The present invention relates to a dispenser unit particularly suitable for a liquid container, comprising an air pump with an air cylinder and an air piston axially displaceable in the air cylinder, an air space defined between the air cylinder and the air piston, supply-closing means for closing the air supply to the air pump, discharge-closing means for closing the air discharge from the air pump, an axially displaceable activating element for activating the air pump, and an air inlet opening in the activating element.
Such a dispenser unit is known from for instance WO 2004/069418. The dispenser unit shown herein is mounted on a liquid container by means of a threaded ring in order to obtain a foam pump. The activating element is formed by a cover with a spout-like dispensing part for dispensing foam. The activating element is movable relative to the liquid container. Product can be dispensed with the foam pump by pressing the activating element.
The object of the present invention is to provide an improved dispenser unit.
The dispenser comprises for this purpose the feature that the air inlet opening debouches in the air space, and that at least a part of the air piston forms the supply-closing means. In this improved dispenser unit the functions of air piston and supply-closing means for the air pump are integrated into one structural component.
In a preferred embodiment said part of the air piston forms a moving part, in particular a moving part of a valve, of the supply-closing means, so that a separate valve part can be omitted.
The part of the air piston forming the supply-closing means is preferably arranged against the inner wall of the activating element and over the air inlet opening. The inner wall of the activating element forms the seat for the air inlet valve.
The air piston is advantageously movable in an axial direction for the purpose of forming the supply-closing means for air. The air inlet valve is opened or closed as a result of the axial movement the air piston performs.
The air piston is preferably movable axially relative to the activating element. In this manner an actively controllable air inlet valve is obtained.
The dispenser unit is further preferably provided with a liquid pump with a liquid cylinder and a liquid piston, wherein a liquid chamber is defined between the liquid cylinder and the liquid piston.
According to a further embodiment, the dispenser unit is further provided with an insert which is connected to the activating element and which comprises a mixing chamber for mixing air from the air pump and liquid from the liquid pump.
The liquid piston of the dispenser unit can then be movable in axial direction relative to the activating element or be fixedly connected to the activating element. When the liquid piston is axially movable relative to the activating element, discharge-closing means for air are hereby formed. The insert preferably forms, together with the liquid piston axially movable relative thereto, the discharge-closing means for air. In the other case, when the liquid piston is connected to the activating element, optionally via the above mentioned insert, the discharge-closing means comprise in a determined embodiment a pressure-controlled air outlet valve. In yet another embodiment, in which the activating element is coupled fixedly to the liquid piston, the discharge-closing means for air are formed by the activating element and the air piston.
According to a preferred embodiment of the invention, the air piston comprises a bottom edge part sealing the air cylinder, a top edge part sealing the air inlet opening, and a sleeve part extending substantially axially between the two edge parts. In addition, the activating element preferably comprises a cover with a spout-like dispensing part. The lower edge part of the cover can be displaced in axial direction over the inner wall of the air cylinder. The air and liquid pumps are operated during this displacement.
Finally, the present invention relates to a dispensing assembly comprising a liquid container and a dispenser unit according to the invention connected thereto.
The invention will be further elucidated with reference to the accompanying drawings. In the drawings:
Reference numeral 1 designates the cover which is provided with a spout-like dispensing part 2 and a casing 3. Casing 3 is provided on the underside with two peripheral edges 4, 5 with which it is in contact with the inner wall of a base part 6 of the dispenser unit. Base part 6 is provided with internal screw thread, by means of which the dispenser unit is screwed onto a liquid container.
An annular support edge 7 with partition wall 8 is situated on the top side of cover 1. A cover member (not shown) can be arranged on support edge 7. A foam-forming element can also be arranged. This element is in contact with partition wall 8 and the product for dispensing passes through this element twice on the way to spout-like dispensing part 2. A cover member which forms an engaging surface for operating the dispenser unit is arranged on top of cover 1, over support edge 7 and partition wall 8.
Reference numeral 9 designates an air piston which, according to the present invention, also serves as supply-closing means for closing the air-supplying air pump.
Finally, reference numeral 10 in
In addition, an air inlet opening 12 is arranged in casing 3 of cover 1. Air will enter the dispenser unit through this opening 12.
The dispenser unit further comprises an air pump with an air cylinder 14 and an air piston 9 axially displaceable on air cylinder 14, an air space 15 defined between the air cylinder and the air piston, supply-closing means for closing the air supply to the air pump and discharge-closing means for closing the air discharge from the air pump. The supply-closing means for closing the air supply to the air pump is formed by the upper edge part 13 of air piston 9, which can co-act with the inner wall of cover 1. Air inlet opening 12 debouches into air space 15. On the opposite side the lower edge part 16 of the air piston is always in sealing contact with air cylinder 14. Air piston 9 can be moved axially relative to cover 1. The air supply to the air pump is closed by pressing in the cover, since the upper edge part 13 of the air piston comes into contact with the inner wall of cover 1. When the cover is pressed in further, air space 15 will be made smaller and the air accommodated therein will therefore be compressed.
The dispenser unit is further provided with a liquid pump which comprises a liquid cylinder 17 and a liquid piston 18. A liquid chamber 19 is situated between liquid cylinder 17 and liquid piston 18. Reference numeral 20 designates the discharge-closing means for closing the liquid discharge from the liquid pump, while reference numeral 21 shows the supply-closing means for closing the liquid supply to the liquid pump. Liquid piston 18 can be moved in axial direction relative to cover 1 for the purpose of forming the discharge-closing means for air. These discharge-closing means for air are formed between bottom edge part 22 of insert 10 and a peripheral rib 23 close to the top side of air piston 18. The discharge-closing means for closing the air discharge from the air pump are actively operated by pressing in cover 1, whereby the insert co-displaces axially in the first instance, and liquid piston 18 will remain stationary. Contact between bottom edge part 22 and peripheral rib 23 is hereby broken, and the compressed air can leave air chamber 15 on the way to mixing chamber 37 (see
The above-described preferred embodiment of the invention comprises an actively controllable air inlet valve mechanism and an actively controllable air outlet valve mechanism. Active is here understood to mean that the supply and discharge of air is controlled directly by displacement of one or more components of the dispenser unit. In the second embodiment to be described hereinbelow there is only an actively controllable air supply valve, while the air discharge is realized in passive manner (using a pressure difference-controlled valve mechanism). An actively controllable valve is also referred to as a “path-controlled” valve, wherein opening and closing takes place by displacing a component over a determined path or route. This in contrast a passively controlled or “pressure-controlled” valve, which is opened or closed as a result of a pressure difference.
In the second exemplary embodiment shown in
The main difference from the embodiment shown in
During the downward stroke the supply-closing means for the air supply are first closed when cover 1 is pressed because the stationary air piston 9 comes into contact with upper edge part 13 thereof against the inner wall of the axially displacing cover 1, as shown in respective details A at top left in
When cover 1 is released the assembly can move upward again. In this embodiment this takes place under the influence of a spring (not shown) similar to the spring shown in
The present invention is not limited to the above-described preferred embodiments thereof. The rights sought are rather defined by the following claims, within the scope of which many modifications can be envisaged.
Number | Date | Country | Kind |
---|---|---|---|
1030361 | Nov 2005 | NL | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/NL2006/000559 | 11/7/2006 | WO | 00 | 1/26/2009 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2007/053017 | 5/10/2007 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5271530 | Uehira et al. | Dec 1993 | A |
5289952 | Gueret | Mar 1994 | A |
5443569 | Uehira et al. | Aug 1995 | A |
5570819 | Uehira et al. | Nov 1996 | A |
6398079 | Garcia et al. | Jun 2002 | B1 |
6612468 | Pritchett et al. | Sep 2003 | B2 |
6840408 | Foster et al. | Jan 2005 | B1 |
7048153 | Gentile | May 2006 | B2 |
7147133 | Brouwer et al. | Dec 2006 | B2 |
7673854 | Brouwer et al. | Mar 2010 | B2 |
7726518 | Brouwer | Jun 2010 | B2 |
20040069807 | Brouwer et al. | Apr 2004 | A1 |
20090212074 | Brouwer | Aug 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
20110168739 A1 | Jul 2011 | US |