3711030 | Jones | Jan 1973 | A |
3764067 | Coffey et al. | Oct 1973 | A |
3770166 | Marand | Nov 1973 | A |
3773706 | Dunn, Jr. | Nov 1973 | A |
3776470 | Tsuchiya | Dec 1973 | A |
3776702 | Chant | Dec 1973 | A |
3777981 | Probst et al. | Dec 1973 | A |
3788521 | Laauwe | Jan 1974 | A |
3788526 | Thornton et al. | Jan 1974 | A |
3795366 | McGhie et al. | Mar 1974 | A |
3799398 | Morane et al. | Mar 1974 | A |
3806005 | Prussin et al. | Apr 1974 | A |
3811369 | Ruegg | May 1974 | A |
3813011 | Harrison et al. | May 1974 | A |
3814326 | Bartlett | Jun 1974 | A |
3819119 | Coffey et al. | Jun 1974 | A |
3828977 | Borchert | Aug 1974 | A |
3848778 | Meshberg | Nov 1974 | A |
3848808 | Fetty et al. | Nov 1974 | A |
3862705 | Beres et al. | Jan 1975 | A |
3871553 | Steinberg | Mar 1975 | A |
3876154 | Griebel | Apr 1975 | A |
3891128 | Smrt | Jun 1975 | A |
3899134 | Wagner | Aug 1975 | A |
3912132 | Stevens | Oct 1975 | A |
3913803 | Laauwe | Oct 1975 | A |
3913804 | Laauwe | Oct 1975 | A |
3913842 | Singer | Oct 1975 | A |
D237796 | Wagner | Nov 1975 | S |
3932973 | Moore | Jan 1976 | A |
3936002 | Geberth, Jr. | Feb 1976 | A |
3938708 | Burger | Feb 1976 | A |
3945571 | Rash | Mar 1976 | A |
3975554 | Kummins et al. | Aug 1976 | A |
3982698 | Anderson | Sep 1976 | A |
3987811 | Finger | Oct 1976 | A |
3989165 | Shaw et al. | Nov 1976 | A |
3991916 | Del Bon | Nov 1976 | A |
3992003 | Visceglia et al. | Nov 1976 | A |
4010134 | Braunisch et al. | Mar 1977 | A |
4032064 | Giggard | Jun 1977 | A |
4036438 | Soderlind et al. | Jul 1977 | A |
4036673 | Murphy et al. | Jul 1977 | A |
4045860 | Winckler | Sep 1977 | A |
4058287 | Fromfield | Nov 1977 | A |
4078578 | Buchholz | Mar 1978 | A |
4089443 | Zrinyi | May 1978 | A |
4096974 | Haber et al. | Jun 1978 | A |
4117951 | Winckler | Oct 1978 | A |
4123005 | Blunk | Oct 1978 | A |
4129448 | Greenfield et al. | Dec 1978 | A |
4147284 | Mizzi | Apr 1979 | A |
4148416 | Gunn-Smith | Apr 1979 | A |
4154378 | Paoletti et al. | May 1979 | A |
4159079 | Phillips, Jr. | Jun 1979 | A |
4164492 | Cooper | Aug 1979 | A |
RE30093 | Burger | Sep 1979 | E |
4171757 | Diamond | Oct 1979 | A |
4185758 | Giggard | Jan 1980 | A |
4187959 | Pelton | Feb 1980 | A |
4187985 | Goth | Feb 1980 | A |
4195780 | Inglis | Apr 1980 | A |
4198365 | Pelton | Apr 1980 | A |
4202470 | Fujii | May 1980 | A |
4204645 | Hopp | May 1980 | A |
4232828 | Shelly, Jr. | Nov 1980 | A |
4238264 | Pelton | Dec 1980 | A |
4258141 | Jarre et al. | Mar 1981 | A |
4275172 | Barth et al. | Jun 1981 | A |
4293353 | Pelton et al. | Oct 1981 | A |
4308973 | Irland | Jan 1982 | A |
4310108 | Motoyama et al. | Jan 1982 | A |
4322020 | Stone | Mar 1982 | A |
4346743 | Miller | Aug 1982 | A |
4354638 | Weinstein | Oct 1982 | A |
4358388 | Daniel et al. | Nov 1982 | A |
4364521 | Stankowitz | Dec 1982 | A |
4370930 | Strasser et al. | Feb 1983 | A |
4372475 | Goforth et al. | Feb 1983 | A |
4401271 | Hansen | Aug 1983 | A |
4401272 | Merton et al. | Aug 1983 | A |
4411387 | Stern et al. | Oct 1983 | A |
4417674 | Giuffredi | Nov 1983 | A |
4434939 | Stankowitz | Mar 1984 | A |
4438221 | Fracalossi et al. | Mar 1984 | A |
4438884 | O'Brien et al. | Mar 1984 | A |
4442959 | Del Bon et al. | Apr 1984 | A |
4460719 | Danville | Jul 1984 | A |
4482662 | Rapaport et al. | Nov 1984 | A |
4496081 | Farrey | Jan 1985 | A |
4546905 | Nandagiri et al. | Oct 1985 | A |
4595127 | Stoody | Jun 1986 | A |
4609608 | Solc | Sep 1986 | A |
4620669 | Polk | Nov 1986 | A |
4641765 | Diamond | Feb 1987 | A |
4683246 | Davis et al. | Jul 1987 | A |
4685622 | Shimohira et al. | Aug 1987 | A |
4702400 | Corbett | Oct 1987 | A |
4706888 | Dobbs | Nov 1987 | A |
4728007 | Samuelson et al. | Mar 1988 | A |
4744495 | Warby | May 1988 | A |
4744516 | Peterson et al. | May 1988 | A |
4761312 | Koshi et al. | Aug 1988 | A |
4792062 | Goncalves | Dec 1988 | A |
4793162 | Emmons | Dec 1988 | A |
4804144 | Denman | Feb 1989 | A |
4815414 | Duffy et al. | Mar 1989 | A |
4819838 | Hart, Jr. | Apr 1989 | A |
4830224 | Brison | May 1989 | A |
4839393 | Buchanan et al. | Jun 1989 | A |
4850387 | Bassill | Jul 1989 | A |
4854482 | Bergner | Aug 1989 | A |
4863104 | Masterson | Sep 1989 | A |
4870805 | Morane | Oct 1989 | A |
4878599 | Greenway | Nov 1989 | A |
4887651 | Santiago | Dec 1989 | A |
4893730 | Bolduc | Jan 1990 | A |
4896832 | Howlett | Jan 1990 | A |
D307649 | Henry | May 1990 | S |
4940171 | Gilroy | Jul 1990 | A |
4948054 | Mills | Aug 1990 | A |
4949871 | Flanner | Aug 1990 | A |
4951876 | Mills | Aug 1990 | A |
4953759 | Schmidt | Sep 1990 | A |
4954544 | Chandaria | Sep 1990 | A |
4955545 | Stern et al. | Sep 1990 | A |
4961537 | Stern | Oct 1990 | A |
4969577 | Werding | Nov 1990 | A |
4969579 | Behar | Nov 1990 | A |
4988017 | Schrader et al. | Jan 1991 | A |
4989787 | Nikkel et al. | Feb 1991 | A |
4991750 | Moral | Feb 1991 | A |
5007556 | Lover | Apr 1991 | A |
5009390 | McAuliffe, Jr. et al. | Apr 1991 | A |
5037011 | Woods | Aug 1991 | A |
5038964 | Bouix | Aug 1991 | A |
5039017 | Howe | Aug 1991 | A |
5052585 | Bolduc | Oct 1991 | A |
5059187 | Sperry et al. | Oct 1991 | A |
5065900 | Scheindel | Nov 1991 | A |
5069390 | Stern et al. | Dec 1991 | A |
5083685 | Amemiya et al. | Jan 1992 | A |
5100055 | Rokitenetz et al. | Mar 1992 | A |
5115944 | Nikolich | May 1992 | A |
5126086 | Stoffel | Jun 1992 | A |
5150880 | Austin, Jr. et al. | Sep 1992 | A |
5169037 | Davies et al. | Dec 1992 | A |
5182316 | DeVoe et al. | Jan 1993 | A |
5188263 | Woods | Feb 1993 | A |
5188295 | Stern et al. | Feb 1993 | A |
5211317 | Diamond et al. | May 1993 | A |
5219609 | Owens | Jun 1993 | A |
5232161 | Clemmons | Aug 1993 | A |
5255846 | Ortega | Oct 1993 | A |
5277336 | Youel | Jan 1994 | A |
5288024 | Vitale | Feb 1994 | A |
5297704 | Stollmeyer | Mar 1994 | A |
5307964 | Toth | May 1994 | A |
5310095 | Stern et al. | May 1994 | A |
5312888 | Nafziger et al. | May 1994 | A |
5314097 | Smrt et al. | May 1994 | A |
5323963 | Ballu | Jun 1994 | A |
5341970 | Woods | Aug 1994 | A |
5360127 | Barriac et al. | Nov 1994 | A |
5368207 | Cruysberghs | Nov 1994 | A |
5374434 | Clapp et al. | Dec 1994 | A |
5405051 | Miskell | Apr 1995 | A |
5409148 | Stern et al. | Apr 1995 | A |
5415351 | Otto et al. | May 1995 | A |
5417357 | Yquel | May 1995 | A |
D358989 | Woods | Jun 1995 | S |
5421519 | Woods | Jun 1995 | A |
5425824 | Marwick | Jun 1995 | A |
5443211 | Young et al. | Aug 1995 | A |
5450983 | Stern et al. | Sep 1995 | A |
5467902 | Yquel | Nov 1995 | A |
5476879 | Woods et al. | Dec 1995 | A |
5489048 | Stern et al. | Feb 1996 | A |
5498282 | Miller et al. | Mar 1996 | A |
5501375 | Nilson | Mar 1996 | A |
5505344 | Woods | Apr 1996 | A |
5523798 | Hagino et al. | Jun 1996 | A |
5524798 | Stern et al. | Jun 1996 | A |
5544783 | Conigliaro | Aug 1996 | A |
5548010 | Franer | Aug 1996 | A |
5549228 | Brown | Aug 1996 | A |
5558247 | Caso | Sep 1996 | A |
5562235 | Cruysberghs | Oct 1996 | A |
5570813 | Clark, II | Nov 1996 | A |
5573137 | Pauls | Nov 1996 | A |
5583178 | Oxman et al. | Dec 1996 | A |
5597095 | Ferrara, Jr. | Jan 1997 | A |
5615804 | Brown | Apr 1997 | A |
5639026 | Woods | Jun 1997 | A |
5641095 | de Laforcade | Jun 1997 | A |
5645198 | Stern et al. | Jul 1997 | A |
5655691 | Stern et al. | Aug 1997 | A |
5715975 | Stern et al. | Feb 1998 | A |
5727736 | Tryon | Mar 1998 | A |
5752631 | Yabuno et al. | May 1998 | A |
5775432 | Burns et al. | Jul 1998 | A |
5792465 | Hagarty | Aug 1998 | A |
5799879 | Ottl et al. | Sep 1998 | A |
5865351 | De Laforcade | Feb 1999 | A |
5887756 | Brown | Mar 1999 | A |
5894964 | Barnes et al. | Apr 1999 | A |
5915598 | Yazawa et al. | Jun 1999 | A |
5921446 | Stern | Jul 1999 | A |
5934518 | Stern et al. | Aug 1999 | A |
5941462 | Sandor | Aug 1999 | A |
5957333 | Losenno et al. | Sep 1999 | A |
5975356 | Yquel et al. | Nov 1999 | A |
5979797 | Castellano | Nov 1999 | A |
5988575 | Lesko | Nov 1999 | A |
6000583 | Stern et al. | Dec 1999 | A |
6027042 | Smith | Feb 2000 | A |
6032830 | Brown | Mar 2000 | A |
6039306 | Pericard et al. | Mar 2000 | A |
6062494 | Mills | May 2000 | A |
6070770 | Tada et al. | Jun 2000 | A |
6092698 | Bayer | Jul 2000 | A |
6095377 | Sweeton et al. | Aug 2000 | A |
6095435 | Greer, Jr. et al. | Aug 2000 | A |
6112945 | Woods | Sep 2000 | A |
6113070 | Holzboog | Sep 2000 | A |
6116473 | Stern et al. | Sep 2000 | A |
6126090 | Wadsworth et al. | Oct 2000 | A |
6129247 | Thomas et al. | Oct 2000 | A |
6131777 | Warby | Oct 2000 | A |
6131820 | Dodd | Oct 2000 | A |
6152335 | Stern et al. | Nov 2000 | A |
6161735 | Uchiyama et al. | Dec 2000 | A |
6168093 | Greer, Jr. et al. | Jan 2001 | B1 |
6170717 | Di Giovanni et al. | Jan 2001 | B1 |
D438111 | Woods | Feb 2001 | S |
D438786 | Ghali | Mar 2001 | S |
6225393 | Woods | May 2001 | B1 |
6227411 | Good | May 2001 | B1 |
6254015 | Abplanalp | Jul 2001 | B1 |
6257503 | Baudin | Jul 2001 | B1 |
6261631 | Lomasney et al. | Jul 2001 | B1 |
6265459 | Mahoney et al. | Jul 2001 | B1 |
6276570 | Stern et al. | Aug 2001 | B1 |
6283171 | Blake | Sep 2001 | B1 |
6284077 | Lucas et al. | Sep 2001 | B1 |
6290104 | Bougamont et al. | Sep 2001 | B1 |
6291536 | Taylor | Sep 2001 | B1 |
6296155 | Smith | Oct 2001 | B1 |
6296156 | Lasserre et al. | Oct 2001 | B1 |
6299679 | Montoya | Oct 2001 | B1 |
6299686 | Mills | Oct 2001 | B1 |
6315152 | Kalisz | Nov 2001 | B1 |
6325256 | Liljeqvist et al. | Dec 2001 | B1 |
6328185 | Stern et al. | Dec 2001 | B1 |
6328197 | Gapihan | Dec 2001 | B1 |
6333365 | Lucas et al. | Dec 2001 | B1 |
6352184 | Stern et al. | Mar 2002 | B1 |
6362302 | Boddie | Mar 2002 | B1 |
6375036 | Woods | Apr 2002 | B1 |
6382474 | Woods et al. | May 2002 | B1 |
6386402 | Woods | May 2002 | B1 |
6394321 | Bayer | May 2002 | B1 |
6394364 | Abplanalp | May 2002 | B1 |
6395794 | Lucas et al. | May 2002 | B2 |
6398082 | Clark et al. | Jun 2002 | B2 |
6399687 | Woods | Jun 2002 | B2 |
6414044 | Taylor | Jul 2002 | B2 |
6415964 | Woods | Jul 2002 | B2 |
6439430 | Gilroy, Sr. et al. | Aug 2002 | B1 |
6446842 | Stern et al. | Sep 2002 | B2 |
6474513 | Burt | Nov 2002 | B2 |
6478198 | Haroian | Nov 2002 | B2 |
6478561 | Braun et al. | Nov 2002 | B2 |
6482392 | Zhou et al. | Nov 2002 | B1 |
6510969 | Di Giovanni et al. | Jan 2003 | B2 |
6520377 | Yquel | Feb 2003 | B2 |
6531528 | Kurp | Mar 2003 | B1 |
6536633 | Stern et al. | Mar 2003 | B2 |
6883688 | Stern et al. | Apr 2005 | B1 |
7278590 | Greer, Jr. et al. | Oct 2007 | B1 |
7303152 | Woods | Dec 2007 | B2 |
7303153 | Woods | Dec 2007 | B2 |
8033484 | Tryon et al. | Oct 2011 | B2 |
20010002676 | Woods | Jun 2001 | A1 |
20020003147 | Corba | Jan 2002 | A1 |
20020100769 | McKune | Aug 2002 | A1 |
20020119256 | Woods | Aug 2002 | A1 |
Number | Date | Country |
---|---|---|
770467 | Oct 1967 | CA |
976125 | Oct 1975 | CA |
1191493 | Aug 1985 | CA |
1210371 | Aug 1986 | CA |
2145129 | Sep 1995 | CA |
2090185 | Oct 1998 | CA |
2291599 | Jun 2000 | CA |
2381994 | Feb 2001 | CA |
2327903 | Jun 2001 | CA |
2065534 | Aug 2003 | CA |
680849 | Nov 1992 | CH |
210449 | May 1909 | DE |
250831 | Sep 1912 | DE |
634230 | Aug 1936 | DE |
1047686 | Dec 1958 | DE |
1926796 | Mar 1970 | DE |
3527922 | Dec 1987 | DE |
3808438 | Apr 1989 | DE |
3806991 | Sep 1989 | DE |
463476 | Feb 1914 | FR |
84727 | Apr 1964 | FR |
1586067 | Feb 1970 | FR |
2336186 | Jul 1977 | FR |
2659847 | Sep 1991 | FR |
470488 | Nov 1935 | GB |
491396 | Sep 1938 | GB |
494134 | Oct 1938 | GB |
508734 | Jul 1939 | GB |
534349 | Mar 1941 | GB |
675664 | Jul 1952 | GB |
726455 | Mar 1955 | GB |
867713 | May 1961 | GB |
977860 | Dec 1964 | GB |
1144385 | May 1969 | GB |
1536312 | Dec 1978 | GB |
461392 | Jan 1971 | JP |
8332414 | Jun 1995 | JP |
8000344 | Aug 1981 | NL |
9418094 | Aug 1994 | WO |
Entry |
---|
ASTM Designation: G61-86, Standard Test Method for Conducting Cyclic Potentiodynamic Polarization Measurements for Localized Corrosion Susceptibility of Iron-Nickel-, or Cobalt-Based Alloys, (Reapproved 1993), pp. 238-242, Philadelphia, PA. |
Homax Products, Inc., “Easy Touch Spray Texture Brochure”, Mar. 1992, 1 page. |
Newman-Green, Inc., “Aerosol Valves, Sprayheads & Accessories Catalog”, Apr. 1, 1992, pp. 14, 20, and 22. |
W. S. Tait, An Introduction to Electrochemical Corrosion Testing for Practicing Engineers and Scientists, 1994, Chapter 6, pp. 63-77, Pair O Docs Publications, Racine, WI. |
Saint-Gobain Calmar; “Mixor HP Trigger Sprayer Brochure”, Dec. 2001; 2 pages. |
Number | Date | Country | |
---|---|---|---|
20130126632 A1 | May 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13271045 | Oct 2011 | US |
Child | 13742232 | US | |
Parent | 12401495 | Mar 2009 | US |
Child | 13271045 | US | |
Parent | 11502250 | Aug 2006 | US |
Child | 12401495 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10411779 | Apr 2003 | US |
Child | 11502250 | US |