1. Technical Field
The present disclosure generally relates to valves and motors and, more particularly, relates to valves and motors for dispensing flowable products.
2. Description of the Related Art
Automated food dispensers greatly increase the ease and speed with which patrons can be served, while at the same time ensuring quality standards are met and repeatable. Fast food restaurants and cafeterias heavily rely on such dispensers to meet the needs of their diners in a cost effective and timely manner.
One example is a milkshake dispenser. With conventional milkshake dispensers, a spinner or other type of mechanical mixer is provided within a dispensing nozzle. The mixing chamber is fluidically connected to a supply of ice cream and one or more flavoring syrups. A spinner motor is operatively connected to the spinner such that upon energizing, the spinner mixes the ice cream and flavoring.
To control flow through the dispensing nozzle, a draw valve is often employed. Such a valve may have a valve body within which a valve stem reciprocates. In order to control movement of the valve stem, convention milkshake dispensers typically use a solenoid actuator or linear actuator. The draw valve may have a top plate to which a plunger of the solenoid is attached. The plunger itself is adapted to reciprocate with a coil housing of the solenoid. However, as the spinner motor is typically mounted in axial alignment with the draw valve, the solenoid actuator has heretofore had to be mounted in offset fashion relative to the longitudinal axis of the draw valve. While effective, this results in the undesirable moment in the system that creates a side load on the solenoid, particularly between the outer diameter of the solenoid plunger and the inner diameter of the coil housing. This in turn results in increased wear and decreased serviceable life of the solenoid.
Accordingly, it can be seen that a need exists for an improved dispenser for flowable products, particularly automated milkshake dispensers.
In accordance with one aspect of the disclosure, a product dispenser is disclosed which comprises a motor, a shaft extending from the motor, a threaded shaft attached to the shaft, a flywheel rotatably attached to the threaded shaft, a mixing chamber having an outlet, and a valve adapted to move relative to the mixing chamber outlet, the valve being attached to the flywheel.
In accordance with another aspect of the disclosure, a method of dispensing a product is disclosed which comprises providing a motor having a motor shaft and an externally threaded shaft attached thereto, threadably attaching a flywheel to the threaded shaft, fixedly attaching a valve stem to the flywheel, the valve stem being movably mounted in a valve body to form a valve assembly, and energizing the motor to thereby cause the motor shaft and threaded shaft to rotate, the inertia of the flywheel causing the flywheel to accelerate more slowly than the shaft and thus causing the flywheel to axially translate along the threaded shaft in a first direction, axial translation of the flywheel along the threaded shaft causing the valve stem to move within the valve body and open the valve assembly.
In accordance with yet another aspect of the disclosure, a milkshake dispenser is disclosed which comprises a mixing chamber, a spinner mounted in a valve body, a supply of ice cream connected to the mixing chamber, a supply of flavored syrup connected to the mixing chamber, a motor operatively connected to the spinner, and a valve assembly for opening and closing the mixing chamber to dispense the milkshake, the valve assembly and the spinner both being driven by the motor.
These are other aspects and features of the disclosure will become more apparent upon reading the following detailed description when taken in conjunction with the accompanied drawings.
While the present disclosure is susceptible of various modifications and alternative constructions, certain illustrative embodiments thereof will be shown and described below in detail. It should be understood, however, that there is no intention to be limited to the specific embodiments disclosed, but on the contrary, the intention is to cover all modifications, alternative constructions, and equivalents falling within the spirit and scope of the present disclosure.
Referring now to the drawings, and with particular reference to
Referring again to
By way of overview, and with particular reference to
In order to control flow of the milkshake through the dispensing nozzle 32, a valve assembly 42, such as the draw valve is provided. As will be described in further detail herein, opening and closing of the valve assembly 42 is controlled by the same motor 40 that controls rotation of the spinner 75. Importantly, and as shown best in
Referring now to
As illustrated best in
More specifically, as again shown best in
In use, the dispenser 20 is operated by first entering the appropriate commands through the operator interface 24. Such commands would typically include desired flavor and volume. The microprocessor 38 then controls internal valves and apparatus (not shown) to allow for appropriate amounts of ice cream and flavorings into the mixing chamber 34, while energizing the motor 40. As shown best in
In other words, when the motor 40 turns on, it immediately begins to accelerate at a first rate to its predetermined speed. However, as the flywheel 50 is not rotationally fixed to the shaft 44 of the motor 40, but rather is mounted using the threaded nut 46, its inertia causes the flywheel 50 to accelerate at a second rate which is slower than the first rate. As the shaft 44 and nut 46 are therefore rotating, at least initially, at a faster speed than the flywheel 50, this causes the flywheel 50 to axially translate toward the motor 40. In turn, as the flywheel 50 is axially fixed to the valve stem 64, this causes the valve stem 64 to move with the flywheel 50 toward the motor 40 and away from the product outlet 68 to open the valve assembly 42.
The valve assembly 42 will then stay open and the spinner 75 will continue to rotate for a duration long enough to allow for the desired volume of milkshake to be dispensed. However, as that volume is about to be reached, the microprocessor 38 will de-energize the motor 40. At this point, though, the momentum of the flywheel 50 causes it to decelerate at a rate that is slower than the rate of deceleration of the motor shaft 44 and the threaded shaft 46. As a result, the flywheel 50 axially translates along the nut 46 away from the motor 40. Since the flywheel 50 is axially fixed to the valve stem 64, this causes the valve stem 64 to move toward the product outlet 68, eventually severing fluid communication to the dispenser outlet 70 and closing the valve assembly 42. The motor 40 may also be actively decelerated through a brake, regenerative braking, or by reversing the motor 40.
It is to be understood that while the foregoing description has been given with reference to a draw valve, the teachings of this disclosure can be used in conjunction with other types of valves known to those of ordinary skill in the art to enable the valve and the motor to be axially aligned, avoid undesirable moments, remove offset loadings, and save costs by allowing a single motor to drive both the product conveyor and the valve assembly.
Based on the foregoing, it can be seen that the present disclosure sets forth a dispenser for flowable products, such as but not limited to, milkshakes. The teachings of this disclosure can be employed to allow a single motor to drive the spinner, mixer, or conveyor of such a dispenser, while at the same time opening and closing the valve of the dispenser. Moreover, through the novel arrangement of mechanical components set forth above, the motor and valve assembly are axially aligned to thereby avoid any offset loading and premature parts wear associated with prior art dispensers, particularly those employing solenoid valve actuators or linear motor valve actuators.
While only certain embodiments have been set forth, alternatives and modifications will be apparent from the above description to those skilled in the art. These and other alternatives are considered equivalents and within the spirit and scope of this disclosure and the appended claims.
This application is a non-provisional patent application claiming priority under 35 USC §119(e) to U.S. Provisional Patent Application Ser. No. 61/261,565 filed on Nov. 16, 2009.
Number | Date | Country | |
---|---|---|---|
61261565 | Nov 2009 | US |