BACKGROUND
Addition of powdered supplements to a beverage container is becoming increasingly popular. For example, powdered supplements may be stored in an assembly which is fitted to the neck of the container, to release the supplement into a container of water, to be consumed by the user. The assemblies can be expensive to manufacture, and typically are designed to fit a specific container size.
BRIEF DESCRIPTION OF THE DRAWINGS
Features and advantages of the disclosure will readily be appreciated by persons skilled in the art from the following detailed description when read in conjunction with the drawing wherein:
FIGS. 1A-1C are exploded views of an exemplary embodiment of a bottle cap dispensing system.
FIG. 2 is a cutaway view of an exemplary dispensing cap system as installed on a bottle, with the system in a filled state.
FIG. 3 is a cutaway view similar to FIG. 2, but with the shuttle valve in a dispensing state or position.
FIG. 4 is a cutaway view similar to FIG. 3, but with the cap nipple pulled up and in an open state relative to the valve member.
FIG. 5 is a cutaway view of a bottle of a large neck opening size in relation to the bottle shown in FIG. 2, with an exemplary embodiment of the cap system installed on the bottle neck.
FIG. 6 is an exploded view of an alternate embodiment of a dispensing cap bottle cap dispensing system.
FIG. 7 is a cutaway view of the alternate embodiment of FIG. 6 in an assembled condition.
FIGS. 8, 9 and 10 are cutaway views of the alternate embodiment of FIG. 6, shown in an engaged position on three exemplary bottle types.
DETAILED DESCRIPTION
In the following detailed description and in the several figures of the drawing, like elements are identified with like reference numerals.
One exemplary embodiment is directed to a bottle cap assembly, configured to fit beverage bottles of different neck dimensions, and to dispense a liquid or solid additive such as a nutritional supplement into the bottle contents. For example, the bottle cap assembly may be configured to fit onto both an Evian™ water bottle of a relatively larger neck size and an Arrowhead™ water bottle with a somewhat smaller neck size. In another embodiment, the bottle cap assembly is configured to fit onto at least three water bottles of different sizes. These exemplary embodiments includes a valve which the user pushes or pulls to release a supplement in powdered or liquid form into the bottle contents, and also remains in place for the user to drink through. The valve also closes and opens to allow the user to seal the bottle or drink from the bottle. Once the bottle contents have been consumed, the bottle cap is typically not re-used, in an exemplary embodiment.
FIGS. 1A-1C are exploded views of an exemplary embodiment of a dispensing cap system 50. The cap system is configured to seal to the mouth of a beverage bottle 10. In a typical embodiment, the bottle neck may have threads to allow a conventional threaded bottle cap or bottle cap and valve to be threadingly attached to the bottle. The cap system 50 in such a case would be attached to the bottle neck after the convention bottle cap has been removed. For simplicity, the threads on the bottle neck, above the neck flange, are not shown in the figures. The cap system 50 includes a cap member 60 of a generally having a plurality of finger portions 62 projecting from a web portion 64. The distal ends of the finger portions terminate in inwardly projecting barb or tab portions 62A, which may have sloped surfaces. The web portion has a hollow upwardly projecting boss portion 66, i.e. projecting above the web portion away from the finger portions. The boss portion 66 has a plurality of spaced dispensing openings 66A formed adjacent the web surface between ribs 66B, and these openings will allow the supplement material to pass through, as described more fully below.
The cap member 60 may be fabricated of a plastic material such as styrene, ABS, Delrin™ or Nylon™, and the finger portions are thin and have some flexibility. The cap member and the length of the finger portions is sized so that the tips of the finger portions may flex outwardly as the cap member is pushed onto the neck 12 of the bottle, and the barb portions engage under the flange 20 extending from the bottle neck. The cap member further includes a circumferential vertical rib 68 extending upwardly from the web portion 64, of a smaller diameter than the diameter of the web portion, to provide an attach feature for attaching structure 80, describe below. In this embodiment, the cap member 60 includes a connection structure for non-threading connection of the cap system to a beverage bottle, by engagement with the bottle flange or collar. In this embodiment, the connection structure includes the finger portions and the barb portions. This type of connection structure does not have to match the threads of the bottle neck, which may vary with different beverage vendors and/or bottle types. The number of finger portions may vary in other embodiments. For example, the fewer and relatively more rigid finger portions may be used. In other embodiments, the connection structure may include finger portions with teeth which engage the threads on bottle neck by sliding over some or all the threads as the cap system is pushed onto the bottle neck, and locking in place without rotationally being threaded onto the threads of the bottle.
The cap system also includes a seal member 70, shown for clarity in FIGS. 1A-1B above the cap member 60, but actually sized to fit within the barrel of the cap member. The seal member is preferably fabricated of an elastomeric material, such as, by way of example only, thermoplastic rubber (TPR) (molded rubber) or closed cell foam, and has a center opening configured for concentricity with the opening through the boss. Other features of the seal member will be discussed below.
A supplement storage member 80 is configured for attachment to web portion of the cap member, and, as will be described more fully below, defines the outer periphery of a storage volume for a quantity of a supplement in granular, powder or liquid form. The storage member in this embodiment is a generally cup-like member, with a generally cylindrical sidewall portion 82 and a web portion 84 having an opening 86 formed therein. The storage member 80 may be fabricated of a semi-transparent or transparent plastic material such as, by way of example only, styrene, and is configured for attachment to the cap member by snap fit, adhesive, welding or other connection method. For example, the cap 60 top web surface may have a peripheral ridge with groove extending above the web portion 64, which may be engaged in a snap fit by an inwardly extending corresponding feature on the bottom of the wall portion 82.
The dispensing cap system 50 further includes a shuttle valve member 90 having a hollow generally cylindrical wall portion 92, and a top web portion 94 at one end thereof which extends across the end of the wall portion. A bottom flange 92B is formed at the distal end of the wall portion, and has an outer diameter larger than the diameter of the opening in the storage member 80. A tip 96 of reduced diameter relative to the wall portion 92 extends above the surface of the web portion 94. The sidewall of the tip has several ports 96A formed therein, and permit the beverage to pass through from the bottle when the valve is in an open position. The diameter of the wall portion 92 is sized in cooperation with the diameter of the opening 86 in the storage member, so that the cylindrical wall portion tightly fits within the opening in a sliding or even interference fit.
A nipple member 100 is sized to fit over the shuttle valve. The shuttle valve has a range of sliding movement within the storage member, and the nipple has a range of sliding movement on the shuttle valve, such that, when the nipple is in a closed position as in FIG. 2, the ports 96A are sealed by the nipple. In an open position as in FIG. 3, the nipple does not cover the ports 96A, allowing liquid to pass through from the bottle, so the user can drink the beverage.
FIG. 2 is a cutaway view of the dispensing cap system 50 as installed on a bottle 10, with the system 50 in a filled state as delivered to the user. In this state, the valve 90 is positioned so that the lower flange 92B is in contact with the lower surface of the web portion 64 of the cap member, and the nipple is in a closed position relative to the nipple. The interior volume 110 of the storage member 80 has been filled with a quantity of supplement material 120. The openings 92A in the nipple are blocked by the solid wall portion of the boss 66, preventing the supplement material from passing through the openings 92A.
Still referring to FIG. 2, the system 50 is installed on the bottle 10, with the barbed tips 62A of the finger portions 62 having been pushed over the bottle flange 20, with the angled surfaces 62A-1 facilitating the installation by transferring a flexing force tending to splay the tips 62A outwardly as user pushes the cap system 50 downwardly over the neck of the bottle and the surfaces 62A-1 contact the flange edge. Continued downward pressure on the cap system results in the seal 70 coming into contact with the top lip of the neck and compressing somewhat to seal against the top lip of the opening. The barbed tips 62 then pass over the flange and lock the cap system in place by engagement of the horizontal surfaces 62A-2 with the underside of the flange.
The seal member 70 includes a center opening 72 through which the bottle contents may pass, and a generally flat upper surface 74. The outer periphery of the seal includes a downwardly extending peripheral wall 76. The lower surface of the seal defines a tapered surface 78 defining a partial conical seal surface which may be contacted by the bottle neck lip when the cap system is attached to the bottle neck. The conical seal surface has sufficient with relative to the bottle opening to seal a range of neck sizes, and also provide some adjustment to differences in the distance between the bottle neck flange and the top of the neck.
FIG. 3 is a cutaway view similar to FIG. 2, but with the shuttle valve 90 pushed downwardly, with the bottom end of the nipple 100 contacting the surface of the storage member 80. In the position or dispensing state shown in FIG. 3, the ports 92A in the valve member are at least partially aligned with the slot openings 66A formed in the cap member boss 66. The supplement material 120 is dispensed through the aligned openings and ports, and into the liquid in the bottle 10. The nipple 100 is still in a closed position relative to the valve 90, so that the contents of the bottle cannot be drawn through the valve 90. Depending on the tightness of the fit between the storage member and the valve, the user may tap the nipple and valve to cause the movement between the closed state shown in FIG. 2 and the dispensing state shown in FIG. 3. With the cap system in the dispensing state as in FIG. 3, the user may shake the bottle and assembled cap system to ensure full dispensing of the supplement material from the storage member into the bottle, and facilitate dissolving or mixing of the supplement with the bottle contents.
FIG. 4 is a cutaway view similar to FIG. 3, but with the nipple 100 pulled up and in an open state relative to the valve 90. In this position, the ports 96 on the tip of the valve are exposed, and provide ports through with the user may drink the bottle contents. In FIG. 4, the valve 90 has remained in the dispensing position relative to the storage member 80. The valve may be fitted with a projecting feature that allows the valve to be pushed from the storage position to the dispensing position, but due to engagement with the bottom of the cap member 60 is prevented from being pulled back to the storage position. Alternatively, the valve member 90 may be raised to the storage position as the nipple is opened.
FIG. 5 is a cutaway view of a bottle 10′ with an exemplary embodiment of the cap system 50 installed on the bottle neck. The bottle 10′ has a somewhat large neck diameter than that of the bottle 10, and yet the same cap system is configured to seal and install on the bottle neck. This is due to the use of an expandable attach system as provided by the finger portions 62 of the cap member, and the seal 70 with its seal surface broad enough to seal against necks of different sizes. In an exemplary embodiment the seal surface provided by the seal member 70 is conical, which can increase the seal pressure for larger diameter bottle neck openings, and/or accommodate differences in the distance between the top of the neck and the neck flange for different bottle types. Thus, instead of utilizing a threaded connection between the cap system and the bottle neck, a connection which accommodates different neck sizes is employed.
An exemplary embodiment of a bottle cap dispensing system may accommodate bottle necks of different dimensions, so that one cap dispensing system can be used with several bottle sizes, e.g. with different neck heights (flange to neck opening), and various bottle neck opening diameters. Exemplary ranges are from 5 mm to 25 mm (neck height range) and 18 mm to 30 mm (diameter range of bottle neck openings). A typical diameter range is from 26.5 mm to 28 mm.
An alternate embodiment of a dispensing cap system 50′ is illustrated in FIG. 6. The alternate embodiment is similar to the embodiment illustrated in FIGS. 1A-5. However, the cap member 60′ has a plurality of fill openings 65 formed in the web surface 64. The fill openings provide a means to allow the product to be dispensed to be filled into the supplement storage member 80′ after it has been attached or assembled to the cap member 60′. A liquid or powder supplement material can be loaded into the storage member through the fill openings, e.g. by pouring the supplement into the openings with the cap/storage member assembly in an inverted position. After the storage member 80′ has received the supplement load, the bottle seal member 70 is inserted into the cap and pushed against the bottom of the web surface to seal the fill openings. The capacity of the storage container 80′ is increased in relation to that of storage container 80 (FIGS. 1-5) by increasing the depth dimension in this exemplary embodiment.
The embodiment 50′ of FIG. 6 is further illustrated in the assembled, cut-away view of FIG. 7. Here the seal member 70 is shown in the seal position, closing off the file openings 65 formed in the cap member surface 64.
FIG. 7 illustrates another feature of the bottle cap assembly 50′. Since some bottles have different neck-flange-to-neck-top-surface dimensions, at least some of the finger portions 62 of the cap member 60′ are formed with two sets of barb portions, the barb tip 62A and an intermediate barb portion 62B. In the disclosed embodiment, each of the finger portions is formed with the barb tip portion and the intermediate barb portion. In other embodiments, fewer than all the finger portions may be fabricated with both, one, or none of the barb portions. Moreover, in other embodiments, some of the finger portions may have only a tip barb portion, and others may have only an intermediate barb portion.
Use of the intermediate barb portions 62B with the tip barb portions 62A enables the bottle cap assembly 50′ to accommodate even more variations in the bottle neck. For bottle necks with relatively smaller distances from the bottle opening surface against which the bottle cap assembly will seal to the bottle neck flange, the intermediate barb portions 62B may engage the flange to hold the cap assembly in place. For other bottle necks with relatively larger flange distances, the barb tip portions may engage the flange to hold the cap assembly in place.
The versatility of the bottle cap assembly 50′ in accommodating bottle necks of different neck opening sizes and flange dimensions is illustrated in the cutaway views of FIGS. 8, 9 and 10. Here, the bottle 10A has a relatively longer distance between the flange 20 and the neck opening surface 14. The bottle cap assembly is secured to the bottle by engagement of the tip barb portions with the flange 20. The neck opening of the bottle also has a relatively smaller diameter, with the surface 14 engaging the seal closer to the inward edge of the seal.
FIG. 9 shows the cap assembly 50′ in sealed position on the neck of another bottle 10B, this bottle having a somewhat larger neck opening diameter than that of bottle 10A, so that the neck surface 14 engages the seal surface of the seal member 70 in a position further away from the center of the seal member. However, the distance from the neck opening to the flange 20 is still relatively large, and the tip barb portions 62A are engaging the flange to hold the assembly 50′ in sealed position to the bottle neck.
FIG. 10 shows the cap assembly 50′ in sealed position on the neck of yet another bottle 10C, this bottle, having a somewhat smaller neck opening diameter than that of bottle 10C, so that the neck surface 14 engages the seal surface of the seal member 70 in a position closer to the center of the seal member. However, the distance from the neck opening to the flange 20 is relatively smaller than that of bottles 10A and 10B, and the intermediate barb portions 62B are engaging the flange to hold the assembly 50′ in sealed position to the bottle neck.
In the embodiment 50′, the cap member is provided with two barb positions relative to the bottle neck opening 14, i.e. the barb position of tip portion 62A and the barb position of intermediate barb portion 62B. In other embodiments, more than two barb portions positions may be provided, either on each finger portions or at staggered finger portions. This may provide a single bottle cap assembly configuration to accommodate more than two or three different bottle sizes. The bottle sizes are typically determined by a drink manufacturer, say a bottled water purveyor, sports drink purveyor or other drink vendor. Providing flexibility in the dispensing cap assembly to accommodate multiple bottle types provides the advantage of reducing the number of different types of dispensing cap assemblies needed to fit to the multiple bottle types.
Although the foregoing has been a description and illustration of specific embodiments of the subject matter, various modifications and changes thereto can be made by persons skilled in the art without departing from the scope and spirit of the invention.