Dispensing device

Information

  • Patent Grant
  • 9265901
  • Patent Number
    9,265,901
  • Date Filed
    Wednesday, March 7, 2012
    12 years ago
  • Date Issued
    Tuesday, February 23, 2016
    8 years ago
Abstract
A dispenser includes a dispenser housing, an indicating device connected to the dispenser housing and a container removably engaged with the dispenser housing. The container and the dispenser housing remain connected as the container is moved between an engaged position and a disengaged position relative to the dispenser housing. The dispenser housing includes an upper portion pivotally connected to a lower portion.
Description
FIELD OF THE INVENTION

The present invention relates generally to a dispensing device, and in particular, to a dispensing device having a dosage indicator for indicating the number of metered dosages that have been dispensed from, or remain in, a container that is associated with that particular dispensing device.


BACKGROUND

Aerosol dispensing devices have been developed that include a dose indicating device to indicate the number of metered doses that have been dispensed from the device, or to indicate the number of doses remaining therein. For example, patients have certain conditions that can be treated with medicaments dispensed in an aerosol and administered to the patient by inhalation. In one format, the aerosol with medicaments are contained in a container, and dispensed in metered, or measured, dosages with an inhalation device, or actuator boot. In such an arrangement, it can be important for the patient to be able to ascertain the number of metered doses remaining in the container, either by an indication of the number remaining therein or by knowledge of the number already dispensed therefrom, such that the patient is not caught unaware with an empty container when in need of the medicament. Thus, it may be important for the inhalation device to provide an accurate indication of either the number of doses remaining in the container, or the number of doses already dispensed therefrom.


In some embodiments, for example metered dose inhalers configured with containers holding HFA propellant, the actuator nozzle or well may need to be cleaned periodically to ensure proper aerosol drug delivery and output. In conventional embodiments, the container is simply removed from the actuator and water is used to clear the actuator nozzle. However, when the dispensing device is configured with an indicator device, for example a device located in the actuator boot, there is potential for a different container to be associated with the actuator boot and indicator device, thereby leading to an inaccurate count of dosages dispensed from or remaining in that container.


SUMMARY

Briefly stated, in one aspect the invention is directed to a dispenser that dispenses dosages of a substance. The dispenser includes a container having an end portion and a valve stem extending from the end portion. A dispenser housing includes a nozzle having a well. An indicating device is connected to the dispenser housing and includes an indicator with dosage indicia. The container is moveable between an engaged position, wherein the valve stem is disposed in the well and a disengaged position, wherein the valve stem is removed from the well. In the disengaged position, the actuator nozzle is accessible for cleaning without getting water on the valve stem. A connection is maintained between the container and the dispenser housing, however, such that the same container is associated with the dispenser housing and indicating device thereby maintaining the count integrity of the device.


In one embodiment, the dispenser housing includes an upper portion pivotally connected to a lower portion. The indicating device is connected to the lower portion, while the container is moveably connected to the upper portion. The upper and lower portions are pivotable between at least a first and second position.


In one embodiment, the upper portion is pivotal relative to the lower portion about a longitudinal axis. In another embodiment, the upper portion is pivotal relative to the lower portion about an axis non-parallel to the longitudinal axis, and preferably about an axis substantially perpendicular to the longitudinal axis.


In one embodiment, a locking collar maintains a fixed connection of the upper and lower portions when the container is engaged with the support block. The locking collar is moveable so as to disengage the container from the support block and unlock or release the upper portion from the lower portion, such that the upper portion, with the container coupled thereto, can be pivoted relative to the lower portion.


In yet another aspect, a method for dispensing dosages from the container and for disengaging the container from the support block while maintaining a connection with the dispenser housing is provided.


The various embodiments provide simple, robust and inexpensive solutions for providing the user with information allowing them to ascertain the number of metered doses remaining in the container, either by an indication of the number remaining therein or by knowledge of the number already dispensed therefrom. In addition, the container remains connected to the dispenser housing, even if it is disengaged from the support block, for example to clean the housing, thereby ensuring that the integrity of the dose count for the container is preserved and also that the container will be used with a properly configured dispenser housing. In the latter situation, it should be understood that the dispenser housing and container can be used without an indicating device.


The foregoing paragraphs have been provided by way of general introduction, and are not intended to limit the scope of the following claims. The various preferred embodiments, together with further advantages, will be best understood by reference to the following detailed description taken in conjunction with the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A is an exploded perspective view of a first embodiment of a dispensing device.



FIG. 1B is an assembled perspective view of the dispensing device shown in FIG. 1A.



FIG. 2 is a front view of the dispensing device shown in FIG. 1B.



FIG. 3 is partial cross-sectional view of the dispensing device shown in FIG. 2 taken along line 3-3.



FIG. 4 is a side view of the dispensing device shown in FIG. 1B.



FIG. 5 is a rear view of the dispensing device shown in FIG. 1B.



FIG. 6 is a top view of the dispensing device shown in FIG. 1B.



FIG. 7 is a bottom view of the dispensing device shown in FIG. 1B.



FIGS. 8A-8E are side views of the dispensing device shown in FIG. 1B as the device is moved from a ready-to-use configuration to a ready-to-clean configuration.



FIG. 9 is a first side view of an upper portion of the dispenser housing.



FIG. 10 is a cross-sectional view of the upper portion shown in FIG. 9 taken along line 10-10.



FIG. 11 is a second side view of the upper portion.



FIG. 12 is a top view of the upper portion.



FIG. 13 is a side view of a connector member.



FIG. 14 is a cross-sectional view of the connector member shown in FIG. 13 taken along line 14-14.



FIG. 15 is another side view of the connector member.



FIG. 16 is a perspective view of the connector.



FIG. 17 is a top view of the connector.



FIG. 18 is a perspective view of a lower portion of the dispenser housing.



FIG. 19 is a top view of the lower portion.



FIG. 20 is a cross-sectional view of the lower portion shown in FIG. 19 taken along line 20-20.



FIG. 21 is a front view of the lower portion.



FIG. 22 is a side view of the lower portion.



FIG. 23 is a rear view of the lower portion.



FIG. 24 is a perspective view of a retainer member.



FIG. 25 is a top view of the retainer member.



FIG. 26 is a cross-sectional view of the retainer member taken along line 26-26 of FIG. 25.



FIG. 27 is a first side view of the retainer member.



FIG. 28 is a second side view of the retainer member.



FIG. 29 is an exploded perspective view of a second embodiment of a dispensing device.



FIG. 30 is a front view of the dispensing device shown in FIG. 29.



FIG. 31 is a partial cross-sectional view of the dispensing device shown in FIG. 30 taken along line 31-31.



FIG. 32 is a side view of the dispensing device shown in FIG. 29.



FIG. 33 is a rear view of the dispensing device shown in FIG. 29.



FIG. 34 is a bottom view of the dispensing device shown in FIG. 29.



FIG. 35 is a top view of the dispensing device shown in FIG. 29.



FIG. 36 is a perspective view of the assembled dispensing device shown in FIG. 29.



FIGS. 37A-37D are side views of the dispensing device shown in FIG. 36 as the device is moved from a ready-to-use configuration to a ready-to-clean configuration.



FIG. 38 is a perspective view of a lower portion of dispenser housing.



FIG. 39 is a top view of the lower portion.



FIG. 40 is a cross-sectional view of the lower portion shown in FIG. 39 taken along line 40-40.



FIG. 41 is a front view of the lower portion.



FIG. 42 is a side view of the lower portion.



FIG. 43 is a rear view of the lower portion.



FIG. 44 is a perspective view of a retainer member.



FIG. 45 a top view of the retainer member.



FIG. 46 is a cross-sectional view of the retainer member taken along line 46-46 of FIG. 45.



FIG. 47 is a first side view of the retainer member.



FIG. 48 is a second side view of the retainer member.



FIG. 49 is a top view of the upper portion of the dispenser housing.



FIG. 50 is a side view of the upper portion.



FIG. 51 is a cross-sectional view of the upper portion shown in FIG. 50 taken along line 51-51.



FIG. 52 is another side view of the upper portion.



FIG. 53 is a cross-sectional view of the upper portion shown in FIG. 52 taken along line 53-53.



FIGS. 54A and 54B show an assembled and exploded view of a first indicator assembly.



FIGS. 55A and 55B show an assembled and exploded view of a second indicator assembly.



FIGS. 56A and 56B show an assembled and exploded view of a third indicator assembly.



FIG. 57 shows an exploded view of the first embodiment of the dispensing device.



FIG. 58 shows a partial cross-sectional view of the indicating device shown in FIG. 57.



FIG. 59A is a bottom perspective view of a dispensing device in a ready-for-use position.



FIG. 59B shows the dispensing device of FIG. 59A moved between the ready-for-use and cleaning positions.



FIG. 59C shows the dispensing device of FIG. 59A in a cleaning position.



FIG. 60 is an exploded perspective view of another embodiment of the dispensing device.



FIG. 61A is a perspective view of one embodiment of the dispensing device having an open configuration locking/connector member.



FIG. 61B is a perspective view of another embodiment of the dispensing device having a closed configuration locking/connector member.



FIG. 62A is a top perspective view of one embodiment of a retainer member.



FIG. 62B is a bottom perspective view of the retainer member shown in FIG. 62A.



FIG. 63A is a bottom perspective view of one embodiment of a locking/connector member.



FIG. 63B is a bottom view of the locking/connector member shown in FIG. 63A.



FIG. 64 is a perspective view of one embodiment of a lower portion of an actuator boot/housing.





DETAILED DESCRIPTION OF THE PRESENTLY PREFERRED EMBODIMENTS

Referring to the drawings, and in particular FIGS. 1-8E and 57-62B, a dispensing device, or dispenser, is shown as including a housing 10, 310 or actuator boot, and a container 100 disposed therein. In a first embodiment, the actuator boot has an upper cylindrical portion 12, 312, referred to as a chimney, and a lower portion 14, 314.


Referring to FIGS. 1A, 18-23 and 64, the lower portion 14, 314 is configured with a mouthpiece 16, 316 and includes a support block 18 having a well for receiving the valve stem 102 of the container and a cavity 20 for receiving an indicating device 50. An orifice penetrates the support block 18, to communicate with a bottom portion of the well. The mouthpiece 16, 316 intended for insertion into the mouth of a patient, forms an exhaust port that communicates with the orifice and well. The mouthpiece 16, 316 extends laterally from the housing so as to facilitate insertion of the mouthpiece into the mouth of the patient.


A hinge post 22, 322, or pin, extends upwardly from the lower portion past an upper circumferential rim 24, 324 thereof. The hinge pin includes a head 26, 326 formed at an end thereof that functions as a stop device.


The lower portion further includes a pair of guides or locator pins 28, 328, otherwise referred to as followers, extending radially outwardly from opposite sides of the lower portion adjacent the upper circumferential rim. It should be understood that a single lug or guide 28, 328 may suffice, or that more than two guides may be suitable for securing the lower portion to a connector member 80, 380, as shown in FIGS. 1A-8E and 59A-61B. As further discussed below, the indicating device 50 is removably or fixedly disposed in the lower portion. For example, as shown in FIGS. 61A and 64, an opening is formed in the lower portion


Referring to FIGS. 1A, 9-12, 57 and 60-61B, the upper portion 12, 312 is open at both ends and includes a pair of longitudinally extending slots 30, 330 formed through a side wall 32, 332 thereof that are shaped and configured to engage a pair of lugs 92, 292, 392 or followers, formed on a retainer member 90, 290, 390 shown in FIGS. 24-28, 57 and 60. The upper portion 12, 312 further includes a pair of lugs, or guides/followers 34, 334, extending radially outwardly from the lower portion adjacent a lower circumferential rim 36, 336 thereof. The lugs 34, 334 are shaped to mate with the lugs 28 formed on the lower portion, with the lugs preferably being mirror images of each other, such that the lugs 28, 328, 34, 334 in combination form a guide. Accordingly, the number of lugs 34, 334 on the upper portion preferably matches the number of lugs 28, 328 on the lower portion, and further are spaced and configured to mate with the lugs 28, 328 on the lower portion. Of course, it should be understood that other configurations are suitable.


The upper portion 12, 312 further includes a longitudinally extending tube or shroud 38, 338 defining a longitudinally extending opening or channel 40, 340 shaped to receive the hinge pin 22, 322. The hinge pin is disposed in the channel 40, 340 with the head engaging a bottom shoulder or rim formed in the shroud to fix the lower and upper portions 14, 314, 12, 312 together, but allow rotational and longitudinal movement therebetween. In this way, the hinge pin and shroud, or socket, act as a connector between the upper and lower portions. The container is inserted through the upper portion of the housing with a bottom end 102 of the container protruding from the upper portion and exposed to the user for actuation.


Referring to FIGS. 1A, 13-17, 57, 60 and 63A-B, the connector member 80, 380 otherwise referred to as a locking collar/member, includes a generally cylindrically shaped tube 82, 382 having an enlarged portion 84, 384 formed on one side thereof. The enlarged portion forms an interior cavity 86, 386 relative to a cylindrical boundary formed by the interior surface of the tube 82, 382. The upper and lower portions 12, 312, 14, 314 have an outer cylindrically shaped surface that is dimensioned to be received inside the tube portion 82, 382 of the connector member. An upper lip portion 24, 324 of the lower portion forms a friction fit with a bottom lip or rim 36, 336 of the upper portion (or vice versa) such that the upper and lower portions are releasably joined. The connector member maintains a connection between the upper and lower portions when in a locked position. The term “connected,” or variations thereof, as used herein means that two or more members or components are coupled, whether directly or indirectly, for example with an intervening member or component. For example, it should be understood that the container is connected to the dispenser housing when it is connected to the indicator assembly, which in turn is connected to the dispenser housing. The term “fixedly connected,” or variations thereof, means that one component connected to another is not meant to be disconnected during the normal operation of the device and without undue force, while “releasably connected,” means that one component is meant to be disconnected during such normal operation and without undue force.


When the upper and lower portions are joined, the half-lugs 28, 328, 34, 334 form one or more guides that are disposed in a pair of horizontally or laterally, circumferentially formed slots 88, 388 formed in the connector member. The guides follow in the tracks defined by the slots 88, 388 to maintain the upper and lower portions in a locked position or configuration. A release opening 42, 342 is formed at one end of the slot 88 such that the slot 88 opens downwardly through the rim of the connector member. The slots can be numbered so as to correspond to the number of guides formed on the upper and lower portions. In the embodiment shown in FIGS. 60 and 63A-B, an annular rim portion extends around the lower perimeter of the connector member 388, with the opening 342 formed by a recess located interiorly of an our portion of the rim 343, as shown in FIGS. 63A-B.


The connector member further includes a pair of disengagement slots 44, 344 formed on opposite sides thereof. The slots are each configured with a ramped portion, extending both longitudinally and laterally around the locking collar 80, 380, and terminating at opposite ends in enlarged portions 46, 346, and longitudinally extending slot 48, 348. In one embodiment, the enlarged portions 46, 346 are configured as an upwardly, longitudinally extending slot, while the lower slot 48, 348 extends downwardly. The openings 44, 344, 46, 346, 48, 348 are shaped and dimensioned to receive the lugs 92, 292, 392 or followers of the retainer member, shown in FIGS. 1A, 57, 60 and 62A-B. The slots can be numbered so as to correspond to the number of lugs on the retainer member and the corresponding number of longitudinally extending slots formed on the upper member, i.e., one or more.


In one embodiment (see e.g., FIG. 15), the upper portion 46 is forms a small recess slot, or enlarged opening, while in another embodiment (see, e.g., FIGS. 8A-8E), the slot 46 extends vertically upwardly. The longer slot of FIGS. 8A-8E allow for the container to be further retracted into the cavity formed by the locking collar such that the valve stem is not exposed below the lower rim of the locking collar.


Referring to FIGS. 63A-B, the connector/locking member 380 includes a locking member, or stop member 402, which extends radially inwardly from an interior of the enlarged portion 384 into the cavity 386, along a bottom edge portion of the enlarged portion.


Referring to FIG. 61B, the top of the locking collar 480, and in particular enlarged portion 484, can be closed, so as to improve the aesthetics of the device, as well as to help reduce the likelihood of tampering and/or contamination. Likewise, the openings 388, 344, 346, 348 and 342 (see FIG. 61A) can all be formed on an interior surface of the collar 480. As such, it should be understood that the term “opening,” “slot,” etc., includes but does not require penetration through the entire thickness of a component, but rather is meant to include an undercut or recess formed in such a component. A bottom portion 418 of the lower portion 414 also can be curved so as to vary the aesthetics of the device.


Referring to FIGS. 1A, 24-28, 57, 60, 62A-B, the retainer member 92, 292, 392 includes a ring 94 or a collar 294, 394, a pair of flanges 96, 396 or supports extending longitudinally from the ring and a lug or pin 92, 292, 392, otherwise referred to as an engaging portion or follower, extending radially outward from each flange 96, 396, or as shown in FIG. 57 radially outward form the collar 294. The ring 94 and collar 294 have an inner scalloped rim 98 having a plurality of gripping portions 99 configured and dimensioned to engage a neck of the container 100. The ring or collar can be snapped onto the container so as to be fixedly connected thereto. The retainer member functions as and provides a connector member between the container and the dispenser housing.


In the embodiment of FIGS. 62A-B, a plurality of tabs 398 engage the container, for example the ferrule portion thereof, with a snap fit, such that the collar 394 is fixedly connected to the container. Adjacent an opposite end of the collar 394, an annular ring 399, having a plurality of vent openings 397 positioned therein, defines a central opening through which the valve stem of the container extends. An end portion of the container is disposed between the ring 399 and the tabs 398. The diameter of the opening can be varied, for example such that the container can directly engage a portion of an indicating device, such as an actuation post 72. Alternatively, the post is engaged by the ring 399.


To assemble the device, the retainer 90, 190, 390, 390 is connected to the container 100. The upper portion 12, 312 is inserted through the locking collar 80, 380 such that the shroud 38, 338 is received in the cavity of the enlarged portion 84, 384. The lower portion 14, 314 is connected to the upper portion 12, 312, with the lugs 28, 328, 34, 334 mating and disposed through the release opening 42, 342, and into the circumferential slot 88, 388. The hinge pin 22, 322 is inserted through the channel 40, 340 to secure the upper member to the lower member, with the locking member 80, 380 disposed therearound. The support members 96, 396 of the retainer are flexed such that the lugs 92, 392, or guides, can be slid along longitudinally extending tracks 52 formed on an interior surface of the upper portion and thereafter be snap fitted through the longitudinal slots 30, 330 in the upper portion and the disengagement openings/slots 44, 344, 46, 346, 48, 348 of the connector member 80, 380.


In operation, and referring to FIGS. 8A-8E, 60 and 61A, the user operates the container 100 in the normal way, with the indicating device 50 providing an indication of the number of doses of medicament dispensed from or remaining in the container. During this sequence, the lugs 92, 392 of the retainer member simply move longitudinally in the longitudinal slot 30, 330 of the upper portion and the lower longitudinal slot 48, 348 of the disengagement slot formed in the locking collar. Referring to FIGS. 8A-E and 59A-C, when the support block 18, or other portion of the dispenser housing, requires cleaning, the user twists the locking collar member 80, 380 relative to the upper and lower portions 12, 312, 14, 314, or vice versa, with the combined guides 28, 328, 34, 334 moving within the circumferential slot 88, 388 and the shroud 38, 338 moving laterally within the cavity 86, 386 formed by the enlarged portion 84, 384. The shroud can be releasably fixed in a first, ready-for-use position and a second cleaning position by a pair of detents 54, 354 or protuberances formed on the interior surface of the enlarged portion (see, e.g., FIGS. 16, 63A-B), with the shroud held in one of the ready for use or ready for cleaning positions by the detents 54, 354. It should be understood that the hinge pin and shroud can be arranged on the other of the lower and upper portions.


As the connector member 80, 380 is rotated, the followers or lugs 92, 392 of the retainer member ride along the ramped portion 44, 344 of the slot, thereby forcing the container 100 upwardly relative to the lower portion and out of engagement with the support block 18. As the lugs 28, 328, 34, 334 are moved from a locked position in the slot 88, 388 to a release position over the release opening 42, 342, the user then can separate or move the lower portion from the upper portion in a longitudinal direction. While the guides 28, 328, 34, 334 are moved in the slot 88, 388, the container 100 and retaining ring 90, 292, 392, and in particular the followers 92, 292, 392, are moved longitudinally upward within the slots 30, 330, 44, 344 so as to disengage the valve stem from the support block. As the guide 28, 328 is moved through the release opening 42, 342, the lower portion 14, 314 is separated from the upper portion 12, 312. The lower portion 14, 314 is moved downwardly until the hinge pin head 26, 326 engages a stop portion formed at a bottom of the channel 40, 340 in the shroud. The lower portion 14, 314 then can be rotated about a longitudinal axis defined by the hinge pin 22, 322 so as to expose the support block for cleaning while maintaining a separation of the lower portion from the upper portion and the attached container. The device can be reassembled by following the reverse steps.


In this way, the container is maintained in connection with a specific indicating device such that the count of the device is not corrupted while at the same time allowing the container to be cleaned.


In another aspect, the container can be moved to a disengaged position, as shown in FIG. 8C, but with the lower portion and upper portion remaining in an engaged configuration, for example by way of the friction fit between the lip portion 24 and the rim 36. As such, the container cannot be inadvertently actuated, since the valve stem is not engaged with the support block, for example during transport. At the same time, the lower portion remains coupled to the upper portion such that the valve stem is not exposed. The dispenser housing can also be configured with a detent, or an additional slot, that maintains the position of the container in the disengaged position while the upper and lower portions remain engaged.


In one embodiment, one or both of slot 46, 346 or the upper portion of slot 30, 330 is tapered or narrowed so as to frictionally engage the followers 92 and maintain a disengaged position of the container relative to the lower portion and support block such that the container does not inadvertently slide back down the ramped slot 44 and become engaged or inadvertently actuated.


Referring to the embodiment shown in FIGS. 59A-C, as the locking collar 380 is rotated, the stop or locking member 402 passes beneath a bottom portion of the hinge pin 322. As the upper and lower portions 312, 314 are then separated (see, FIG. 59C), the stop member 402 is moved relative to the pin 322, such that the pin is disposed between the stop/locking member 402 and a shoulder portion of the enlarged portion 384. In this way, the stop/locking member 402 engages the pin 322, and prevents rotation of the collar 380 while the device is in the open, cleaning position. This prevents the user from attempting to rotate the collar 380 while the upper and lower portions 312, 314 are separated or spaced apart in the longitudinal direction.


In another embodiment, shown in FIGS. 29-53, the dispensing device includes a lower, mouthpiece portion 114, an upper, chimney portion 112 and a retainer member 190. As described above with respect to the first embodiment, an indicating device 50 is disposed and secured in the lower portion 114, which also includes a mouthpiece 16 and support block 18. A lip portion or rim 124 is formed around the upper circumferential rim of the lower portion and engages the lower circumferential rim 136 of the upper portion with a friction fit. One of the lower portion and upper portion includes a pair of spaced apart lugs 134, while the other of the upper and lower portions includes a hinge pin 122 secured to the lugs so as to form a pivotable connection between the upper and lower portions. The hinge pin can be formed integrally with one or both of the upper and lower portions, or can be formed as a separate member, and can be engaged with a socket or lugs formed on the other of the upper and lower portions. The upper and lower portions alternatively can be formed integrally with a living hinge connecting those portions. The hinge pin forms a connector between the upper and lower portion. The upper portion further includes a pair of loops or guides 138 extending radially inward from an interior surface thereof, as shown in FIG. 51.


The retainer 190 includes a pair of elongated arms 196, each having a hook or engaging portion 192 formed at a terminal end thereof. The retainer also includes a ring portion 194 with a rim 98 and gripping members 99 as described above. The retainer functions as and forms a connector between the container and the dispenser housing.


To assemble the device, the container 100 is connected to the retainer 190, and the upper and lower portions are pivotally engaged by way of the hinge pin 122. The retainer 190 and container are then inserted with the arms 196 extending through the guides 138 of the upper portion and with the engaging portion 192 bottoming out on, or engaging, the guides 138 when the container is in a disengaged position. It should be understood that the steps of the various installation methods can be rearranged as deemed suitable.


In operation, the user pulls the container 100 upwardly in a longitudinally direction until the engagement portions 192 on the ends of the arms engage a lower surface of the guides 138. In this position, the valve stem 102 is disengaged from the support block 18 of the lower portion. The user then rotates the container and upper portion about the hinge axis relative to the lower portion to expose the support block to the user for cleaning. The device can be reassembled following the reverse steps.


The term “longitudinal” as used herein is intended to indicate the direction of the reciprocal movement of the container relative to the housing. The terms “top,” “bottom,” “upwardly” and “downwardly” are intended to indicate directions when viewing the inhalation devices as shown in the Figures, but with the understanding that the container is inverted such that the top surface thereof is located adjacent the bottom of the housing and vice versa.


The container 100 is formed as a cylindrical canister having a hub disposed on a top surface thereof. The container also has a shoulder and a neck portion. The valve stem 102 extends longitudinally from the hub. The valve stem extends coaxially from the canister and is biased outwardly therefrom by a spring (not shown) mounted within the canister. The container 100 is mounted in the dispenser housing by press fitting the valve stem in the well of the support block 18, which defines an “engaged” position of the container. The container is in a “disengaged” position when the valve stem 102 is removed from the well of the support block 18.


It should be understood that the container can be configured in a variety of shapes and sizes, and that the substance contained therein can be released by any number of valve systems that are well known in the art. It should also be understood that the valve system can be actuated by a variety of actuators, including, but not limited to, various pumps, levers, actuator boots, buttons and the like. In such embodiments, the valve system can be actuated by an actuator moveable relative to the container and housing such that the container remains stationary relative to the housing.


In a preferred embodiment, the container 100 is filled with a substance which is dispensed therefrom in specific metered doses by depressing or moving the valve stem 110 from an extended closed position to a depressed open position, which in turn opens the value or value system. Preferably the substance is a medicament, although it should be understood that the container should be used to hold a variety of non-medicinal substances, including, but not limited to, various liquids, foams or aerosols. A single metered dose is dispensed from the container by each reciprocal, longitudinal movement of the valve stem and attendant opening and closing of the valve.


In operation, the opening of the valve stem and valve is effected by moving the container 100 reciprocally within the housing 10 along a longitudinal axis, defined by the valve stem and the reciprocal movement of the container, by depressing the exposed bottom end 104 of the canister relative to the housing 10 so as to move the valve stem 110 to the open position as it is supported within the well by the support block. Alternatively, an actuator can be moved to open the valve system of the container, which can remain stationary with respect to a supporting housing, a cap and/or an indicating device mounted thereto. For example, the actuator can be attached to the end of the container in the form of a pump device or the like.


As the valve stem is moved to the open position, the container dispenses a metered dose of the substance in aerosol form through the well and orifice and into the exhaust port. The substance in aerosol form is then transmitted to the user through the exhaust port of the mouthpiece by way of either a self-generated or assisted airflow. Alternatively, metered doses of liquids and the like can be dispensed from the container.


In other delivery systems, the housing and holder for the container are attached to a component having a chamber with an output end. Examples of these kinds of delivery systems are shown for example in U.S. Pat. No. 5,012,803, issued May 7, 1991, and U.S. Pat. No. 4,460,412, issued Sep. 11, 1984, the entire disclosures of which are hereby incorporated herein by reference. (No license, expressed or implied, is intended to be granted to any patent by reason of the incorporation by reference herein.) In these kinds of delivery systems, the component having the chamber can be adapted to receive the mouthpiece of the housing, or it can be integrally connected with a holder supporting the container. In either embodiment, the metered dose of substance, preferably a medicament, in aerosol is first dispensed from the container into the chamber, and thereafter inhaled by the user. Other dispensing devices are also shown in U.S. application Ser. No. 11/334,940, filed Jan. 19, 2006 and entitled Dispensing Device, the entire disclosure of which is hereby incorporated herein by reference.


In a preferred embodiment, the container 100 is intended to dispense a predetermined number of metered doses of substance. For example, conventional inhaler containers typically hold on the order of 100 to 200 metered doses. In operation, it is important that the user be aware of the number of metered doses remaining in the container such that the user is not caught unaware with an empty canister when in need of the substance, such as a medicament. It should be understood, however, that the dispenser housing, with its upper and lower portions, can be used without an indicating device, for example to ensure that a particular container is used with a specifically suited dispenser housing.


Now referring to FIGS. 1A, 3, 29, 31 and 54A-58, the indicating device 50, or indicator assembly, is disposed in the lower portion 14, 114. The indicator assembly can take many forms, as disclosed for example and without limitation in U.S. Pat. Nos. 6,142,339, 6,161,724, 6,435,372 and 6,561,384, the entire disclosures of which are hereby incorporated herein by reference. The indicator assembly can include a single indicator member, or a plurality of (i.e., more than one) indicator members, shown for example as three co-axially mounted indicator members 56 in the various embodiments of FIGS. 54A-58. In addition, the indicator assembly can be configured as a mechanical device or an electrical device, or a combination thereof, and can include without limitation various analog and digital readouts and indicia.


Referring to FIGS. 54A-58, an actuator includes an actuator arm 70 having a first end pivotally connected to a housing. A post member or plunger 72 is longitudinally moveable and engages the actuator arm at a distance from the hinge axis of the arm. In one embodiment, the post member is connected to the actuator arm, and in one embodiment is integrally formed therewith. The plunger is moveably supported in the housing along an axis parallel to the longitudinal axis defined by the reciprocal movement of the container within the housing. A spring 74 is disposed between the arm 70 and the housing. In various embodiments, the spring can be configured as a leaf spring 73 or a coil, compression spring or a cantilever spring 71, which engages a ramped surface on the arm 70. An end portion of the actuator arm with the ramped surface slides along and biases or bends the resilient cantilever spring. In any of these embodiments, the spring 74 biases the actuator arm and ultimately the plunger upwardly against the top surface of the canister, or against a mounting portion secured thereto. It should be understood that torsion (e.g., acting at the hinge/pivot axis) and tension springs, and the like, would also work to bias the actuator member upwardly into engagement with the container. A stop member 424 limits the upward travel of the actuator member. The springs can be made of metal or plastic.


In operation, the container is moved longitudinally within the housing so as to depress the valve stem to the open position and thereby open the valve as explained above. As the container is moved downwardly within the housing, the actuator arm 70 is moved longitudinally downward as it is pivoted about its hinge axis. When the container is released by the user, the spring (not shown) within the container biases the container upwardly within the housing along the longitudinal axis such that the valve stem 102 is moved to the closed position within the container so as to close the valve, while the spring 74 biases the actuator arm upwardly. As the actuator is reciprocally moved, an end 76 thereof opposite the pivot axis is configured with a ratchet arm, which selectively engages a ratchet gear 78, which in turn operably moves one or more the indicator members 56 upon a predetermined number of reciprocal movements.


The indicator members 56 are provided with indicia that are visible through one or more viewing windows formed in the lower portion. The indicia indicate to the user the number of doses that remain in or have been dispensed from the container. In one embodiment, the indicia take the form of a color code, where, for example, a portion of the wheel is colored green to indicate the starting full position, a portion is colored yellow to indicate a medium fullness and a portion is colored red to indicate that the container is empty. Obviously, other colors, shading or alpha-numerical indicia can be provided on the indicator wheel to indicate the relative fullness or emptiness of the container.


In one embodiment, the indicator assembly includes three indicator members 56 coaxially mounted on an axle and rotatable thereabout. Each of the indicator members is configured as an indicator wheel having a circumferential skirt with an outer circumferential surface on which indicia (shown as numbers) are applied. In this embodiment, the ratchet gear 78 is coaxially mounted with the indicator wheel. The ratchet gear 78 includes a plurality of teeth formed around its periphery. In one embodiment, the ratchet gear is integrally molded with the indicator wheel, although it should be understood that the gear and wheel can be made separately and thereafter attached one to the other by welding, adhesive and the like.


In one embodiment, the first indicator member includes a resilient advancement member 58 that overlies ratchet gear teeth formed on the second indicator member. Likewise, the second indicator member includes an advancement member 58 that overlies ratchet gear teeth formed on the third indicator member. It should be understood by one of skill in the art that one or more indicator members may be used to provide an indication of dosages used or available, and that the three indicator members shown in the Figures is meant to be illustrative, rather than limiting. In addition, it should be understood that a plurality of indicator members refers to any number of indicator members greater than one.


Referring to FIGS. 54A-58, an indicator housing 38 is shown as having a pair of engagement members 62 formed integrally with the housing and including ramped surfaces. A plurality of non-return members 64 extend from the housing and selectively engage the ratchet gear(s) to ensure unidirectional rotation of the indicator member(s). Although the engagement members and non-return members are shown as being formed in or extending from a module housing, one of skill in the art should understand that those members or equivalent features could also be formed in or connected to the dispenser housing or actuator boot that supports the container or disposed on or connected to the container itself.


In operation, the container is moved longitudinally within the housing 10 so as to depress the valve stem 102 to the open position so as to open the valve as explained above. As the container is reciprocally moved within the housing, the actuator arm 70, or pawl portion 76 thereof, engages the ratchet gear 78 secured to the first indicator member and rotates the first indicator member a predetermined angular or incremented amount corresponding to the pitch of the teeth disposed around the periphery of the ratchet gear. A stop member 424 is disposed over the pawl portion 76 so as to limit the rebound of the actuator arm 70.


The reciprocal movement of the container relative to the housing is repeated until the first indicator member 56, and its ratchet gear 78, are rotated one complete revolution. The predetermined number of reciprocal movements required to advance the first indicator member one revolution is equal to the number of teeth disposed about the periphery of the ratchet gear 78. As the first indicator member is rotated by successive movements of the container relative to the housing, the advancement member 58 of the first indicator member is brought into selective engagement with the engagement member 62, configured with the ramped surface formed in the housing. In particular, the engagement member 62 biases a tooth portion of the advancement member 58 into engagement with one of the teeth of the ratchet gear 78 on the second indicator member.


As the first indicator member is further rotated by successive movements of the container relative to the housing, whether it be the dispenser housing for the container or the module housing described below, the advancement member 58 engages one of the teeth on the ratchet gear 78 of the adjacent (i.e., second) indicator member and advances the indicator member a predetermined incremental angular amount corresponding to the pitch of the ratchet gear teeth. The term incremental is meant to refer to the angular amount the indicator member is moved by the advancement of one actuation, which corresponds to the movement of one tooth, regardless of whether the indicating device is indicating the number of doses left (e.g., counting down) or indicating the number of doses administered (e.g., counting up).


As the resilient advancement member 58 clears the engagement member 62, it springs away from the ratchet gear such that further advancements of the first indicator member do not effect a rotation of the second indicator member until the first indicator member completes yet another cycle so as to again bring the advancement member into engagement with the next tooth of the second indicator member ratchet gear, and so on. The second indicator member with its advancement member 58 similarly interacts with a second engagement member 62 overlying ratchet teeth of the third indicator member so as to selectively engage and advance the third indicator member a predetermined incremental amount for each complete rotation of the second indicator member. It should be understood that more indicator members could be similarly assembled to provide an incremental indicating device.


A secondary or warning indicator member 110 is rotatably supported in the dispenser housing adjacent the indicator members about an axis parallel to and spaced apart from the axis of the indicator members 56. The warning indicator 110 has an outer circumferential surface with warning dosage indicia applied thereto. Preferably, the warning dosage indicia takes the form of a color coding, for example a portion or zone of the surface is green, while another portion or zone is red. Preferably a plurality of zones is used, for example and without limitation two zones of green and red respectively, or three zones of green, yellow and red. Alternatively, alphanumeric characters, text messages etc. as herein described can be used as indicia. It should be understood that a surface of the indicator member perpendicular to the axis of rotation also can be configured with the indicia. The surface of the indicator member is visible through a viewing window formed in the lower portion of the dispenser housing.


The second indicator member 110 further includes at least one driven member 306, and preferably a plurality of driven members, configured in one embodiment as a teeth extending radially outward from the second indicator member on one side of the circumferential indicia surface. Taking into account the spacing between the axes of rotation for the primary indicator members 56 and the secondary indicator member 110, a drive member coupled to one of the indicator members and the driven members are configured and have sufficient lengths so as to mesh after a predetermined number of rotations of the first indicator member 56 configured with the drive member. The second indicator member 110 is also provided with a plurality of ratchet teeth formed circumferentially around the axis of rotation on the side of the indicator member opposite the drive member. A non-return member extends from the dispenser housing or module housing and successively, selectively engages one or more of the ratchet teeth so as to allow the second indicator member 110 to rotate in only one direction. Various embodiments incorporating a warning indicator are further disclosed in U.S. patent application Ser. No. 10/968,815, filed Oct. 18, 2004 and entitled Indicating Device With Warning Dosage Indicator, the entire disclosure of which is hereby incorporated herein by reference.


In a preferred embodiment of the dispenser, the indicator assembly is arranged in an indicator module. The indicator module is shaped to be received within the lower portion 14, 114 of the dispenser housing where it is disposed around a portion of the support block 18. In particular, the support block is spaced apart from the wall of the dispenser housing, otherwise referred to as the actuator boot, so as to form a donut-shaped socket in the bottom of the housing. The module includes a module housing 60 having an inner concave surface that is shaped to mate with an outer convex surface of the cylindrical support block and an outer convex surface that is shaped to mate with the inner concave surface of the housing which is also generally cylindrical. In this way, the module housing is shaped to be received within the socket formed around the support block. Preferably, the module housing has a semicircular shape and fits around a portion of the support block opposite the orifice opening so as to not interfere with the dispensing of the medicament, or the airflow transmitting the medicament to the patient. In this way, the module is maintained rearwardly of the midpoint of the support block. One of skill in the art should understand, however, that the module, or module housing, can be configured in any number of different sizes and shapes so as to be accommodated in a variety of housings or cap assemblies, with or without support blocks and the like. The module housing can be made of a single piece, or from two or more pieces joined to form the housing.


It should be understood, however, that the module can be secured within the housing by any number of conventional means, including the use of fasteners or adhesive. Alternatively, the module can simply be press fit into the socket formed between the support block and housing wall. In one embodiment, the module is inserted through an opening 420 in the lower portion, wherein a face member 422 of the housing is secured to the lower portion, for example with a snap fit, adhesive, friction fit, or other known connection devices. The post member 72 can thereafter be connected to the actuator arm 70


In various embodiments, as explained above, the indicia are applied to a circumferential surface of the indicator wheel, for example in the form of numbers ranging from 0 to 9, with the ratchet gear on the indicator member having 10 teeth. In operation, it should be understood that the three, or more or less, indicator members can be preset to the maximum number of dosages contained within the container, with the indicia, or in this case numbers, arranged about the periphery of the indicator wheel, such that successive, sequential actuations of the container cause the indicator members to count down.


Alternatively, the indicator members are assembled such that the zero (0) of each indicator member is displayed in the viewing window to the user. The container is then actuated by the user such that the first indicator member rotates within the housing to sequentially display the number of doses that have been dispensed from 1 to 9. Upon the tenth actuation, the indicator member completes a single revolution, by virtue of the ten teeth preferably formed about the ratchet gear which correspond to the predetermined number of actuations, and causes the second indicator member to advance one number from 0 to 1 as the first indicator member again displays a 0 such that the two members together indicate that 10 dosages have been dispensed. The first indicator member is again rotated by successive actuations until another single rotation is completed to further rotate the second indicator to reveal the 2, so as to indicate that 20 dosages have been dispensed. Upon a complete rotation of the second indicator member, corresponding to 100 actuations, the third indicator member is advanced to reveal a 1 in the viewing window with the first and second indicator members revealing a 0, and so on.


Although the indicator assembly embodiments of FIGS. 54A-58, for example, are shown as being mounted in the indicator module, one of skill in the art should understand that the assembly, including the axle, indicator members, ratchet gears, actuator member and spring could be mounted directly in the dispenser housing or actuator boot that supports the container. Similarly, the engagement member, or members, and non-return member, or members, could be formed in the dispenser housing that supports the container, otherwise referred to as the actuator boot.


Although the present invention has been described with reference to preferred embodiments, those skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention. As such, it is intended that the foregoing detailed description be regarded as illustrative rather than limiting and that it is the appended claims, including all equivalents thereof, which are intended to define the scope of the invention.

Claims
  • 1. A dispenser that dispenses dosages of a substance comprising: a container comprising an end portion and a valve stem extending from said end portion; anda dispenser housing comprising: a lower portion having a support block and a mouthpiece; andan upper portion pivotally connected to said lower portion about a pivot axis oriented non-parallel to a longitudinal axis and moveably coupled to said container, wherein said upper portion and said container are pivotable together relative to said lower portion from a first position, wherein said valve stem is engaged with said support block in an engaged position, to a second position, wherein said valve stem is disengaged from said support block in a disengaged position, and wherein said container is moveable relative to said upper portion along said longitudinal axis at least when said upper portion is in said first position, and wherein said container remains moveably coupled to said upper portion as said upper portion and said container are pivotable relative to said lower portion from said first position to said second position.
  • 2. The dispenser of claim 1 further comprising an indicating device connected to said lower portion of said dispenser housing, said indicating device comprising an indicator comprising dosage indicia.
  • 3. The dispenser of claim 1 wherein said upper portion is moveably connected to said container with a retainer.
  • 4. The dispenser of claim 3 wherein said retainer comprises a retainer ring disposed around a portion of said container and an engaging portion extending from said retainer ring and moveably engaging said upper portion.
  • 5. The dispenser of claim 3 wherein said upper portion comprises a guide and said retainer comprises an arm extending parallel to said longitudinal axis, wherein said arm extends through said guide.
  • 6. The dispenser of claim 5 wherein said arm comprises an engaging portion retaining said arm in said guide as said container is moved relative to said upper portion.
  • 7. The dispenser of claim 1 wherein said pivot axis is substantially perpendicular to said longitudinal axis.
  • 8. The dispenser of claim 1 wherein said lower portion and said upper portion are engaged and define an interior cavity when in said first position.
  • 9. The dispenser of claim 8 wherein said lower portion and said upper portion are engaged with a friction fit when in said first position.
  • 10. The dispenser of claim 8 wherein said lower portion comprises a first rim and said upper portion comprises a second rim engaging said first rim when said lower and upper portions are in said first position.
  • 11. The dispenser of claim 1 wherein said lower portion and said upper portion are pivotally connected with a hinge pin defining said pivot axis.
  • 12. The dispenser of claim 1 wherein said lower portion and said upper portion are integrally formed and pivotally connected with a living hinge defining said pivot axis.
  • 13. The dispenser of claim 1 wherein said container holds a medicament.
  • 14. A dispenser adapted to dispense dosages of a substance from a container comprising: a dispenser housing comprising: a lower portion having a support block defining a first longitudinal axis and a mouthpiece; andan upper portion defining a second longitudinal axis, said upper portion pivotally connected to said lower portion about a pivot axis oriented non-parallel to said first longitudinal axis, wherein said upper portion is pivotable relative to said lower portion about said pivot axis from a first position, wherein said first and second longitudinal axes are co-axial, to a second position, wherein said first and second longitudinal axes are non-parallel; anda retainer adapted to be coupled to and in direct contact with said container, said retainer moveably connected to said upper portion, wherein said retainer is co-axial with said second longitudinal axis in said second position.
  • 15. The dispenser of claim 14 further comprising an indicating device connected to said lower portion of said dispenser housing, said indicating device comprising an indicator comprising dosage indicia.
  • 16. The dispenser of claim 14 wherein said retainer comprises a retainer ring adapted to be disposed around a portion of the container and an engaging portion extending from said retainer ring and moveably engaging said upper portion.
  • 17. The dispenser of claim 16 wherein said upper portion comprises a guide and said retainer comprises an arm extending parallel to said second longitudinal axis and comprising said engaging portion, wherein said arm extends through said guide.
  • 18. The dispenser of claim 17 wherein said engaging portion retains said arm in said guide as said retainer is moved relative to said upper portion.
  • 19. The dispenser of claim 14 wherein said pivot axis is substantially perpendicular to said first longitudinal axis.
  • 20. The dispenser of claim 14 wherein said lower portion and said upper portion are engaged and define an interior cavity when in said first position.
  • 21. The dispenser of claim 20 wherein said lower portion and said upper portion are engaged with a friction fit when in said first position.
  • 22. The dispenser of claim 20 wherein said lower portion comprises a first rim and said upper portion comprises a second rim engaging said first rim when said lower and upper portions are in said first position.
  • 23. The dispenser of claim 14 wherein said lower portion and said upper portion are pivotally connected with a hinge pin defining said pivot axis.
  • 24. The dispenser of claim 14 wherein said lower portion and said upper portion are integrally formed and pivotally connected with a living hinge defining said pivot axis.
  • 25. A method of using a dispenser housing having a container that dispenses dosages of a medicament, the method comprising: providing a container comprising a valve stem disposed in a support block formed in a lower portion of said dispenser housing, said support block defining a longitudinal axis, wherein a portion of said container is moveably connected to an upper portion of said dispenser housing pivotally connected to said lower portion about a pivot axis oriented non-parallel to said longitudinal axis;successively moving said container relative to said support block along said longitudinal axis a plurality of times and thereby dispensing a plurality of dosages of medicament;indicating to a user the number of dosages of medicament dispensed from or remaining in said container;disengaging said valve stem of said container from said support block in said lower portion while maintaining a connection between said container and said upper portion; andpivoting said upper portion and said container about said pivot axis relative to said lower portion while maintaining a connection between said upper portion and said container.
  • 26. The method of claim 25 wherein said pivot axis is substantially perpendicular to said longitudinal axis.
  • 27. The method of claim 25 wherein said lower portion and said upper portion are engaged and define an interior cavity when said container is being successively moved relative to said support block.
  • 28. The method of claim 27 wherein said lower portion and said upper portion are engaged with a friction fit when in said first position.
  • 29. The method of claim 27 wherein said lower portion comprises a first rim and said upper portion comprises a second rim engaging said first rim when said lower and upper portions are engaged and define said interior cavity.
  • 30. The method of claim 25 wherein said pivoting said upper portion relative to said lower portion comprises pivoting said upper portion relative to said lower portion about a hinge pin defining said pivot axis.
  • 31. The method of claim 25 wherein said upper and lower portions are integrally formed, and wherein said pivoting said upper portion relative to said lower portion comprises pivoting said upper portion relative to said lower portion about a living hinge defining said pivot axis.
  • 32. The method of claim 25 further comprising a retainer coupled to said container and moveably coupled to said upper portion, and wherein said successively moving said container relative to said support block comprises moving said retainer relative to said upper portion.
  • 33. The method of claim 32 wherein said upper portion comprises a guide and said retainer comprises an arm extending parallel to said longitudinal axis, wherein said moving said retainer relative to said upper portion comprises moving said arm relative to said guide.
  • 34. The method of claim 33 further comprising retaining said arm in said guide with an engaging portion.
Parent Case Info

This application is a continuation of U.S. application Ser. No. 11/888,308, filed Jul. 31, 2007, which application claims the benefit of U.S. Provisional Application No. 60/834,764, filed Aug. 1, 2006, the entire disclosures of which are hereby incorporated herein by reference.

US Referenced Citations (319)
Number Name Date Kind
165054 Baldwin Jun 1875 A
498851 Jones Jun 1893 A
1219858 Patterson Mar 1917 A
2455962 Wheeler et al. Dec 1948 A
2580292 Geary et al. Dec 1951 A
2587147 Guion et al. Feb 1952 A
2630027 Wunderlich Mar 1953 A
2644452 Brown Jul 1953 A
2767680 Lermer Oct 1956 A
2770711 Baranowski Nov 1956 A
2841190 Scheck Jul 1958 A
2883086 Davison et al. Apr 1959 A
2939597 Greene Jun 1960 A
2943730 Tregilgas Jul 1960 A
2953242 Shaw Sep 1960 A
3001524 Maison et al. Sep 1961 A
3073468 Arneson Jan 1963 A
3085745 Auberger Apr 1963 A
3119557 Chapman Jan 1964 A
3120318 Rigor Feb 1964 A
3148801 Radeloff et al. Sep 1964 A
3151599 Livingston Oct 1964 A
3170597 Reichenberger Feb 1965 A
3187963 Anderson Jun 1965 A
3189232 Joffe Jun 1965 A
3191867 Helms Jun 1965 A
3240389 Genua Mar 1966 A
3334731 Dale Aug 1967 A
3344951 Gervais Oct 1967 A
3361306 Grim Jan 1968 A
3402863 Green Sep 1968 A
3419187 Bazarnic Dec 1968 A
3446179 Bender May 1969 A
3477561 Espinal Nov 1969 A
3495567 Hayes et al. Feb 1970 A
3511409 Huck May 1970 A
3549057 Perez Dec 1970 A
3568629 Porter Mar 1971 A
3572282 Trump et al. Mar 1971 A
3589563 Carragan et al. Jun 1971 A
3612349 Thomas Oct 1971 A
3654890 Rigney et al. Apr 1972 A
3655952 Johnson et al. Apr 1972 A
3688945 Harman, Jr. et al. Sep 1972 A
3753417 Garby Aug 1973 A
3766882 Babbitt, III Oct 1973 A
3789843 Armstrong et al. Feb 1974 A
3792242 Hanson Feb 1974 A
3796348 Zipper Mar 1974 A
3797748 Nozawa et al. Mar 1974 A
3802608 Gullett Apr 1974 A
3831808 Bender Aug 1974 A
3831812 Dolan Aug 1974 A
3845883 Johnson et al. Nov 1974 A
3848774 Schimke Nov 1974 A
3886879 Frost et al. Jun 1975 A
3887099 Gillman et al. Jun 1975 A
3921568 Fish Nov 1975 A
3926326 Grau Dec 1975 A
3950939 Meisner Apr 1976 A
3960713 Carey Jun 1976 A
3977554 Costa Aug 1976 A
3994421 Hansen Nov 1976 A
4011829 Wachsmann et al. Mar 1977 A
4029033 Kerwin et al. Jun 1977 A
4034757 Glover Jul 1977 A
4037719 Perlmutter Jul 1977 A
4069935 Hampel Jan 1978 A
4069942 Marshall et al. Jan 1978 A
4074831 Roach Feb 1978 A
4078661 Thomas Mar 1978 A
4094408 Ford Jun 1978 A
4162746 Anderson et al. Jul 1979 A
4164301 Thayer Aug 1979 A
4188984 Lyall Feb 1980 A
4220247 Kramer Sep 1980 A
4291688 Kistler Sep 1981 A
4300548 Jones Nov 1981 A
4319128 Dow et al. Mar 1982 A
4345541 Villa-Real Aug 1982 A
4347804 Villa-Real Sep 1982 A
4347853 Gereg et al. Sep 1982 A
4350265 Griffiths et al. Sep 1982 A
4354621 Knickerbocker Oct 1982 A
4357192 Moser Nov 1982 A
4365722 Kramer Dec 1982 A
4368381 Ishiyama Jan 1983 A
4405045 Villa-Real Sep 1983 A
4419016 Zoltan Dec 1983 A
4432300 Lyss Feb 1984 A
4436223 Wilson Mar 1984 A
4440306 Van Buskirk et al. Apr 1984 A
4489834 Thackrey Dec 1984 A
4500005 Forrester Feb 1985 A
4501370 Kelley Feb 1985 A
4509515 Altounyan et al. Apr 1985 A
4511150 Seguenot Apr 1985 A
4523933 Laush et al. Jun 1985 A
4528933 Allen Jul 1985 A
4534345 Wetterlin Aug 1985 A
4538744 Weissenborn Sep 1985 A
4548157 Hevoyan Oct 1985 A
4562933 Dennis Jan 1986 A
4565302 Pfeiffer et al. Jan 1986 A
4599508 Smetaniuk Jul 1986 A
4634012 Kelley Jan 1987 A
4637528 Wachinski et al. Jan 1987 A
4641759 Kelley Feb 1987 A
4646936 Frazier et al. Mar 1987 A
4662520 Griffin May 1987 A
4664107 Wass May 1987 A
4666051 Trick May 1987 A
4668218 Virtanen May 1987 A
4677975 Edgar et al. Jul 1987 A
4693399 Hickman et al. Sep 1987 A
4705182 Newel-Lewis Nov 1987 A
4722729 Dettbarn et al. Feb 1988 A
4723673 Tartaglia et al. Feb 1988 A
4727886 Conrardy et al. Mar 1988 A
4736871 Luciani et al. Apr 1988 A
4749093 Trick Jun 1988 A
4753189 Mastman et al. Jun 1988 A
4756423 Holtsch Jul 1988 A
4782966 Thackrey Nov 1988 A
4792664 Schwab Dec 1988 A
4817822 Rand et al. Apr 1989 A
4890572 Huang Jan 1990 A
4934358 Nilsson et al. Jun 1990 A
4934568 Fuchs Jun 1990 A
4943182 Hoblingre Jul 1990 A
4947875 Brooks et al. Aug 1990 A
4955371 Zamba et al. Sep 1990 A
4969578 Gander et al. Nov 1990 A
4973250 Milman Nov 1990 A
4984158 Hillsman Jan 1991 A
5009338 Barker Apr 1991 A
5011032 Rollman Apr 1991 A
5020527 Dessertine Jun 1991 A
5027806 Zoltan et al. Jul 1991 A
5027808 Rich et al. Jul 1991 A
5038972 Muderlak et al. Aug 1991 A
5060643 Rich et al. Oct 1991 A
5069204 Smith et al. Dec 1991 A
5082129 Kramer Jan 1992 A
5082130 Weinstein Jan 1992 A
5115929 Buono May 1992 A
5174473 Marelli Dec 1992 A
5184761 Lee Feb 1993 A
5188251 Kusz Feb 1993 A
5190643 Duncan et al. Mar 1993 A
5209375 Fuchs May 1993 A
5215079 Fine et al. Jun 1993 A
5217004 Blasnik et al. Jun 1993 A
5224474 Bloomfield Jul 1993 A
5227764 Umemoto Jul 1993 A
5228586 Fuchs Jul 1993 A
5242067 Garby et al. Sep 1993 A
5243970 Ambrosio et al. Sep 1993 A
5261548 Barker et al. Nov 1993 A
5263475 Altermatt et al. Nov 1993 A
5284133 Burns et al. Feb 1994 A
5289946 Fuchs Mar 1994 A
5299701 Barker et al. Apr 1994 A
5300042 Kossoff et al. Apr 1994 A
5301873 Burke et al. Apr 1994 A
5328597 Boldt, Jr. et al. Jul 1994 A
5331953 Andersson et al. Jul 1994 A
5335823 Fuchs et al. Aug 1994 A
5349944 Chippendale et al. Sep 1994 A
5349945 Wass et al. Sep 1994 A
5356012 Tang et al. Oct 1994 A
5363842 Mishelevich et al. Nov 1994 A
5370267 Schroeder Dec 1994 A
5382243 Mulholland Jan 1995 A
RE34847 Muderlak et al. Feb 1995 E
5388572 Mulhauser et al. Feb 1995 A
5392768 Johansson et al. Feb 1995 A
5394866 Ritson et al. Mar 1995 A
5397028 Jesadanont Mar 1995 A
5411173 Weinstein May 1995 A
5421482 Garby et al. Jun 1995 A
5437270 Braithwaite Aug 1995 A
5447150 Bacon Sep 1995 A
5448042 Robinson et al. Sep 1995 A
5482030 Klein Jan 1996 A
5482163 Hoffman Jan 1996 A
5505192 Samiotes et al. Apr 1996 A
5505195 Wolf et al. Apr 1996 A
5509905 Michel Apr 1996 A
5519197 Robinson et al. May 1996 A
5520166 Ritson et al. May 1996 A
5522378 Ritson et al. Jun 1996 A
5544647 Jewett et al. Aug 1996 A
5549101 Trofast et al. Aug 1996 A
5564414 Walker et al. Oct 1996 A
5574268 Herman et al. Nov 1996 A
5611444 Garby et al. Mar 1997 A
5617844 King Apr 1997 A
5622163 Jewett et al. Apr 1997 A
5625334 Compton Apr 1997 A
5625659 Sears Apr 1997 A
5638970 Garby et al. Jun 1997 A
5657748 Braithwaite Aug 1997 A
5676129 Rocci, Jr. et al. Oct 1997 A
5687710 Ambrosio et al. Nov 1997 A
5692492 Bruna et al. Dec 1997 A
5694882 Marshall Dec 1997 A
5718355 Garby et al. Feb 1998 A
5724957 Rubsamen et al. Mar 1998 A
5732836 Barker et al. Mar 1998 A
5740792 Ashley et al. Apr 1998 A
5758638 Kreamer Jun 1998 A
5772074 Dial et al. Jun 1998 A
5794612 Wachter et al. Aug 1998 A
5799651 Garby et al. Sep 1998 A
5803283 Barker et al. Sep 1998 A
5809997 Wolf Sep 1998 A
5826571 Casper et al. Oct 1998 A
5829434 Ambrosio et al. Nov 1998 A
5845777 Najmi Dec 1998 A
5852590 De La Huerga Dec 1998 A
5871007 Clark, Jr. Feb 1999 A
5873995 Huang et al. Feb 1999 A
5882507 Tanner et al. Mar 1999 A
5896855 Hobbs et al. Apr 1999 A
5896990 Barzana Apr 1999 A
5899201 Schultz et al. May 1999 A
5904139 Hauser May 1999 A
5957896 Bendek et al. Sep 1999 A
5988496 Bruna Nov 1999 A
6000159 Hornung Dec 1999 A
6012450 Rubsamen Jan 2000 A
6029659 O'Connor Feb 2000 A
6059133 Lai May 2000 A
6062214 Howlett May 2000 A
6076521 Lindahl et al. Jun 2000 A
6082358 Scarrott et al. Jul 2000 A
6089180 Nichols, Jr. Jul 2000 A
6119684 Nohl et al. Sep 2000 A
6138669 Rocci, Jr. et al. Oct 2000 A
6142339 Blacker et al. Nov 2000 A
6148815 Wolf Nov 2000 A
6149054 Cirrillo Nov 2000 A
6155251 Hauser Dec 2000 A
6161724 Blacker et al. Dec 2000 A
6164494 Marelli Dec 2000 A
6186364 Dobbs Feb 2001 B1
6202642 McKinnon et al. Mar 2001 B1
6223744 Garon May 2001 B1
6234168 Bruna May 2001 B1
6283365 Bason Sep 2001 B1
6328037 Scarrott et al. Dec 2001 B1
6336453 Scarrott et al. Jan 2002 B1
6360739 Rand et al. Mar 2002 B1
6405727 MacMichael et al. Jun 2002 B1
6415785 Stage Jul 2002 B1
6425392 Sosiak Jul 2002 B1
6431168 Rand et al. Aug 2002 B1
6435372 Blacker Aug 2002 B1
6446627 Bowman et al. Sep 2002 B1
6474331 Rand et al. Nov 2002 B1
6481438 Gallem et al. Nov 2002 B1
6484717 Dagsland et al. Nov 2002 B1
6516799 Greenwood et al. Feb 2003 B1
6529446 De La Huerga Mar 2003 B1
6561384 Blacker et al. May 2003 B2
6601582 Rand et al. Aug 2003 B2
6615827 Greenwood et al. Sep 2003 B2
6637432 Wakefield et al. Oct 2003 B2
6659307 Stradella Dec 2003 B1
6679251 Gallem et al. Jan 2004 B1
6701917 O'Leary Mar 2004 B2
6718972 O'Leary Apr 2004 B2
6729330 Scarrott et al. May 2004 B2
6752153 Eckert Jun 2004 B1
6761161 Scarrott et al. Jul 2004 B2
6766799 Edwards et al. Jul 2004 B2
6769601 Haikarainen et al. Aug 2004 B2
6805116 Hodson et al. Oct 2004 B2
6907876 Clark et al. Jun 2005 B1
6926002 Scarrott et al. Aug 2005 B2
6938796 Blacker et al. Sep 2005 B2
6953039 Scarrott et al. Oct 2005 B2
7004164 Scarrott Feb 2006 B2
7100530 Lu Sep 2006 B2
7107986 Rand et al. Sep 2006 B2
7137391 Bruna Nov 2006 B2
7143764 Dagsland et al. Dec 2006 B1
7156258 Eckert Jan 2007 B2
7191918 Ouyang et al. Mar 2007 B2
7195134 Ouyang et al. Mar 2007 B2
20020000225 Schuler et al. Jan 2002 A1
20020153005 Scarrott et al. Oct 2002 A1
20030183225 Knudsen Oct 2003 A1
20030200964 Blakley et al. Oct 2003 A1
20030205227 Hodson Nov 2003 A1
20030209239 Rand et al. Nov 2003 A1
20040065326 MacMichael et al. Apr 2004 A1
20040069301 Bacon Apr 2004 A1
20040094147 Schyra et al. May 2004 A1
20040144798 Ouyang et al. Jul 2004 A1
20040149772 Ouyang Aug 2004 A1
20040149773 Ouyang et al. Aug 2004 A1
20040221840 Stockman-Lamb Nov 2004 A1
20040255935 Bruna Dec 2004 A1
20040255936 Urbanus Dec 2004 A1
20050011515 Lee et al. Jan 2005 A1
20050056276 Schuler et al. Mar 2005 A1
20050205512 Scarrott et al. Sep 2005 A1
20050268905 Rasmussen et al. Dec 2005 A1
20050284471 Bruna Dec 2005 A1
20060150976 Scarrott et al. Jul 2006 A1
20060162724 Scarrott et al. Jul 2006 A1
20060175345 Lu et al. Aug 2006 A1
20060180606 Lu et al. Aug 2006 A1
20060254581 Genova et al. Nov 2006 A1
20070084462 Allen Apr 2007 A1
20070241136 Poulard Oct 2007 A1
20080105253 Pearson May 2008 A1
Foreign Referenced Citations (77)
Number Date Country
598250 Jun 1990 AU
535518 Jan 1957 CA
2 152 088 Jul 1994 CA
2 181 789 Jun 1996 CA
2 486 892 Dec 1998 CA
2 315 777 Jul 1999 CA
2 604 067 Jul 1999 CA
2 331 179 Nov 1999 CA
2 383 425 Mar 2001 CA
2 388 958 Mar 2001 CA
2 414 118 Jan 2002 CA
2 420 171 Mar 2002 CA
2 592 413 Jul 2006 CA
6 603 758 Oct 1969 DE
27 02 539 Jan 1977 DE
3336486 Apr 1984 DE
8590143 Oct 1985 DE
8602238 May 1986 DE
0 028 929 May 1981 EP
0 098 939 Jan 1984 EP
0 114 617 Aug 1984 EP
0 063 599 Jun 1986 EP
0 230 323 Jul 1987 EP
0 236 871 Sep 1987 EP
0 288 929 May 1988 EP
0 269 496 Jun 1988 EP
0 280 104 Aug 1988 EP
0 488 609 Jun 1992 EP
0 559 757 Sep 1993 EP
0 949 584 Oct 1999 EP
1 369 139 Dec 2003 EP
1 220 802 Feb 2004 EP
2 743 055 Jul 1997 FR
0 998 148 Jul 1965 GB
1 058 636 Feb 1967 GB
1 290 484 Sep 1972 GB
1 317 315 May 1973 GB
2 036 695 Jul 1980 GB
2 063 075 Jun 1981 GB
2 092 991 Aug 1982 GB
2 104 393 Mar 1983 GB
2 191 032 Dec 1987 GB
2 195 544 Apr 1988 GB
2 348 928 Oct 2000 GB
2 414 187 Nov 2005 GB
61-55759 Apr 1986 JP
04-50059 Apr 1992 JP
6-26891 Apr 1994 JP
WO 8602275 Apr 1986 WO
WO 8704354 Aug 1987 WO
WO 9010470 Sep 1990 WO
WO 9106334 May 1991 WO
WO 9207600 May 1992 WO
WO 9209324 Jun 1992 WO
WO 9215353 Sep 1992 WO
WO 9217231 Oct 1992 WO
WO 9324167 Dec 1993 WO
WO 9411272 May 1994 WO
WO 9414492 Jul 1994 WO
WO 9534874 Dec 1995 WO
WO 9616686 Jun 1996 WO
WO 9616687 Jun 1996 WO
WO 9639337 Dec 1996 WO
WO 9801822 Jan 1998 WO
WO 9856444 Dec 1998 WO
WO 9856445 Dec 1998 WO
WO 9936115 Jul 1999 WO
WO 9957019 Nov 1999 WO
WO 0009187 Feb 2000 WO
WO 0059806 Oct 2000 WO
WO 0128887 Apr 2001 WO
WO 0129765 Apr 2001 WO
WO 0137909 May 2001 WO
WO 03101514 Dec 2003 WO
WO 03103759 Dec 2003 WO
WO 2004089451 Oct 2004 WO
WO 2006110080 Oct 2006 WO
Non-Patent Literature Citations (5)
Entry
U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER)—Clinical, “Guidance for Industry: Integration of Dose-Counting Mechanisms into MDI Drug Products—Draft Guidance,” dated Nov. 2001, 6 pages.
International Search Report in International Application No. PCT/IB03/01032, dated Aug. 19, 2003, 10 pages.
International Search Report in International Application No. PCT/IB2007/002205, dated Jan. 11, 2008, 6 pages.
Written Opinion in International Application No. PCT/IB2007/002205, dated Jan. 11, 2008, 7 pages.
English language translation of Office Action in Japanese Application No. 2008-019458 dispatched Sep. 29, 2009, 2 pages.
Related Publications (1)
Number Date Country
20120247458 A1 Oct 2012 US
Provisional Applications (1)
Number Date Country
60834764 Aug 2006 US
Continuations (1)
Number Date Country
Parent 11888308 Jul 2007 US
Child 13414411 US