The present invention relates to soap dispensers. More specifically, the present invention relates to counter mounted soap dispensers having a draw-back mechanism for preventing dripping of soap between uses.
Users of modern public washroom facilities increasingly desire that each of the fixtures in the washroom operate automatically without being touched by the user's hands. This is important in view of increased user awareness of the degree to which germs and bacteria may be transmitted from one person to another in a public washroom environment. Today, it is not uncommon to find public washrooms with automatic, hands-free operated toilet and urinal units, hand washing faucets, soap dispensers, hand dryers and door opening mechanisms. This automation allows the user to avoid touching any of the fixtures in the facility, and therefore lessens the opportunity for the transmission of disease carrying germs or bacteria resulting from manual contact with the fixtures in the washroom.
It is known to provide a counter-mounted soap dispensers in public washrooms to dispense liquid or foam soap automatically in response to sensing the presence of a user. However, these counter-mounted dispensers may allow soap to drip out of the dispenser after a use. This dripping creates an unappealing and messy environment and discourages the use of the dispenser. Thus, it is desirable to provide an improved means that prevents leakage or dripping of excess soap.
These and other objectives, advantages, and features of the present invention will become apparent from the following description and claims, taken in conjunction with the accompanying drawings.
This patent discloses tools, methods and systems for dispensing soap. The tools, methods and systems include a draw-back chamber constructed around and in line with the fluid path between a spout assembly for delivering soap to a user and a pump mechanism for supplying the soap. The draw-back chamber contains port openings into the fluid path. When the pump mechanism is actuated to dispense soap, the draw back chamber is collapsed and soap within it is dispensed with the main dose of soap supplied by the pump mechanism. When the pump mechanism is allowed to return to its extended rest state, the draw-back chamber expands, drawing soap into it through the port opening to prevent soap from hanging and dripping at the end of the dispensing tube.
Additional features and advantages of the present invention are described in, and will be apparent from, the following Detailed Description and the figures.
Referring to
The foam soap dispensing system 10 generally includes three major assemblies: a spout assembly 12 to deliver foam soap to a user, a motor housing assembly 14 to actuate and control the operation of the foam soap dispensing system 10, and a pump and draw-back assembly 16 to create foam soap and to prevent soap dripping from the spout assembly 12 between uses.
Referring now to the spout assembly 12, an exemplary spout assembly is found in U.S. Pat. No. 6,929,150 issued Aug. 16, 2005 to Kenneth J. Muderlak and Rocky Hsieh and assigned to Technical Concepts, LLC, the disclosure of which is incorporated herein by reference in its entirety. In the embodiment of
As shown in
As shown in
The indented outlet 30 may include an indented portion 31 that is set back from a spout tip 46 of spout 24. The indented portion 31 provides a shield around the tube end 44 of the dispensing tube 42. The indented portion 31 may prevent the tube end 44 from being viewed by a user when the tube end 44 of the dispensing tube 42 extends beyond the spout opening 32.
The passageway 40 is centrally disposed in the spout 24 throughout the length of the passageway 40. As seen in
Referring to
Extending from the lower portion of the support shaft 20 is a cylindrical attachment shaft 60. The attachment shaft includes a central opening through which the dispensing tube 42 extends along the axis 48. The attachment shaft 60 also include a plurality of circumferentially disposed splines 62 adapted to mate with a plurality of grooves (not shown) circumferentially disposed in a hollow upper interior portion 106 of the pump housing 102 of the motor housing assembly 14 so as to provide for the attachment of motor housing assembly 14 to the support shaft 20. This arrangement permits the internal guide passageway 52 of the support shaft 20 to align with the upper interior portion 106 of the motor housing assembly 14. In the present embodiment, the splines 62 are disposed at thirty degree intervals.
Upon moving the motor housing assembly 14 into engagement with the attachment shaft 60, the circumferential distance between adjacent splines 62 and grooves disposed in the upper interior portion 106 of the motor housing assembly 14 allows the motor housing assembly 14 to be rotated in thirty degree increments, allowing placement of the motor housing assembly 14 to avoid interfering with the underside of the sink bowl and other plumbing or structural elements located under the countertop. This also allows the motor housing assembly 14 to be positioned for ease of access in case a need to service the foam soap dispensing system 10 arises.
As noted above, the motor housing assembly 14 provides the driving force to actuate the pump and draw-back assembly 16 for producing foam soap when it is installed on the support shaft 20. The motor housing assembly 14 may be removably attached to the lower end of support shaft 20 by a shank clip 64, as shown in
The motor housing assembly 14 includes a pump housing 102 and a motor and actuator mechanism housing 104, as shown in
As may be seen in
The gear reduction train 114 is mounted for rotation in the housing 104 and operatively connects the output of the motor 112 to the pump hammer 116. The pump hammer 116 includes an actuate gear portion 118 which meshes with a spur gear 120, which in turn is driven by the motor 112 through the gear reduction train 114. The pump hammer 116 is mounted on a pin 122 for rotation through a small arc relative to the housing 104, as shown in
Reference now will be made to the pump and draw-back assembly 16, as shown in
Preferably, the dispensing tube 42, the pump mechanism 200 and the draw-back mechanism 300 are all aligned on a common centerline along the axis 48, as shown in
The draw-back mechanism 300 is disposed in the hollow interior portion 108 of the pump housing 102, as shown in
Referring to
The body 310 of the cap member 302 has a double wall construction, including a pair of cylindrical inner and outer walls 312, 314 that define a cylindrical central opening 316 and an annular opening 318 concentric with the central opening 316. The inner wall 312 has a circumferential stop lip 320 extending radially outward therefrom at its lower end and an annular seat flange 322 extending radially inward therefrom at its upper end. The annular seat flange 322 defines a seat portion 324. The outer wall 314 is concentric with the inner wall 312 so as to define the annular opening 318 therebetween. The upper end of the outer wall 314 extends out past the upper end of the inner wall 312. A plurality of spaced apart stop members 326 extending radially inward are formed around the perimeter of the upper end of the outer wall 314.
Referring to
The cylindrical body 332 defines an interior cavity 333. An internal cylindrical projection 337 formed on the annular actuator flange 336 extends axially therefrom into the interior cavity 333 and defines a recess 339 therein. The body 332 is mounted over the cap member 302 concentric with the inner wall 312 of the cap member 302. A guide flange 338 disposed about the lower end of the body of the pump actuator 330 is slidably received within the annular opening 318 of the cap member 302. In this way, the pump actuator 330 is moveably connected to the cap member 302.
The pump actuator 330 moves downward when pump mechanism 200 is actuated, as will be explained. Downward movement of the pump actuator 330 within the annular opening 318 of the cap member 302 is limited by the abutment of the guide flange 338 against the circumferential stop lip 320 of the inner wall 312 of the cap member 302. Upward movement of the pump actuator 330 within the annular opening 318 of the cap member 302 is limited by the abutment of the guide flange 338 against the spaced apart stop members 326 of the outer wall 314 of the cap member 302.
The reduced diameter neck portion 334 defines an axial opening 335 extending therethrough for receiving the elongated dispensing tube 42. Elongated dispensing tube 42 is firmly lodged in cylindrical opening 335 of actuator 330, whereby dispensing tube 42 moves in reciprocal directions within guide passageway 52 along with the movement of actuator 330.
The draw-back mechanism 300 further includes a bayonette guide 340 having a generally cylindrical construction and an axial bore 341 extending therethrough to allow passage of soap from the pump mechanism 200 through the draw-back mechanism 300 and into dispensing tube 42, as will be explained. The bayonette guide 340 includes a cylindrical base portion 342, a cylindrical core portion 344 of reduced diameter joined to the base portion 342 by a first step portion 343, and a cylindrical tip portion 346 of further reduced diameter joined to the core 344 by a second step portion 345.
The tip portion 346 of the bayonette guide 340 is mounted in the recess 339 defined by the cylindrical projection 337 of the pump actuator 330 such that the second step portion 345 abuts the lower end of the cylindrical projection 337 and the core portion 344 is centrally disposed in the interior cavity 333 of the cylindrical body 332 of the pump actuator 330. As a result of this interface between the second step portion 345 and the lower end of the cylindrical projection 337, the pump actuator 330 can drive the bayonette guide 340 downward to actuate the pump mechanism 200, as will be explained.
The core portion 344 the bayonette guide 340 and the cylindrical body 332 of the pump actuator 330 define a dedicated draw-back chamber 350 therebetween to draw back foam soap from the dispensing tube 42 after a dose of foam soap has been dispensed, as will be explained. The draw-back chamber 350 is concentric with the axial bore 341 extending through the bayonette guide 340 and is disposed around and in line with the fluid path between the dispensing tube 42 and the pump mechanism 200. The core portion 344 of the bayonette guide 340 has a pair of ports 348 formed opposite each other in a sidewall thereof. The ports 348 form fluid passageways between the axial bore 341 of the bayonette guide 340 and the draw-back chamber 350.
The bayonette guide 340 is further dimensioned such that, when the pump actuator 330 is mounted over the cap member 302 and is fully retracted with the guide flange 338 in abutment against the spaced apart stop members 326, the first step portion 343 abuts the underside of the annular seat flange 322 of the cap member 302 and the base portion 342 is slidably received in the cylindrical central opening 316 of the cap member 302. The base portion 342 of the bayonette guide 340 is connected to the pump mechanism 200 so as actuate the pump mechanism 200, as will be explained.
The draw-back assembly also includes a seal 354 seated in the seat portion 324 defined by the annular seat flange 322 of the cap member 302 and a compression spring 352 mounted over the core and tip portions 344, 346 of the bayonette guide 340. One end of the spring 352 presses against the underside of the actuator flange 336. The other end of the spring 352 presses against the seal 354. In this way, the spring 352 biases the pump actuator 330 away from the cap member 302 and the neck 72 of the container 70. When the spring 352 is unloaded and/or fully extended in its uncompressed state, the pump actuator 330 is in its fully retracted and/or non-actuated position with the guide flange 338 in abutment against the spaced apart stop members 326.
The pump mechanism 200 is configured to deliver a predetermined dosage of foam soap from tube end 44 of dispensing tube 42 upon each actuation of the motor 112. The pump mechanism 200 may include a standard, self-priming pump as is known in the art for creating foam soap from liquid soap without the use of gas propellants. An example of such a foam pump is found in a commercial foam pump supplied by Rexam Airspray Inc. of Pompano Beach, Fla., USA and identified as Model F2L9. Preferably, the pump mechanism 200 generally includes a pump chamber 202, a pump piston 204 slidably disposed in the pump chamber 202, and a hollow nozzle insert 206 securely attached to the upper end of the pump piston and adapted to provide a sealed, internal fluid passageway between the pump mechanism 200 to the draw-back mechanism 300, as shown in
The container 70 includes neck portion 72 having an opening therein centered around the axis 48 through which the pump mechanism 200 is inserted. The pump mechanism 200 is mounted to the neck 72 of the container 70 in such a manner that soap can only flow to the draw-back mechanism 300 through the pump mechanism 200. In the present embodiment, the upper end of the pump chamber 202 includes a protruding, circular outer edge 212 that rests on the upper end surface of the neck 72 of the container 70. Upon mounting the cap member 302 of the draw-back mechanism 300 over the neck 72 of the container 70, the outer edge 212 of the pump chamber 202 is clamped between the cap member 302 and the neck 72 of the container 70.
When the pump mechanism 200 is mounted to the neck 72 of the container 70, the pump chamber 202, the pump piston 204 and the hollow nozzle insert 206 are centered around the axis 48 and are concentric with the bayonette guide 340 of the draw-back mechanism 300. The nozzle insert 206 is received in the axial bore 341 of the base portion 342 of the bayonette guide 340 in abutment against the first step portion 343 joining the base portion 342 and the cylindrical core portion 344. Further, the pump piston 204 may be secured to the base portion 342 of the bayonette guide 340 in a known manner. For example, the base portion 342 may have a groove circumferentially disposed within the axial bore 341 so as to firmly engage a circumferential thread disposed on the outer surface of the pump piston 204.
The pump mechanism 200 may be actuated by pushing the nozzle insert 206 inwardly toward the pump chamber 202. During the compression stroke, the nozzle insert 206 drives the pump piston 204 into the pump chamber 202 so as to create foam soap by mixing liquid soap and air and to pump the foam soap out through the nozzle insert 206. The pump mechanism 200 is spring biased so as to return to its rest state when the nozzle insert 206 is released. During the return stroke, the pump mechanism 200 draws in ambient air from the outside and liquid soap from the container 70 via a suction tube 208. It is contemplated that additional pump mechanisms may be used in the invention, having structure and operation that may vary from the pump description set forth above.
As noted above, the motor housing assembly 14 provides the driving force for the operation of pump mechanism 200. When the foam soap dispensing system 10 is fully assembled, the motor 112 rotates the actuator arms 124 of the pump hammer 116 to engage the actuator flange 336 of the pump actuator 330 so as to drive down the pump actuator 330. The pump actuator 330, in turn, drives down nozzle insert 206 to actuate the pump mechanism 200, as explained above.
When the motor 112 is not energized, the pump hammer 116 is in its full kick back position. The actuator arms 124 of the pump hammer 116 may rest on the upper surface of actuator flange 336, which is in its fully retracted and/or non-actuated position. Alternatively, the actuator arms 124 may be disposed a short distance above the upper surface of actuator flange 336. The actuator arms 124 straddle the reduced diameter neck portion 334 of the pump actuator 330, which extends into the open space 172 of the pump hammer 116.
Upon actuation of the motor 112, the gear reduction train 114 drives the spur gear 120 which, in turn, rotates the pump hammer 116 clockwise, as shown in
During the down stroke of the pump actuator 330, the seal 354 seated in the seat portion 324 defined by the annular seat flange 322 of the cap member 302 remains stationary. Therefore, as the pump actuator 330 is driven downward into the annular opening 318 of the cap member 302, the draw-back chamber 350 collapses and the compression spring 352 mounted over the bayonette guide 340 is compressed. In this way, residual soap material present in the draw-back chamber 350 may be forced out into the fluid path through the ports 348 between the axial bore 341 of the bayonette guide 340 and the draw-back chamber 350 to be dispensed with the main dose of foam soap being dispensed by the pump mechanism 200 down the dispensing tube 42.
The amount of downward movement of pump actuator 330 generally determines the amount of foam soap that is dispensed from dispensing tube 42 at tube end 44 upon each actuation of the automatic soap dispenser 10. The distance of the downward movement of the pump actuator 330 is controlled by the position of hammer kick back stop 128. To dispense a desired dosage of the foam soap, flat face 126 of pump hammer 116 abuts kick back stop 128, thus halting further clockwise rotation of pump hammer 116.
Referring to
With the motor 112 shut off, the compression spring 352 urges the pump actuator 330 upwardly to its fully retracted and/or non-actuated position, whereby the flange 336 of the pump actuator 330 moves upward to force the pump hammer 116 to rotate counterclockwise back to its start position. Also, the pump is allowed to return to its rest state, whereby an internal spring in the pump mechanism 200 biases the pump piston 204 and the nozzle insert 206 upwardly, thereby urging the bayonette guide 340 to follow the pump actuator 330 until the second step portion 345 abuts the lower end of the cylindrical projection 337 of the cylindrical body 332 and the first step portion 343 abuts the underside of the annular seat flange 322 of the cap member 302. In this way, the draw back chamber 350 expands during the return stroke, thereby creating a vacuum effect and drawing in foam soap from the dispensing tube 42 through the ports 348. As a result, foam soap is prevented from hanging at the end 44 of the dispensing tube 42 and dripping after a dose of foam soap has been dispensed.
Once properly installed, operation of the foam soap dispensing system 10 is initiated by a user inserting his or her hands under the indented outlet 30 of the spout 24. The electric eye assembly 38 detects the presence of the hands, and sends a signal to actuate the motor 112. The gear reduction train 114 drives the pump hammer 116 in a clockwise direction, as viewed in
As the pump actuator 330 moves downward from its fully retracted and/or non-actuated position (see
As pump hammer 116 reaches its limit of clockwise rotation, the motor 112 stalls and is shut off. When the motor 112 is shut off, the pump mechanism 200 is spring biased to return to its rest state. Also, the compression spring 352 urges the pump actuator 330 upwardly to its fully retracted position, forcing the pump hammer 116 to rotate counterclockwise back to its start position and the dispensing tube 42 to move upward back out of the spout opening 32 in the spout 24. As the pump actuator 330 moves upward, the draw-back chamber 350 expands, as shown in
Various embodiments of the invention have been described and illustrated. However, the description and illustrations are by way of example only. Other embodiments and implementations are possible within the scope of the invention and will be apparent to those of ordinary skill in the art. Therefore, the invention is not limited to the specific details of the representative embodiments, and illustrated examples in this description. Accordingly, the invention is not to be restricted except as necessitated by the accompanying claims and their equivalents.
This application claims the benefit of priority under 35 U.S.C. §119 (e) to the filing date of U.S. Provisional Patent Application No. 60/981,995 filed on Oct. 23, 2007, which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
60981995 | Oct 2007 | US |