Dispensing containers are used in a variety of industries for the dispensing of various liquid products. For example, in the beauty industry, products such as shampoo, conditioner, creams and lotions are all packaged in flexible containers having a dispensing closure mounted thereon. Such dispensing containers are also used in the food industry for various condiments, such as ketchup, mayonnaise, and syrups.
One important aspect to the mounting of a dispensing closure in the food industry is sealing of the closure immediately after filling. After filling, containers for products, such as syrup, are often subjected to warm water baths to wash away excess product, dust, and the like, and may be further subjected to cooling baths to cool product that is filled while hot. For example, chocolate syrup is filled into the containers at a temperature of about 180° F. After filling, the dispensing closure is mounted onto the container while the product is still hot, and the container is run through a warm bath to wash of excess product that may have spilled onto the outside of the container. The container can thereafter be run through a cooling bath to cool the container to a suitable temperature for further processing. After filling of the container and mounting of the dispensing closure, it is imperative to keep the interior head space of the dispensing closure clean so as to present an aseptic and sterile appearance to the end consumer when opened. In the past, it had been found that rinsing water often infiltrated the seal of the cap on the closure leaving behind residue inside the cap.
To remedy the problem several manufacturers have provided drain openings around the periphery of the cap so that the water can drain out quickly after rinsing. However, this promotes the infiltration of water into the head space, and can actually result in increased levels of residue inside the cap.
Other manufacturers have attempted to keep the water out by providing a complete seal around the cap. However, there has always been a weak spot in the seal in the vicinity of the cap hinge. It is generally known that as the volume of air inside the head space of the cap begins to cool, the air volume shrinks, and creates a small vacuum that tends to draw water inwardly into the interior of the cap.
Another aspect to mounting of dispensing closures is alignment of the dispensing spout with respect to the shape of the container onto which the dispensing closure is mounted. It has been an engineering challenge to provide dispensing closures having a spout that aligns perfectly with the container shape when mounted in a robotic filling line environment. One remedy to the alignment issue has been to place the dispensing orifice at the exact center of the dispensing closure. However, this forces changes in the hinge structure of the cap thus creating external alignment issues with respect to the orientation of the hinges.
It is thus imperative to provide a dispensing closure with a complete peripheral seal around the outer circumference so that no water can infiltrate into the head space of the cap during processing, particularly during cooling, and to provide a dispensing closure that is universally oriented with respect to the shape of the plastic container onto which it is mounted.
Another problem that manufacturers have sought to solve is preventing spillage of the liquid contents of the container from onto the surface of the dispensing closure. This problem is especially difficult to solve because of the many variables involved, including accounting for the viscosity of the liquid at different temperatures and pressures and accounting for how the consumer will use/misuse the container during dispensing. In particular, liquids tend to form a bubble on the inside of the dispensing closure called a meniscus. When the meniscus pops, liquid is ejected through the dispensing orifices and spatters the dispensing closure resulting in an unsightly appearance. Therefore, there is a need for a dispensing closure design that prevents the formation of a meniscus and minimizes the spattering of the liquid contents of the container during dispensing.
Further complicating the problem is the tendency for the excess water in some liquids to separate from the liquid to form a syneresis fluid on top of the liquid. This process occurs frequently in food products, such as mustard and ketchup. If the consumer fails to agitate the contents of the container prior to dispensing, thus re-suspending the syneresis fluid in the liquid, the syneresis fluid will be dispensed first with undesirable results. In the case of ketchup or mustard, which is typically being dispensed on other food, the result is that the food gets wet. Manufacturers have tried all sorts of various dispensing closure configurations to decrease spillage, all with limited success. Therefore, there is a need for a dispensing closure that capture the syneresis fluid and prevents the dispensing thereof.
The closure of the present invention obviates such problems in an efficient, low-cost fashion through use of a molded single-piece plastic construction with integrally molded living hinges and dual complete peripheral seals, a tubular flow modulating structure, and a syneresis capture structure.
By incorporating a sealing bead on a sealing cap and a sealing bead on an annular sealing surface of the closure body, the sealing beads prevent the infiltration of water into the sealing cap during the manufacturing process and thus provide an aseptic and sterile appearance to the end consumer when opened. The sealing beads also have the added benefit of providing an audible and tactile click operation to the dispensing closure, informing consumers that the dispensing closure is fully closed and sealed.
By incorporating a tubular flow modulating structure into the closure body that has at least one tapered capillary slot, the formation of meniscus by the liquid can be prevented and thus minimize spillage and spattering thereof.
By incorporating a syneresis capture structure into the closure body, the syneresis fluid of the liquid will become trapped between the syneresis capture structure and the skirt of the closure body, thus preventing the flowing thereof out the dispensing orifice.
Another object of the invention is to provide a dispensing closure that has a snap-action sealing cap. This feature also being seen as desirable by consumers.
Yet another object of the invention is to provide a dispensing closure that does not have to be orientated during assembly onto the container to align the hinges of the sealing cap or to orient the dispensing orifice in a particular direction. This invention accomplishes both goals through use of a low-profile hinge structure that mates to the closure body during manufacturing and has a centrally placed dispensing orifice obviating the need for expensive equipment to align and position the dispensing closures prior to or during assembly onto containers.
Yet another object of the invention is to provide a dispensing closure that prevents the formation of a meniscus by the liquid contents of the container and to minimize any spattering tendencies thereof.
Yet another object of the invention is to provide a dispensing closer that captures the syneresis fluid of the liquid and prevents the flowing thereof out the dispensing orifice.
Other advantages and features of the present advantage will become apparent in the drawings and detailed description.
b is a bottom perspective view of the fifth embodiment.
b is a bottom perspective view of the sixth embodiment.
b is a bottom perspective view of the seventh embodiment.
b is a bottom perspective view of the eighth embodiment.
b is a bottom perspective view of the ninth embodiment.
Referring now to the drawings,
Sealing cap 14, as shown in
Closure body 16 includes a smooth upper wall 32 interrupted by dispensing orifice 34; the dispensing orifice communicates with the interior of the closure body. An annular sealing surface 36 is located below upper wall 32, and encircles closure body 16, and skirt 38 below the upper wall 32. Horizontal ledge 40 is formed between annular sealing surface 36 and skirt 38. An indentation 42 is formed in the exterior surface of skirt 38 at a location remote from hinges 18, 20, and in alignment with camming lug 26.
Locator ring 44 depends below upper wall 32 into the interior of closure body 16, and internal threads 46 are arranged in helical fashion around the interior of skirt 38. Ring 44 engages the end of the neck of container 12 to which dispensing closure 10 is applied, while threads 46 cooperate with complementary threads, or lugs, on the neck of the container 12 to secure dispensing closure 10 in fixed position.
Camming lug 26 as shown in
Camming lug 26 is strategically located between spaced hinges 18, 20, for effectively stressing same within their elastic limits. The hinges may be strengthened, if warranted, by the addition of reinforcing ribs 50, 52. The ribs are visible in
Hinges 18 and 20 are each integrally formed with a holder. Holder 54 for hinge 18 is shown in
Recess 56 imparts resiliency to holder 54 for hinge 18, and does the same for the holder for hinge 20. The limited resiliency of the holders for hinges 18, 20 permits some relaxation of the close tolerances associated with dispensing closures, without sacrificing desirable operational characteristics.
As shown in
Closure 10, as shown in
Furthermore, the use of pair of spaced hinges 18, 20, has materially increased the resistance of closure 10 to twisting forces. Such forces come into play as automated capping machinery applies torque to the closure to screw same onto the neck of a container or if consumers twist the closure to remove it from the neck of the container.
Hinges 18 and 20 are folded when sealing cap 14 is engaged, in sealing relationship, with closure body 16. As shown in
Referring now to
Sealing cap 114 is pivoted about the hinge between an open and closed configuration. Closure body 116 is provided with deck 132 and dispensing orifice 134 centrally located and extending upwardly from deck 132. Extending about the full circumference of the deck is sealing surface 136. Located inwardly of this sealing surface is rib 152 and recess 154.
The structure of the sealing cap can also be seen in the cross-sectional view of
The closure is generally indicated at 200 and comprises a sealing cap 214 and a closure body 216 integrally connected by a hinge structure 218 having two living hinges 218a and 218b.
The closure sealing cap 214 includes an upper wall 223, annular flange wall 224 depending downwardly from the upper wall 223, and a central sealing bead 226 depending downwardly from the center of the upper wall 223.
The closure body 216 has an upper wall 232 including a centrally positioned dispensing orifice 234, an annular sealing surface 236, an upper peripheral skirt 238a and a lower peripheral skirt 238b.
The sealing cap 214 is connected to the closure body 216 by a hinge structure 218 that is specifically designed to form a low profile when snapped into position. The living hinge 218 includes a hinge body 219 having a body hinge 218a adjacent to the closure body 216 and a sealing cap hinge 218b adjacent to the sealing cap 214. The hinge body 219 and the upper peripheral skirt 238a of the closure body 216 are provided with interfitting mating formations 220 and 222 that snap together when the hinge body 219 is rotated about the body hinge 218a. More specifically, the formations 220 and 222 comprise two hook-shaped tabs 220 in the surface of the upper peripheral flange 238a and two complimentary receiving tabs 222 on the hinge body 219. However, other similar configurations are possible. The intention of the hinge structure 218 is to provide a low profile, substantially flush engagement when snapped into position. In the as molded configuration, the closure body 216, hinge structure 218, and sealing cap 214 are laid out flat (See
The sealing cap hinge 218b has a similar configuration to the hinge tab structure 26 shown in
Referring back to
To provide a complete peripheral seal around the upper wall 232, i.e. to prevent water from infiltrating onto the upper wall 232, the lower edge of the flange wall 224 of the sealing cap 214 includes a continuous peripheral sealing bead 240. When the sealing cap 214 is moved to the closed position, the sealing bead 240 engages the entire circumference of the annular sealing surface 236 to form a continuous primary seal around the circumference of the closure 200. In addition, to form a secondary sealing line, the outer peripheral edge of the upper wall 232 includes a peripheral sealing bead 242 that engages the inner wall of the sealing cap flange 224 when the sealing cap 214 is moved to the closed position. In particular, please refer to
Referring back now to
Referring now to
The syneresis capture structure 402 and tubular flow modulating structure 410 of the present invention can be arranged in a number of different embodiments. There are two key features of the syneresis capture structure 402 and tubular flow modulating structure 410 of the present invention that are inherent in all of the embodiments shown in the figures. The first is that the outside surface of the syneresis capture structure 402 forms a well between the inner surface of the skirt 412 and upper wall 408 of the closure body 401 to capture and prevent the flow of syneresis fluid out the dispensing orifice 404. The second is that the inside surface of the tubular flow modulating structure 410 includes at least one capillary slot 414 to prevent the formation of a meniscus by the liquid on the inside surface of the dispensing closure 400. As can be seen in the figures, the syneresis capture structure 402 and tubular flow modulating structure 410 can be formed into one structure where the outside surface forms the syneresis capture structure 402 and the inside surface forms the tubular flow modulating structure 410. It will be appreciated by those skilled in the art that the inventive concept of the present application could be implemented in numerous ways.
In another embodiment, shown in
In yet another embodiment, shown in
In yet another embodiment, shown in
In yet another embodiment, shown in
Although the present invention has been described in considerable detail with reference to certain preferred embodiments thereof, other versions are possible to those with ordinary skill in the art. For example, other means could be used to attach the closure to the container other than screw threads, such as a snap-rim. Also, other arrangements of the interfitting mating formations could be used to anchor the hinge body to the upper peripheral skirt. Therefore, the scope of the appended claims should not be limited to the description of the preferred embodiments contained herein.
This application is a continuation in part from earlier filed U.S. application Ser. No. 10/960,179 filed Oct. 7, 2004, which claims priority to earlier filed U.S. Provisional Patent Application No. 60/509,523, filed Oct. 9, 2003, and earlier filed U.S. Provisional Application No. 60/587,518, filed Jul. 13, 2004. These documents are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4187964 | Bogart | Feb 1980 | A |
4635823 | Stull | Jan 1987 | A |
4646753 | Nugent | Mar 1987 | A |
5437383 | Stull | Aug 1995 | A |
5938087 | Randall | Aug 1999 | A |
6116477 | Kreiseder et al. | Sep 2000 | A |
6170717 | Di Giovanni et al. | Jan 2001 | B1 |
6305563 | Elliot | Oct 2001 | B1 |
6349860 | McMahon et al. | Feb 2002 | B1 |
6749089 | Stull et al. | Jun 2004 | B2 |
6758375 | Ho | Jul 2004 | B2 |
20020096532 | Berge et al. | Jul 2002 | A1 |
Number | Date | Country |
---|---|---|
0199673 | Oct 1986 | EP |
0541846 | May 1993 | EP |
0198162 | Dec 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20060011667 A1 | Jan 2006 | US |
Number | Date | Country | |
---|---|---|---|
60509523 | Oct 2003 | US | |
60587518 | Jul 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10960179 | Oct 2004 | US |
Child | 11163032 | US |