The present disclosure relates to a dispenser, preferably to a dispenser in the form of a flexible tube, having a fitment secured at one end.
Dispensers for flowable product are known in many different forms. One form of dispenser may include a tubular body having a sealed end and a closure formed at the opposing end. There are many known forms for the closure within a tubular dispenser, with various known methods of forming and securing the closure at the end of the tube.
U.S. Pat. No. 2,383,230 to Vike shows a tubular package formed by rolled sheet of material that is heat sealed along overlapping edges of the sheet. A fitting is inserted into one end of the tube, with the inserted flange portion being sealed to the tube by a solvent material.
German patent publication G 8714622.3 shows a can-like container having a removable lid that forms a seal with the inside surface of the upper rim. In one figure, an internal thread is formed by a ring positioned on the inside surface of the rim.
U.S. Pat. No. 2,484,965 to Slaughter shows a tubular structure with a cap member fixed at one end. The tube is formed as an extrusion, with a cap inserted periodically into the extruded tube. The cap includes an external thread that is bonded to the softened inside surface of the tube.
EP 0611356 B1 to Benarrouch et al shows a tubular structure having an internal thread formed at one end of the tube. The internal threads appear to be formed at the same time as the tube by an injection molding process.
U.S. Pat. No. 6,321,944 to Cetrangolo shows a tube used as a package for various items, such as toiletries. In one form, a cap portion includes a circular base that is inserted into the open end of the tube.
In one aspect of the disclosure a dispenser is defined for storing and dispensing product. The dispenser includes a tubular body having an open first end. The body is formed by a sidewall surrounding a longitudinal axis and defining an internal volume. The sidewall includes an inside wall surface and a side seam sealing the sidewall. A fitment attachment member is formed separately from the body and is secured to the inside surface of the sidewall, adjacent the open end of the body. The attachment member has a linear dimension, with linear end portions of the member positioned adjacent one another in thrilling a ring within the tubular body. A fitment is provided having a fitment retainer pattern formed thereon. A corresponding retainer pattern is formed on the attachment member. The fitment retainer pattern and the corresponding retainer pattern on the ring cooperate with one another for securing the fitment to the body.
In another aspect of the dispenser, the body preferably extends longitudinally for a distance greater than a maximum transverse dimension of the interior volume. The side seam preferably extends in a longitudinal direction substantially aligned with the longitudinal axis of the sidewall. Further, the ring has a circular form, substantially concentric with the longitudinal axis. Preferably, the linear end portions of the member are secured in an abutting relationship.
In a further aspect of the dispenser, the retainer pattern on the body portion of the fitment is formed as an external screw thread. Further, the corresponding retainer pattern on the member is also formed as a screw thread, with the thread pattern facing radially inward on the formed ring.
In a further aspect of the dispenser, the member is secured to the inside surface of the sidewall by an ultrasonic weld. In a further aspect of the dispenser, the side seam on the sidewall of the tubular body is formed by an ultrasonic weld.
In a further aspect of the dispenser, an opposing second end of the tubular body is provided. The second end of the tube may be closed by a further attachment structure, such as a fitment, or may be sealed. In one aspect of the dispenser, the second end of the tubular body may be closed by flattening the sidewall with the inside surfaces adjacent the one another. The seal of the inside surfaces may further be formed by an ultrasonic weld.
In a further aspect of the disclosure, a method of assembling a dispenser is provided. The method includes the provision of a sheet having a first surface, a front edge and an elongated length. An elongated attachment member is provided and positioned adjacent the front edge of the sheet, transverse to the length of the sheet. The attachment member includes a retainer pattern formed thereon. The member is secured to the first surface of the sheet with the retainer pattern facing in the same direction as the first surface. The sheet and attachment member are rolled about a longitudinal axis to form a tubular body. The tubular body includes an inside surface formed from the first surface of the sheet and an internal ring is formed by the member and is position adjacent one end of the tubular body, with the retainer pattern inwardly facing on the ring. A fitment is provided having an external retainer pattern formed for mating with the inwardly facing retainer pattern formed by the ring and securing the fitment therein for closing the one end of the tubular body.
In a further aspect of the method the fitment includes a fitment body portion, a discharge opening formed in the body portion, and a fitment retainer portion formed on the body portion, with the fitment retainer porting having the retainer pattern thereon.
In a further aspect of the method, a second end of the tubular body, opposite of the end having the ring thereon, may be closed to define the internal storage volume. The second end may be closed by providing a further attachment structure, and an associated fitment, or may be sealed. In one aspect of the contemplated method, the second end of the tubular body may be closed by flattening the sidewall, with inside surface portions in contact with one another and ultrasonically sealing the inside surface portions together.
In a still further aspect of the method, the end portions of the elongated member are secured in an abutting relationship in forming the ring. Further, the ring preferably has a circular form and is positioned substantially concentric with the longitudinal axis of the tubular body.
In a further aspect of the method the member is secured to an inside surface of the sidewall by ultrasonic welding. Preferably, the rolled sheet forms overlapping side edges, with the edges being ultrasonically welded to form a side seam within the tubular body.
For the purpose of illustrating the invention, there is shown in the drawings one or more forms that are presently preferred; it being understood that the invention is not limited to the precise arrangements and instrumentalities shown.
Referring now to the drawings, where like numerals identify like elements, there is shown in
The nozzle fitment 14 is a separate element from the tube 10. The fitment 14 includes a base portion 20 and a tapered end portion 22. A cap (not shown) may be provided for closing the nozzle 14. The tube 10 retains a quantity of flowable product, typically having a relatively high viscosity. Compressing the tube sidewall 16 causes the flowable product to be discharge from the opening of the nozzle 14. Other forms of fitments and discharge openings may be combined with the tube.
In
In
In
In
The sheet 24 is preferably formed from a web of flexible plastic and may be a laminate material. Alternatively, the sheet may be formed as a composite of paper and plastic layers. The web may be provided on a roll, with individual sheets being cut to size from the web roll prior to attachment of member 26 to the top surface 29 of the sheet 24. Alternatively, the web roll may be fed continuously with attachment members 26 periodically secured to the web and the tube formation started prior to separation of the individual sheet portions from the continuous web. The attachment member 26 is also contemplated to be semi-rigid. The member structure and/or formation material should sufficiently flexible to permit rolling along with the sheet 24 (
The attachment member 26 may be injection molded and is preferably ultrasonically welded to the top surface 30 of the sheet 24. Other means of attachment may also be utilized, including heat sealing, adhesives, etc. Many sealing processes, including an ultrasonic welding process, are more easily conducted on relatively flat surfaces and by applying the seal in relatively straight lines. By fixing the member 26 prior to rolling the sheet 24, the bond between the two elements is thus more easily formed. The separate bonds for the side seal 18 and the end seal 12 may also be formed by ultrasonic welds. The side seal 18 is shown as a lap seal. However, a fin-type seal or a seal of abutting edges may also be utilized.
The ring formed by the attachment element creates a receiving surface for fixing a fitment in the end of the tube. The exposed surface of the attachment member is provided with a linear form of the completed attachment pattern. Attachment patterns other than the threaded pattern shown in the figures may be utilized for securing a fitment to the open end of the tube. The attachment pattern may be continuous or may be staggered. A void may be formed in the pattern at any position along the linear length of the attachment member. For example, a void may be included at the linear ends of the attachment member, which may eliminate the need for precise alignment of the edges of the member during ring formation.
The ring preferably forms the female surface for receipt of the male extension on the fitment. Further, the attachment pattern may provide for removal of the fitment or may fix the fitment in the tube end. An adhesive or welding process may further be added to secure the fitment to the attachment element and the tube. The tube body is preferably elongated, in that the length of the tube is greater than it maximum diameter (or other transverse dimension).
The tube may have shapes other than the circular form shown in the drawings. The attachment member may include notches for ease of forming the structure into a ring having a desired shape, including a ring that is non-circular. For example, the open end of the tube may be provided with an oval shape. The oval shape may be formed during the rolling process of the sheet or may be imposed into the tube, by the application of heat or the like, during or after assembly. Other shapes such as square, rectangular, triangular, octagon, etc. may also be formed. A suitable retainer pattern may be provided for insertion of the fitment into the female receiving end of the shaped tube. Further, alternative means for sealing the closed end of the tube, including the provision of a second attachment member formed to receive a differently formed fitment or insert.
In the drawings, the opposing second end of the tubular body is shown as being closed by sealing the inside surfaces of the tube together. Other alternatives are possible, including the provision of a second attachment member adjacent the second edge of the sheet. The second member may be similarly formed as the first attachment member or may desirably have a different construction. A second fitment may be provided for securing to the second attachment member. The second fitment will typically include a structure or function different from the dispensing nozzle shown in
In the drawings and specification, there has been set forth one or more embodiments of the invention and, although specific terms are employed, these terms are used in a generic and descriptive sense only and not for purposes of limitation. The scope of the invention is set forth in the following claims.