Sterile spray or squirt bottles are commonly used to dispense decontaminating and disinfecting liquids, such as a sterile 70% isopropyl alcohol solution, for example, for maintaining controlled environments, such as in pharmacology and manufacturing. Referring to
Another similar type of conventional hand operated trigger sprayer includes an air inlet unit that prevents the spray bottle from leaking contents of the bottle through the air inlet vent port during operation. However, ambient air entering the spray bottle is not filtered, and can permit contaminants to enter the spray bottle along with ambient air during use. A liquid sprayer is also known that includes a bottle having an opening and a sprayer housing attached to the bottle with a venting mechanism. Although a dip tube filter can be added at the lower end of a dip tube to prevent particles from obstructing the nozzle, ambient air entering the sprayer is not filtered, allowing contaminants to enter the sprayer during use.
A squeeze bottle for use as an eyedropper is also known that includes a discharge port with a filter to prevent ambient air and bacteria from entering a liquid content of the container so as to keep it sterilized even after unsealed for use. A discharging passage is formed in the stopper of the bottle, and the stopper further has a check valve and a filter disposed on the discharge port on the downstream side of the valve. The bottle is formed with an outer layer and an inner layer delaminating from the outer layer, and a vent hole is formed in the outer layer so as to introduce ambient air in between outer and inner layers of the container, but ambient air entering the bottle through the vent is not filtered, allowing contaminants to enter through the vent.
It would thus be desirable to provide a bottle for dispensing a sterile liquid with a filter member that seals the opening of the reservoir portion of the bottle for filtering ambient air entering through a vent of the bottle to prevent contaminants from entering along with ambient air through the vent of the bottle. The present invention meets these and other needs.
Briefly, and in general terms, the present invention provides for a bottle for dispensing a sterile liquid, the bottle including a dispensing head with an air inlet allowing ambient air to enter the opening of a reservoir portion of the bottle, and a filter member that fits over and seals the opening of the reservoir portion of the bottle for filtering the ambient air entering the bottle to prevent contaminants from entering the reservoir portion of the bottle along with ambient air.
The present invention accordingly provides for a bottle for dispensing a sterile liquid, the bottle including a reservoir portion having an interior chamber and an opening to the interior chamber, and a dispensing head that attaches to the opening of the reservoir portion. The dispensing head includes a liquid outlet port for dispensing the sterile liquid from the bottle, a dip tube received in the interior chamber of the reservoir portion, and an air inlet port allowing ambient air to enter the opening of the reservoir portion after liquid is dispensed from the bottle. A filter member, such as a filter disk, for example, fits over and seals the opening of the reservoir portion of the bottle. The filter member includes a dip tube hole for receiving and sealing around the dip tube, and one or more vent holes covered on at least one side of the filter member by a membrane filter for filtering ambient air. The dip tube hole forms a tight interference fit with the dip tube when the dip tube is received in the dip tube hole, to form a tight seal around the dip tube. In a presently preferred aspect, the membrane filter is formed from a porous polymeric sheet material with pores having a diameter less than 220 nm. In another presently preferred aspect, the membrane filter is formed from a porous polymeric sheet material with pores having a diameter of about 100 nm. In another aspect, the membrane filter is formed from a porous polymeric sheet material such as polyether sulfone or polypropylene. In another presently preferred aspect, the filter member is formed from plastic, such as polyethylene, for example, and the filter member may be attached to the opening of the bottle.
These and other aspects and advantages of the invention will become apparent from the following detailed description and the accompanying drawings, which illustrate by way of example the features of the invention.
Referring to the drawings, which are provided by way of example, and not by way of limitation, the present invention provides for a bottle 30 for dispensing a sterile liquid. The sterile liquid may be a decontaminating or disinfecting liquid, such as a sterile 70% isopropyl alcohol solution, for example, typically for use in pharmacology or manufacturing for maintaining controlled environments, for example. The bottle includes a container or reservoir portion 32 with an interior chamber 33, a dispensing head 34, such as a trigger-type pump sprayer, for example, that attaches to a mouth or opening 36 of the reservoir portion. The dispensing head typically includes a liquid outlet port 40 for dispensing the liquid from the bottle and a dip tube 42 with a liquid inlet port 44 connected in fluid communication with the liquid outlet port, as will be further explained below. As described in connection with
Referring to
Referring to
It will be apparent from the foregoing that while particular forms of the invention have been illustrated and described, various modifications can be made without departing from the spirit and scope of the invention. Accordingly, it is not intended that the invention be limited, except as by the appended claims.
| Number | Name | Date | Kind |
|---|---|---|---|
| 4072252 | Steyns et al. | Feb 1978 | A |
| 4161288 | McKinney | Jul 1979 | A |
| 4192919 | Raghavachari | Mar 1980 | A |
| 4935371 | Rickloff | Jun 1990 | A |
| 4938389 | Rossi et al. | Jul 1990 | A |
| 5150841 | Silvenis et al. | Sep 1992 | A |
| 5244126 | Geier | Sep 1993 | A |
| 5752629 | Hardy | May 1998 | A |
| 5971221 | Schwarz | Oct 1999 | A |
| 5988454 | Ellion | Nov 1999 | A |
| 6073812 | Wade et al. | Jun 2000 | A |
| 6196409 | Lake et al. | Mar 2001 | B1 |
| 6234412 | von Schuckmann | May 2001 | B1 |
| 6257455 | Trepina et al. | Jul 2001 | B1 |
| 6502766 | Streutker et al. | Jan 2003 | B1 |
| 6708850 | Uetake et al. | Mar 2004 | B2 |
| 6715772 | Micciche et al. | Apr 2004 | B1 |
| 6942124 | Dehn et al. | Sep 2005 | B2 |
| 20060180613 | Manesis | Aug 2006 | A1 |
| Number | Date | Country | |
|---|---|---|---|
| 20080302829 A1 | Dec 2008 | US |