The present device relates generally to dispensing capsules, and more specifically, to a dispensing capsule for removable engagement with a liquid-containing bottle and enabling dry or liquid ingredients contained within the dispensing capsule to be conveniently deposited into a bottle and mixed with the liquid contents thereof. A hand held dispensing capsule is also provided.
The movement to decrease transportation costs, packaging size, environmental waste and valuable store shelf space has increased the demand for innovative packaging for a wide range of products. Many products are sold as liquid concentrates, crystals and powders to be mixed with a liquid prior to consumption or use. Such products include foods, drugs, cosmetics, adhesives, polishes, cleansers, dyes, infant formula, drink mixes, meal replacements, protein powders, energy mixes, supplements, nutritional products and other substances. Some of these products do not retain their stability, strength and effectiveness for long after they have been mixed in solution or suspension, yet the product can be stored for extended periods of time if one ingredient is maintained separate from the other. This necessarily requires that the product be utilized relatively soon after mixture to prevent deterioration, spoilage, interactions and the like. Well known illustrative examples include epoxy adhesives, infant formula and enzyme enriched nutritional products.
Simultaneously, the active on-the-go lifestyle has also fueled the demand for portable, disposable and convenient product delivery packaging that delivers a premeasured amount of one ingredient for mixing with a measured amount of a liquid to insure that the desired solution concentration is obtained. Manufacturers are presented with a number of challenges in merchandising of products of this genre. In order to supply two companion products to the consumer in a single package, it obviously is desirable that both ingredients be sold as part of the same package such that a single package be utilized for maintaining such compounds separated.
Consumers are also presented a number of challenges in using these products. Consumers often purchase large containers or bulk quantities of infant formulas, drink mixes, meal supplement or nutritional powders. A small single serving portion of such powder or drink mix must be combined with water or other suitable liquids for consumption. However, the inconveniences associated with the use of such large containers of powders or mixes is well known. Consumers must undertake the time-consuming and often messy process of properly combining and mixing the powder with a container of liquid, measuring and depositing the appropriate amount of liquid or powder within the container and, thereafter, shake, stir or otherwise fully mix the combined contents. In doing so, powder and/or powder-liquid mix often spills, resulting in mess and partial loss of product.
To address these challenges, containers have been designed with two compartments in which two ingredients may be stored separately until it is desired to mix them, at which time it is possible to establish communication between the compartments so that the separated ingredients may move from one compartment to the other. It is known in the art to provide dispensers containing a concentrate of soluble materials to a fixed quantity of solute, usually water, for dispensing. Generally, the interior of the container is divided into a compartment having a liquid and a compartment which can be selectively ruptured by a user so as to mix the separately stored liquid or powder material on demand.
There are several drawbacks and limitations with the prior art containers of this type and design. Prior art containers are generally manufactured of a plurality of separate components that come together to form the breakaway. These multiple component designs are more expensive to manufacture and offer a less reliable seal that is subject to mechanical failure under pressure or temperature changes that accompany transportation and long term storage of the end product. Many of the prior art designs also offer a fully detached breakaway component that introduces dangerous nonconsummable loose material into the consumable solution. This may cause a choking hazard and should preferably be avoided, especially in applications such as infant formula. Other prior art designs offer a partially detached breakaway that tends to obstruct the delivery of the capsule contents or undesirably provide a place for contents to aggregate rather than mix into the solution.
Thus, it is desirable to provide an improved mixing cap or dispensing capsule that may be selectively and detachably mounted on a liquid-containing bottle or container enabling dry or liquid ingredients contained within the dispensing capsule to be conveniently deposited into the container and mixed with the liquid contents thereof that has none of the drawbacks or limitations of the prior art.
The present device overcomes the shortcomings of the prior art by providing one or more structures and methods for selectively securing and detachably mounting a dispensing capsule to a liquid containing bottle or container. A hand held dispensing capsule is also provided where mounting to a receiving container is not necessary. The present device discloses a dispensing capsule. Enhancements include (1) a breakaway plunger that fully detaches at its periphery while remaining attached to the shaft such that it does not fall away from the shaft and/or into the fluid cavity after it has been opened, (2) predictably distributing an activating force across the breakaway plunger by providing a breakaway plunger having stress concentrators, (3) minimizing a mechanical failure of a seal on a breakaway dispenser due to pressure differences between the dispenser's interior and exterior by providing a single injection molded dispensing capsule and breakaway plunger unit and/or a non-perforated uniform seal at the periphery of the breakaway plunger, (4) uniform and more expedient mixing of the consumable contents of a breakaway dispenser with a fluid in the receiving container by a conical shaped plunger having blades in a multitude of orientations configured to cause turbulence during agitation of the receiving container, and (5) a predictable break pattern in a breakaway dispenser by providing a breakaway plunger having stress concentrators with varying stiffness disposed along the periphery such that when the breakaway plunger is activated, the stress concentrators cause a uniform seal at the periphery to detach according to the magnitude of stress generated at each stress concentrator.
Briefly described, in a preferred embodiment, the present device overcomes the above-mentioned prior art disadvantages, and meets the recognized need for such a device by providing a dispensing capsule and method for use thereof, wherein the dispensing capsule is preferably pre-loaded during time of manufacture with a selected dry or liquid ingredient to facilitate subsequent consumer use. The novel dispensing capsule comprises an apertured housing with a diaphragm operably attached to a shaft having a breakaway plunger at one end and a diaphragm button on the opposing end, and a cavity disposed in the housing for consumable product defined by side walls and a base plate. In some aspects, mounting flange arrangements are integrally formed therewith. Preloaded ingredients contained within the hermetically sealed housing may be introduced or discharged from the dispensing capsule and/or into a liquid containing receiving container (e.g., bottle) by simply depressing a button disposed on the diaphragm of the housing, thereby actuating the breakaway plunger to open an aperture in the opposing end of the housing, permitting the contents to flow through the aperture and exit the cavity of the housing. The combined contents and liquid within the receiving container may subsequently be agitated (e.g., shaken or mixed) without fear or risk of leakage or spillage.
The housing is preferably pre-loaded during time of manufacture with a selected dry or liquid ingredient to facilitate subsequent consumer use; however, it is also contemplated that the cavity may be loaded with a selected ingredient at the time of initial consumer use (i.e., post-manufacture). In this aspect, the dispensing capsule may be either disposable or reusable. The present dispensing capsule is preferably removably engageable to the mouth of a conventional personal-sized water bottle, infant feeding bottle or other liquid-containing bottle; however, it should be recognized that the technology of the present device may be appropriately modified to accommodate the various structural properties of a selected liquid containing container, including, without limitation, mouth diameter, flanged mouths, threaded or unthreaded mouths, and/or the like. The housing may also be configured as a hand held device, for example, in the form of a pen or syringe style device or integrally formed with a receiving container as a single unit.
The housing may be integrally packaged as a sealed unit comprising the dispensing capsule and bottle/container. Both the bottle and the dispensing capsule are preferably pre-loaded during time of manufacture with a selected ingredients; however, it is also contemplated that either or both the dispensing unit and bottle may be loaded with a selected ingredient at the time of initial consumer use (i.e., post-manufacture).
The housing preferably comprises a diaphragm functioning as a top wall in communication with a cylindrical-shaped sidewall. The housing's aperture is located on the base plate correspondingly in communication with the cylindrical-shaped sidewall. The aperture is opposingly disposed from a button at the center of the diaphragm. The button, a shaft and a plunger are axially aligned and operably connected to one another. The plunger and base plate are preferably conical shaped. The plunger extends through the aperture when in the open position. The conical shaped base plate and conical shaped cone of the plunger facilitates dispersion of the consumable contents and minimizes obstruction.
Slideable movement of the housing within the bottle is preferably restricted via a mounting flange externally disposed, preferably at the top or bottom of the housing as appropriate for the desired mounting configuration. The general mounting flange arrangement of the dispensing capsule further provides an effective sealing means during use of the present device.
When the dispensing capsule is in a “closed position”, the preloaded ingredients or contents are maintained within the cavity (e.g. storage receptacle) of the housing by virtue of the juncture between the aperture, plunger and the base plate of the housing functioning as an effective seal between the storage receptacle and fluid compartment of the bottle or ambient environment surrounding the dispensing capsule.
When in the open position, the cavity of the housing is in fluid communication with the fluid compartment of the bottle or ambient environment surrounding the dispensing capsule. To place the dispensing capsule into an “open position”, so that the contents of the cavity of the housing may be introduced or discharged into the communicating bottle or air, the button on the diaphragm is sufficiently depressed or forcefully pushed to downwardly thrust the shaft and attached plunger to cause a predictable tear pattern and the plunger is introduced into the fluid cavity or air; thus, enabling the contents thereof to flow through the aperture of the base plate and into the liquid contents of the bottle or air. Preferably, the conical shaped plunger and base wall facilitates such flow, and prevents settling or accumulation of the contents thereon. The combined ingredients and liquid within the bottle may subsequently be agitated (shaken) without fear or risk of leakage or spillage. Following the shaking process, consumption of the fully mixed solution may be had by the user. For sake of clarity, the activation is described in terms of pushing downwardly, however, it is to be appreciated that other configurations and directions are contemplated and considered within the spirit and scope of the present device. As will be apparent to one skilled in the art, the direction of force will align with the shaft axis.
Accordingly, a feature and advantage of the present device is its ability to facilitate the introduction of a dry/liquid ingredient into a bottle, without risk of spillage of the ingredient.
Another feature and advantage of the present device is its ability to facilitate the mixing of a dry/liquid ingredient with the contents of a bottle, without risk of spillage of the ingredient or bottle contents.
Still another feature and advantage of the present device is its ability to provide a preloaded mixing cap or dispensing capsule.
Still another feature and advantage of the present device is its ability to provide a bottle or containers having two compartments in which two ingredients (one of which is a liquid) may be stored separately until it is desired to mix them, at which time it is possible to establish communication between the compartments so that the separated ingredients may move from one compartment to the other.
Yet another feature and advantage of the present device is its ability to provide a dispensing capsule that may be loaded at time of initial consumer use.
Still yet another feature and advantage of the present device is its ability to provide a dispensing capsule, the contents of which may be introduced or discharged into a bottle or the air by simply depressing the diaphragm of the dispensing capsule.
It is yet another object of the present device to provide a portable dispensing capsule that may be mounted to fluid containing containers and bottles of varying sizes and configurations.
Still yet another feature and advantage of the present device is its ability to provide a dispensing capsule that eliminates or minimizes obstruction in the material dispensing path due to partially detached breakaway flaps.
Still yet another feature and advantage of the present device is its ability to provide a dispensing capsule with a breakaway plunger that fully detaches at its periphery while remaining attached to the shaft such that it does not fall into the fluid cavity after it has been opened.
Still yet another feature and advantage of the present device is its ability to provide a dispensing capsule that fully disperses its contents into the fluid cavity of a receiving container or the air surrounding the dispensing capsule.
Still yet another feature and advantage of the present device is its ability to provide a dispensing capsule that predictably distributes an activating force across the breakaway plunger.
Still yet another feature and advantage of the present device is its ability to provide a dispensing capsule that eliminates or minimizes a mechanical failure of a seal on a breakaway dispenser due to pressure differences between the dispenser's interior and exterior.
Still yet another feature and advantage of the present device is its ability to provide a dispensing capsule that facilitates uniform mixing of its consumable contents with a fluid in the receiving container.
Still yet another feature and advantage of the present device is its ability to provide a dispensing capsule having a predictable break pattern.
It is yet another object of this device to provide a dispensing capsule that is relatively economical from the viewpoint of the manufacturer and consumer, is susceptible to low manufacturing costs with regard to labor and materials, and which accordingly is then susceptible of low prices for the consuming public, thereby making it economically available to the buying public.
Whereas there may be many embodiments of the present device, each embodiment may meet one or more of the foregoing recited objects in any combination. It is not intended that each embodiment will necessarily meet each objective.
In this respect, before explaining at least one embodiment of the device in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangements of the components set forth in the following description or illustrated in the drawings. The present device is capable of other embodiments and of being practiced and carried out in various ways.
Partially detached breakaway flaps obstruct the dispersion path of the dispensing capsule's contents. The present device provides a dispersion capsule with a breakaway plunger that fully detaches at its periphery while remaining attached to the shaft such that it does not fall into the fluid cavity after it has been opened. This provides the additional advantage that loose material (packaging components) is not introduced into the consumable solution. Obstruction is further minimized by the present device by providing a shaft that is secured at one end to a breakaway plunger and at an opposing end is secured to a diaphragm button such that the breakaway plunger is restricted to vertical movement along a central axis of the shaft and transmits an axially applied force to the diaphragm button to the seal such that it fully detaches the periphery of the breakaway plunger. Full dispersion of the contents into the fluid cavity of a receiving container is achieved with an inclined surface on the breakaway plunger and base plate.
A single injection molded dispensing capsule and breakaway plunger unit as well as a non-perforated uniform seal at the periphery of the breakaway plunger eliminates mechanical failure of multiple component breakaway units.
Stress concentrators advantageously provide a means of predictably distributing an activating force to selected portions of the breakaway plunger and/or that concentrate the axial force and direct it to small specific portions of the seal that are equally distributed around the periphery of the breakaway plunger. These stress concentrators can have a blade shape to additionally facilitate uniform and more expedient mixing of the consumable contents of the dispensing capsule with a fluid in the receiving container. The unique design of a conical shaped plunger having blades in a multitude of orientations configured to cause turbulence during agitation of the receiving container provides obvious advantages to the user.
A predictable break pattern is provided by a breakaway plunger having stress concentrating ribs with varying stiffness and/or geometry disposed along the periphery such that when the breakaway plunger is activated, the stress concentrating ribs cause a uniform seal at the periphery to detach according to the magnitude of stress generated at each stress concentrating rib.
The invention will be described by reference to the specification and the drawings, in which like numerals refer to like elements, and wherein:
The drawings are not to scale, in fact, some aspects have been emphasized for a better illustration and understanding of the written description.
2—dispensing capsule (upper flange style capsule)
2A—dispensing capsule (bottom flange style capsule)
4—diaphragm (top wall of housing)
5—housing
6—mounting flange (upper flange style capsule)
6A—mounting flange (bottom flange style capsule)
7—threaded opening of receiving container (bottle mouth)
8—button
8A—bubble button style
8B—ripple button style
9—securing cap
10—cylindrical shaped side wall
11—aperture of housing
12—base plate
13—breakaway plunger
14—shaft
15—cavity in housing interior for consumable product
17—diaphragmatic seal
16—enlarged view
18—consumable material (ingredient)
20—fluid
22—receiving container (bottle)
24—airtight or hermetic aperture seal around breakaway plunger
25—direction of flow path of consumable contents
26—direction of activation force
28—stress concentrators
28A—upper stress concentrator portion
28B—lower stress concentrator portion
30—infant feeding bottle
32—peripheral fluid channels
36—central fluid channel
38—shaft guide
40—direction of installation
42—lid (with shaft guide and diaphragm)
44—indents on diaphragm to correspond with peripheral fluid channels
46—agitating mechanism
48—blades
50—cavity
52—inactivated diaphragm (bottom flange style capsule)
54—activated diaphragm (bottom flange style capsule)
56—inactivated diaphragm with ripple button (bottom flange style capsule)
58—infant feeding nipple
60—threaded portion of nipple cap
62—mating threaded portion of infant feeding bottle at nipple attachment
64—threaded portion of securing cap
66—mating threaded portion of infant feeding bottle at dispensing capsule attachment
68—threaded portion of sprayer bottle
70—sprayer
72—tube
74—detent in shaft to receive shaft guide
76—detent in breakaway plunger to receive shaft
78—threaded portion of mounting flange
80—concave portion of base plate
82—threaded portion of housing
84—threaded portion of lid
86—protruding lip
The use of conventional liquid containers such as plastic bottles for carrying water, juices, and other desirable liquids for human consumption is quite well known. The present device is generally directed to a dispensing capsule that may be used with such bottles or containers to separately store an ingredient to be mixed with a liquid at the time of consumption to form a consumable solution. In describing the preferred and alternate embodiments of the present device, as illustrated in the Figures, specific terminology is employed for the sake of clarity. The invention, however, is not intended to be limited to the specific terminology so selected, and it is to be understood that each specific element includes all technical equivalents that operate in a similar manner to accomplish similar functions.
Referring now to
It should be noted that the general arrangement of, and interaction between, the mounting flange 6 and the opening 7 of the receiving container 22 provide an effective sealing means during use of the present device, and particularly during the shaking process hereof. In some aspects, a securing cap 9 is used to secure the dispensing capsule 2 to the opening of the receiving container 22.
It is contemplated that the housing 5 and its cavity 50 may be manufactured in any selected volumetric size so as to provide a variety of preloaded, or loadable, dispensing capsules 2 adapted to facilitate the ingestion or consumption of accurately measured quantities of consumable product 18.
Continuing to refer in particular to 1A, 1B, 1C, 2 and 2A, the dispensing capsule 2 preferably comprises a housing 5 formed of cylindrical side wall 10 and base plate 12. The top wall of the housing is a diaphragm 4 that may be integrally formed with the cylindrical side wall 10 or a separate component that may be affixed thereto.
Referring generally to
Preferably formed on and around the cylindrical side wall 10 and/or the diaphragm 4 is rounded mounting flange 6 dimensioned such that it extends and protrudes outwardly from the housing 5; that is, the mounting flange 6 is preferably diametrically larger than the diameter of the housing 5. This mounting flange 6 may be configured as an upper mount style (see
Referring generally to
The mounting flange 6 also provides a means for securing the dispensing capsule 2 about the bottle opening 7.
In a similar fashion,
Although dispensing capsule 2 is preferably threadably-engaged to the opening 7 of a receiving container 22 (mouth of a bottle), it should be recognized that the technology of the present device may be appropriately modified to accommodate the various structural properties of any selected receiving container 22 (bottle), including, without limitation, mouth diameter, flanged mouths, threaded or unthreaded mouths, and/or the like. As such, it is contemplated that dispensing capsule 2 may be coupled to an unthreaded opening of a receiving container via frictional-fit. It is also contemplated that there are hand held embodiments of the dispensing capsule that are not mounted to a receiving container (see for example,
The housing's cavity 15 is preferably pre-loaded during time of manufacture with a selected dry or liquid consumable product 18 to facilitate subsequent consumer use; however, it is also contemplated that the cavity 15 may be loaded with a selected consumable product 18 at the time of initial consumer use (i.e., post-manufacture). In this aspect, the dispensing capsule 2 may be either disposable or reusable. The present dispensing capsule 2 is preferably removably engageable to the mouth 7 of a conventional personal-sized water bottle 22, infant feeding bottle 30 or other liquid-containing bottle; however, it should be recognized that the technology of the present device may be appropriately modified to accommodate the various structural properties of a selected container, including, without limitation, mouth diameter, flanged mouths, threaded or unthreaded mouths, and/or the like.
The housing 5 may be integrally packaged as a sealed unit comprising the dispensing capsule 2 and bottle/container 22. Both the bottle 22 and the dispensing capsule 2 are preferably pre-loaded during time of manufacture with a selected consumable ingredients; however, it is also contemplated that either or both the dispensing unit and bottle may be loaded with a selected ingredient at the time of initial consumer use (i.e., post-manufacture).
The housing 5 preferably comprises a diaphragm 4 functioning as a top wall in communication with a cylindrical-shaped sidewall 10. The housing's aperture 11 is located on the base plate 12 correspondingly in communication with the cylindrical-shaped sidewall 10. The aperture 11 is opposingly disposed from a button 8 at the center of the diaphragm 4. The button 8, a shaft 14 and a breakaway plunger 13 are axially aligned and operably connected to one another. The breakaway plunger 13 and base plate 12 are preferably conical shaped. Although not essential, any inclined shape (pyramidal, conical and the like) of the base plate 12 and breakaway plunger 13 (plunger cone 13 in the embodiment depicted) is preferred. As more clearly visible in
The diaphragm creates a flexible cavity volume such that an excessive pressure in the sealed cavity is relieved, such as when there are pressure variance between the inside and outside of the cavity.
Slideable movement of the dispensing capsule 2 within the receiving container 22 is preferably restricted via an externally disposed mounting flange 6, preferably at the top or bottom of the housing 5 as appropriate for the desired mounting configuration. The general mounting flange arrangement of the dispensing capsule 2, 2A further provides an effective sealing means during use of the present device.
When the dispensing capsule 2 is in a “closed position” (see
When in the open position (see
Many prior art mixing caps use separate components (buttons, seals, and the like) that come together to form the breakaway. The separate components are typically sealed temporarily by fusing, mechanical force, or adhesive. Mechanical failure of seals is experienced during transportation, handling, and long term storage. These are often the result of temperature and pressure changes, more specifically, the pressure differential between the interior and exterior of the dispensing capsule. The problem of mechanical failure of seals in breakaway dispensers is solved by the present device with a single injection molded dispensing capsule 2 and breakaway plunger 13 unit. Additionally, the present device has a non-perforated uniform seal 24 at the periphery of the breakaway plunger 13. This uniform seal 24, preferably created by a single injection molding process, eliminates weak structural points of multiple component designs that can lead to mechanical failure of the seal 24. This configuration provides a durable, reliable hermetic seal 24 that will not rupture during transportation and handling through a broad range of temperatures and physical agitation. This configuration provides additional advantages in that it is less expensive to manufacture, offers a more reliable seal and more durable overall dispensing capsule 2.
Without the aid of a diaphragm or guide, a non-co-axial force applied to the plunger 13 would cause one portion of the seal 24, or undesired areas of the base plate 12, to experience higher stress, creating a situation where the breakaway 13 remained partially attached. Since the shaft 14 is secured at one end to the breakaway plunger 13 and at the opposing end to the diaphragm button 8, the breakaway plunger 13 is restricted to vertical movement along the shaft 14 axis (it can only move up and down and not from side to side). It functions to guide the force 26 applied to the diaphragm button 8 to the seal 24 in the desired predictable pattern such that it fully detaches the complete periphery of the breakaway plunger 13. The breakaway plunger is disposed concentrically to the diaphragm such that a non-axial force applied to a button on the diaphragm is transmitted axially through the breakaway plunger to create stress on the seal thereby causing it to break away.
In applications where a trap door type configuration for the breakaway is preferred or desired, the breakaway plunger 13 of the present device can be sufficiently adapted such that the breakaway seal 24 is less than the full 360 degrees and that at least a portion of seal 24 remains affixed to the breakaway plunger 13 and/or base plate 12.
A predictable break pattern is provided by a breakaway plunger 13 having stress concentrating ribs 48 with varying stiffness disposed along the periphery such that when the breakaway plunger 13 is activated, the stress concentrating ribs 28 cause a uniform seal 24 at the periphery to detach according to the magnitude of stress generated at each stress concentrating rib 28.
Referring to
It is contemplated in yet another alternate embodiment that housing 5 could comprise a rigid seal disposed between storage cavity 15 of the housing 5 and the aperture 11. In such an embodiment, depressing the diaphragm button 8 would effectively cause the shaft 14 to push against the rigid seal and dislodge the breakaway plunger 13 from its resting position; thus enabling mixture of preloaded consumable product 18 with the liquid 20 contents of the receiving container 22. The foregoing embodiment may alternatively utilize a rupturable seal.
It is contemplated in yet another alternate embodiment that the exterior surface of the housing 5 and/or mounting flange 6 could comprise a rigid seal.
Other configurations of the fluid channel are contemplated. By way of illustration,
Other button and/or diaphragm configurations may be suitably adapted to the present device. The diaphragm and diaphragm button may be convex or concave.
It is contemplated in still another alternate embodiment that the interior surface of the receiving container 22 comprises ridges, fins or ribs (i.e., linear, curved or spiral shaped fins) integrally formed thereover to facilitate agitation of the consumable product in the dispensing capsule 2 with the liquid 20 contents after activation of the breakaway plunger 13.
It is contemplated in still another alternate embodiment that the receiving container 22 comprises a flexible bag design rather than a more structurally solid bottle as generally depicted in the Figures. By way of illustration, the receiving container may take the form of an infant disposable bottle insert or a pouch style drink container as commonly seen with products such as CAPRI SUN®.
In yet another embodiment of the present device (not depicted), the dispensing capsule 2 comprises a plurality of cavities for storing a corresponding number of separate consumable products for mixing at the time of consumption. By way of illustration, a dispensing capsule 2 may comprise three cavities that store separately freeze-dried coffee crystals, a granular or powdered sweetener and a powdered creamer. These consumable products mix with hot water in the receiving container to form a hot coffee drink.
Although the present device contemplates use of dispensing capsule 2 for applications where the receiving container 22 is filled with liquid 20 such that the mixed consumable end product is a solution or suspension, it should be recognized that dispensing capsule 2, or any dimensional variation thereof, may be utilized to facilitate the introduction and mixture of any selected ingredient, additive or the like to the contents of a communicating bottle or container 22. The technology of the present device may be appropriately modified to accommodate other applications such as a dispensing capsule 2 filled with salad dressing and a receiving container 22 filled with vegetable ingredients (e.g. lettuce, carrots, and the like) or a dispensing capsule 2 filled with milk and a receiving container 22 filled with breakfast cereal.
There may also be provided on or more adaptor components to facilitate the securing of the dispensing capsule 2 about the receiving container 22. These may include advantages such as integrated check valve air vents and/or silicone valve seals. These have special application when used with receiving containers in the form of infant feeding bottles.
Another embodiment provides a dispensing capsule that is configured to a receiving container in the form of a vehicle gasoline tank such that a user may introduce an additive to the gas tank. In this aspect, best illustrated in
Similarly,
In the embodiment depicted in
Thus, having broadly outlined the more important features of the present device in order that the detailed description thereof may be better understood, and that the present contribution to the art may be better appreciated, there are, of course, additional features of the present device that will be described herein and will form a part of the subject matter of the claims appended to this specification.
As such, those skilled in the art will appreciate that the conception, upon which this disclosure is based, may readily be utilized as a basis for the designing of other structures, methods and systems for carrying out the several purposes of the present device. It is important, therefore, that the claims be regarded as including such equivalent construction insofar as they do not depart from the spirit and scope of the conception regarded as the present invention.