The present invention relates generally to an indicating device for indicating the number of metered dosages that have been dispensed from, or remain in, an aerosol container; and in particular, to an indicating device adapted to be mounted to the aerosol container.
Aerosol dispensing devices have been developed that include a dose indicating device to indicate the number of metered doses that have been dispensed from the device, or to indicate the number of doses remaining therein. For example, patients have certain conditions that can be treated with medicaments dispensed in an aerosol and administered to the patient by inhalation. In one format, the aerosol with medicaments are contained in a container, and dispensed in metered, or measured, dosages with an inhalation device, or actuator boot. In such an arrangement, it can be important for the patient to be able to ascertain the number of metered doses remaining in the container, either by an indication of the number remaining therein or by knowledge of the number already dispensed therefrom, such that the patient is not caught unaware with an empty container when in need of the medicament. Thus, it may be important for the inhalation device to provide an accurate indication of either the number of doses remaining in the container, or the number of doses already dispensed therefrom.
Typically, a conventional aerosol container includes a body and a valve stem which can be depressed relative to the body so as to emit the metered dose of aerosol and medicament. The container typically is supplied with a predetermined number of metered doses, generally on the order of about 200, such that the counting of the number of valve stem depressions, and corresponding number of dispensed metered doses, can be directly correlated with the number of doses remaining in the container.
In operation, the container is typically received within a housing of the inhalation device, wherein the valve is brought into engagement with a support block in the housing. The user administers the medicament by moving the container relative to the housing so as to depress the valve stem and internal valve and—thereby release a metered dose, which is typically administered to the user through a port or mouthpiece extending from the housing. After the dose is administered, the valve stem, which is typically spring loaded, biases the container away from the support block so as to again move the container relative to the housing. In this way, a metered dose of medicament is administered by each cycle of linear reciprocal movement of the container relative to the housing.
Some actuator boots, or other devices attached to the medicament container, have indicating devices that convert the linear reciprocal movement of the container relative to the housing into a one-way, or single-cycle, movement of an indicator, wherein the indicator identifies the relative fullness of the container, the number of metered doses remaining therein or the number of doses already administered. Although these actuator boots with indicators, or separate indicator devices, have provided the advantage of generally being able to keep track of the number of dosages, there remains room for improvement. For example, indicating devices of this nature may include complex moving parts which can be difficult to assemble and expensive to manufacture. Such devices may also be susceptible to counting inaccuracies due to the configuration of the indexing or mating parts, or require excessive amounts of space within the housing to accommodate the relatively large or numerous moving parts. Others still may impede or interfere with the airflow and medicament being dispensed from the inhalation device. Alternatively, some devices use electrical circuitry to count or record the dispersements. Such devices can be relatively expensive to manufacture, however, and typically require a power source which may be susceptible to damage in various environments, such as moist conditions.
Briefly stated, the invention is directed to an indicating device for indicating the number of metered doses that have been dispensed from or remain in a container. The container has a valve stem extending longitudinally therefrom; the valve stem being moveable between a closed position and an open position. The container dispenses a metered dosage when the valve stem is moved to the open position. The indicating device includes a base member adapted to be mounted to the container, a cap member moveably connected to the base member, an indicator member rotatably mounted to the cap member and a drive member adapted to rotate the indicator member an incremental amount upon a predetermined number of axial movements of the cap member relative to the base member.
In a preferred embodiment, the cap member is moveable relative to the base member along an axial path. The indicator member has a plurality of teeth and is rotatably mounted to the cap member about an axis substantially parallel to the axial movement of the cap member relative to the base member. A drive mechanism, including the drive member, comprises a ratchet wheel rotatably mounted to one of the base member and cap member about an axis substantially perpendicular to the axis defined by the axial movement of the cap member. relative to the base member. The drive member is coaxially mounted with the ratchet wheel and a pawl is mounted to one of the cap member and base member. The pawl is selectively engaged with the ratchet wheel upon each axial movement of the cap member relative to the base member so as to rotate the ratchet wheel and drive member an incremental amount. The drive member is selectively engaged with at least one of the plurality of indicator member teeth upon a predetermined number of axial movements of the cap member relative to the base member such that the indicator member is rotated an incremental amount.
In another aspect, the indicating device comprises a first and second indicator member, with each of the first and second indicator members mounted to the cap member about an axis substantially parallel to the axial movement of the cap member relative to the base member. The first indicator member selectively engages the second indicator member as the first indicator member completes a usage cycle, representing one complete use of the indicating device and attached container, so as to rotate the second indicator member an incremental amount. In a preferred embodiment, the first indicator member comprises dosage indicia indicating the number of doses that have been dispensed from or remain in the container, while the second indicator member comprises usage indicia indicating the number of usage cycles that have been completed for the indicating device, or the number of usage cycles remaining therefor.
In yet another aspect, the indicating device comprises a first indicator mounted to the cap member about an axis substantially parallel to the axial movement of the cap member relative to the base member and a second indicator member mounted to one of the cap member and the base member about an axis substantially perpendicular to the axial movement of the cap member relative to the base member. In a preferred embodiment, both the first and second indicator members comprise dosage indicia indicating the number of doses that have been dispensed from or remain in the container, with the second indicator member rotating an incremental amount in response to each axial movement of the cap member relative to the base member and the second indicator member rotating. an incremental amount upon a predetermined number of axial movements of the cap member relative to the base member. In another aspect, the indicating device comprises a first and second indicator member mounted to the cap member about an axis substantially parallel to the axial movement of the cap member relative to the base member and a third indicator member mounted to the cap member about an axis substantially perpendicular to the axial movement of the cap member relative to the base member. In a preferred embodiment, the first and third indicator members comprise dosage indicia, while the second indicator member preferably comprises usage indicia.
In yet another aspect, the indicating device comprises a reset member connected to one of the drive member and indicator member. The reset member can be rotated to move the indicator member relative to the cap member independent of any axial movement of the cap member relative to the base member.
In another aspect of the invention, a method is provided for indicating the number of measured dosages dispensed from or remaining in the container. The method includes the steps of providing a housing for moveably supporting the container and providing an indicating device having a cap member, a base member and an indicator member rotatably mounted to the cap member. The method further comprises the steps of moving the cap member toward the base member so as to move the container along the longitudinal axis and thereby move the valve stem to the open position wherein a metered dosage is discharged, moving the cap member away from the base member, and moving the indicator member in response to the movement of the cap member relative to the base member.
Referring to a preferred embodiment, the method further includes the steps of engaging the ratchet wheel—with the pawl upon one of the movements of the cap member toward and away from the base member and engaging the indicator member with the drive member so as to rotate the indicator member.
In yet another aspect, a method is provided for assembling a dispenser for dispensing metered dosages of medicaments from a container. The method includes the steps of providing a housing, disposing a container in the housing and mounting an indicating device to the container.
The present invention provides significant advantages over other aerosol dispensing devices and indicating devices used therewith. In particular, the indicating device can be separately manufactured and installed as needed on any number of conventional types of aerosol containers with little or no required modification to the container or housing. Moreover, the indicating device with its indicator member and drive mechanism is comprised of a relatively few, simple mechanical parts that are relatively easy to manufacture and assemble. In this way, the indicating device is made more robust and is less susceptible to damage when exposed to various adverse user environments. In addition, the drive mechanism and indicator member provide a reliable indicating device for indicating the number of doses dispensed from or remaining in the container, and the indicating device can be made in a relatively compact configuration that does not interfere with the use of the dispensing device.
The present invention, together with further objects and advantages, will be best understood by reference to the following detailed description taken in conjunction with the accompanying drawings.
Referring to the drawings, and in particular
The terms “longitudinal” and “axial” as used herein are intended to indicate the direction of the reciprocal movement of the container relative to the housing, and of an indicating device cap member relative to a base member. The terms “top,” “bottom,” “upwardly” and “downwardly” are intended to indicate directions when viewing the inhalation devices as shown in the Figures, but with the understanding that the container is inverted such that the top surface thereof is located adjacent the bottom of the housing and vice versa. Moreover, it should be understood that a user can use the container and dispenser in any number of positions, including but not limited to the preferred upright position shown in
As shown in
The container 12 is cylindrical and has a hub 16 disposed on a top surface 17 thereof. A valve stem 18 extends longitudinally from the hub. The valve stem extends coaxially from the container and is biased outwardly therefrom by a spring (not shown) mounted within the valve stem of the container. The container 12 is mounted in the housing by press fitting the valve stem 18 in the well 214 of the support block.
In a preferred embodiment, the container 12 is filled with a pressurized aerosol and medicament which is dispensed therefrom in specific metered doses by depressing or moving the valve stem 18 from an extended closed position to a depressed open position. A single metered dose is dispensed from the container by each reciprocal, longitudinal movement of the valve stem.
In operation, the opening of the valve stem is effected by moving the container 12 reciprocally within the housing 200 along a longitudinal axis, defined by the valve stem and the reciprocal movement of the container, by depressing the bottom end 14 of the container relative to the housing so as to move the valve stem 18 to the open position as it is supported within the well by the support block. As the valve stem is moved to the open position, the container dispenses a metered dose of aerosol and medicament through the well 214 and orifice 210. The aerosol and medicament are then transmitted to the patient through the exhaust port 216 of the mouthpiece by way of either a self-generated or assisted airflow.
In other delivery systems, the housing and holder for the container are attached to a component having a chamber with an output end. Examples of these kinds of delivery systems are shown for example in U.S. Pat. No. 5,012,803, issued May 7, 1991, and U.S. Pat. No. 4,460,412, issued Sep. 11, 1984, both of which are hereby incorporated herein by reference. (No license, expressed or implied, is intended to be granted to either of these patents by reason of the incorporation by reference herein). In these kinds of delivery systems, the component having the chamber can be adapted to receive the mouthpiece of the housing, or it can be integrally connected with a holder supporting the container. In either embodiment, the metered dose of medicament in aerosol is first dispensed from the container into the chamber, and thereafter inhaled by the patient.
In a preferred embodiment, the container 12 is intended to dispense a predetermined number of metered doses of medicament. For example, conventional inhaler containers typically hold on the order of 100 to 200 metered doses. It should be understood, however, that the range of available doses could potentially vary from as few as one dose to as many as 500, or even more, depending, for example, on the capacity of the container, and/or the size of the metering dose valve. In operation, it can be important for the patient to be aware of the number of metered doses remaining in the container such that the patient is not caught unaware with an empty container when in need of the medicament.
Now generally referring to the Figures, a dose indicating device is shown. The indicating device 10 indicates the number of metered doses that have been dispensed from or remain in the container. As shown in the embodiments of
Alternatively, as shown in
In yet another embodiment, shown in
Alternatively, as shown in
Although the disclosed container and indicating device, and in particular, the cap member and base member, are shown as preferably having ‘a circular cross section, those skilled in the art should understand that the container and indicating device, including any adapter, can be configured in other shapes, including for example, but not limited to, a rectangular or triangular cross-section.
As best shown in
Referring to
In particular, as shown in
The axial movement of the cap member 20, 220, 1020, 2020 relative to the base member 40 is bounded or constrained by the engagement of the engagement members with the top of the base member pockets (or the base member rim) at a fully extended position and by engagement of a bottom. rim 21, 221, 1021, 2021 of the cap member skirt with the upper surface of the bottom portion at the bottom of the stroke as shown for example in
As shown in
As shown in
The resilient arm member(s) act as cantilever springs to bias the cap member away from the base member when the cap member is released by the user. One of skill in the art should understand that the resilient arm members can also be formed on the base member so as to engage a ramped surface formed on the cap member. One of skill in the art should also understand that the spring and resilient arm members can be used together, as shown in
As shown in
Referring to the various embodiments of
As shown in the embodiments of
In yet another alternative embodiment, shown in
As shown in the embodiments of
Alternatively, as shown in the embodiment of
As shown in the embodiments of FIGS. 5 and 44-46, the indicator member 60, 2060 includes a plurality of indentations 68; 2068 formed about the outer circumferential surface of the skirt 74, 2074. The cap member includes a pair of upwardly extending resilient indexing members 22, 2022 each having an end portion that engages one of the indentations so as to releasably engage the indicator member and prevent rotation therebetween. The angular distance between the indentations 68, 2068 is substantially the same as the angular distance between the plurality of indicator member teeth 66, 2066. In this way; the indexing member selectively engages the next indentation upon each incremental advancement of the indicator member defined by the distance between adjacent teeth. In the embodiment shown in
Alternatively, as shown in the embodiments of FIGS. 6 and 38-39, the, indentations and indexing member are reversed, i.e., the indentations 224, 1224 are formed about an. inner circumferential surface of the cap member skirt and, and shown in
In yet another alternative, shown in
As shown in
In yet another alternative embodiment shown in
One of the skill in the art should understand that other indicia indicating the number of doses remaining in or dispensed from the container would include, but not be limited to, various alpha-numerical characters, words, terms or phrases (such as “full” and “empty”), scales, grids, arrows, raised portions, indentations, color coding and segmentation, shading and like markings, or any combination thereof. For example, a segmented color grid 172 displayed in the viewing window (as shown, e.g., in
In a preferred embodiment, the indicator member is made of acrylonitrile butadiene styrene (“ABS”), which is receptive to certain alternative processes of printing or applying the indicia, including pad printing and hot stamping. The cap member and base member are preferably made of a hard plastic material such as Acetel.
Referring to
In an alternative embodiment, shown in
In yet another alternative embodiment, shown in
The ratchet wheel 82 includes a plurality of teeth 88 (preferably ten) formed around its periphery. Each of the teeth includes an engagement surface 89 and a tapered surface 87. As noted above, the drive member 86, whether integrally formed with the ratchet wheel or separately connected thereto, includes a single tooth 81 extending radially from the axle 84, or drive member collar.
In the embodiments shown in
Alternatively, as shown in the embodiment of
As shown in
In operation, as shown in
Referring to
Alternatively, the operation of the ratchet wheel can be reversed. In this embodiment, the pawl is biased outwardly by the tapered surface of one of the ratchet wheel teeth on the downstroke. At the bottom of the stroke, the pawl. is biased into engagement with one of the teeth. When the cap member is released by the patient, the spring, or equivalent return mechanism, biases the cap member upwardly within the base member along the longitudinal axis such that the pawl member engages one of the teeth and thereby rotates the ratchet wheel an incremental amount. In this embodiment, the non-return member maintains the rotational position of the ratchet wheel on the downstroke.
As shown in
Referring to
The ratchet wheel and drive member with their reduction ratio provide a simple but reliable mechanism for advancing the indicator member. In particular, the indicator member can be made with fewer teeth than if it were required to advance upon every actuation of the indicator member and container. For ease of manufacturing, it is desirable to provide as coarse a pitch on each of the indicator member and ratchet wheel as possible, although the gears are still defined as fine-toothed gears. However, it is also intended that—the indicator member make only a single revolution (single-cycle) corresponding to a complete evacuation of medicament from the container. Thus, when a large number of doses (on the order of 200 or more) are contained within the container, it is important for the ratchet wheel and drive member to provide a relatively high reduction ratio, such that 200 linear reciprocal movements of the cap member and container correspond to one or less revolutions of the indicator member. As such, the indicator member can be made with coarser teeth at less cost. In addition, larger coarser teeth interacting with a relatively large drive member tooth helps to improve the accuracy of the device as those parts mesh. In addition, the mechanism, and its attendant reduction ratio, permits the indicator member to make only a single revolution during the life of the container, i.e., until it is emptied, even when the container contains a relatively large number of metered doses (on the order of 200 or more doses). This single revolution corresponds to a usage cycle, which is defined as the movement of the dosage indicator from an initial reading, which indicates that the container is full, to a final reading, which indicates that the container is empty. Of course, the indicator member, if initially set to a smaller number of dosages, may make less than a complete revolution in completing a usage cycle.
In the alternative embodiments shown in
Whereas shown in
Alternatively, as shown in
As shown in
Preferably, the reset wheel of
In an alternative embodiment shown in
In yet another alternative embodiment, shown in
In an alternative embodiment, a plurality of reset members, or a similar grippable surface, configured for example as a plurality of notches or teeth, can be formed around the entire periphery of the indicator member and exposed in a selector window, or alternatively, in the viewing window. In such an embodiment, the indicator wheel can be rotated to expose different indicia at any time simply by engaging the reset selector members on the indicator member with the user's thumb or like member.
In yet another embodiment, shown in
In yet another alternative embodiment, shown in
In a preferred embodiment, the engagement portions 1306 and/or teeth 1085 formed on the axle of the drive assembly are configured to allow rotation of the drive member in only one direction. Therefore, rotation of the reset wheel in an opposite direction will not effect a rotation of the drive member in that same direction as the flexible fingers, with their engagement portions, will simply slide over the teeth formed about the axle. This one-way rotation prevents the drive member from engaging and rotating the indicator member in an opposite direction, which direction is opposed both by the non-return member engaging the ratchet wheel, and the one-way indexing interface between the cap member and indicator member.
To install the reset member and drive assembly, the drive assembly is installed in a vertical manner such that the axle 84 is received in the flexible snap enclosure 1036. Once the drive assembly is snapped in place, the reset member 1106 is inserted through the opening in the cap member and over the axle 1084 until the fingers eventually are disposed around the axle 84 in the disengaged position. In this way, the reset member, which is supported by the bearing surface 1300 of the cap member, further supports the drive assembly.
In yet another embodiment, best shown in
As best shown in
In operation, the user pulls the reset member 1206 axially outward so-as to move axially the drive member 86 from a disengaged position, where the drive member tooth 89, or teeth, is aligned with the cut-away portion 2069 of the tooth on the indicator member, to an engaged or reset position, where the drive member tooth is brought into engagement with the portion 2067 of the tooth that is not cut-away. In the reset position, the user rotates the reset wheel 2107 and connected drive member 86 so as to advance the indicator member 2060, or indicator members, to the desired setting independent of the axial movement of the cap member relative to the base member. In the disengaged position, the reset wheel is recessed between a pair of tapered flanges formed around the circumference of the base member.
As shown in FIGS. 44 and 52-56, the indicator member 2060 includes a cover portion 2087 that extends radially inward from the top portion of the indicator member. The cover portion is brought into alignment with the viewing window at the end of the usage cycle such that the indicator 1800, which can continue to be spun beneath the cover portion is not visible. Indicia, such as the number “0” or the words “end” or “empty” can be applied to the cover portion to inform the user that the container is empty.
As shown in
In the preferred embodiment, which has only a single ramp 1277, the usage indicator member 1500 is advanced one tooth upon each complete rotation of the dosage indicator member 1060, which corresponds to one complete usage cycle for the indicating device. For example, the indicating device can be initially set to reveal an initial count of 200 dosages. As the indicating device is successively actuated to dispense the dosages, the indicator members 1060, 1800, with indicia, are actuated to count down until they reveal a final count of 0 dosages available for use. At that time, the drive assembly is positioned in the disengaged position, as explained above.
As the reset member 1106 is used to actuate the drive assembly to reset the device for another usage cycle, the indicator member 1060 with its resilient finger 1273 is biased into engagement by the ramp 1277 such that the usage indicator member is rotated. In this way, the indicator member 1500 is rotated, or advanced, upon the completion of each successive usage cycle. The number of teeth 1502 on the indicator member 1500 corresponds to the number of intended uses for the indicator. For example, in the embodiment shown in
Referring to
As shown in
In the embodiment shown in
The indicator member 2500 includes a ring 2524 formed about the hub 2520 which is connected thereto with a rib 2526 and a bottom surface 2528. The indicator member 2500 has a plurality of inwardly, radially extending teeth 2514 formed about the inner periphery of the ring, and a plurality of outwardly, radially extending teeth 2502 formed on the bottom surface of the indicator member around the outer periphery thereof. Both pluralities of teeth are configured as ratchet teeth to allow only for one-way rotation of the indicator member 2500.
Referring to
Referring to
The upper surface 2528 of the indicator member ring, which is preferably domed, is provided with usage indicia to indicate the number of usage cycles completed or remaining for the indicating device. The usage indicia is visible to the user through a viewing window 2600 provided in the cap member, as shown in
Although the present invention has been described with reference to preferred embodiments, those skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention. As such, it is intended that the foregoing detailed description be regarded as illustrative rather than limiting and that it is the appended claims, including all equivalents thereof, which are intended to define the scope of the invention.
This application is a continuation of application Ser. No. 12/835,275, filed Jul. 13, 2010, which is a continuation of application Ser. No. 11/639,175, filed Dec. 14, 2006, which is a continuation of application Ser. No. 11/370,748, filed Mar. 8, 2006, now issued as U.S. Pat. No. 7,516,738, which is a continuation of application Ser. No. 11/289,050, filed Nov. 29, 2005, now issued as U.S. Pat. No. 7,341,057, which is a continuation of application Ser. No. 11/136,044, filed May 24, 2005, now issued as U.S. Pat. No. 7,568,481, which is a continuation of application Ser. No. 10/876,005, filed Jun. 24, 2004, now issued as U.S. Pat. No. 6,926,002, which is a continuation of application Ser. No. 10/409,247, filed Apr. 8, 2003, now issued as U.S. Pat. No. 6,953,039, which is continuation of application Ser. No. 10/039,744, filed Oct. 26, 2001, now issued as U.S. Pat. No. 6,761,161, which is a continuation of application Ser. No. 09/303,043, filed Apr. 30, 1999, now issued as U.S. Pat. No. 6,336,453, and which also is a continuation-in-part of application Ser. No. 09/603,427, filed Jun. 26, 2000, now issued as U.S. Pat. No. 6,328,037, which is a continuation of application Ser. No. 09/073,275, filed May 5, 1998, now issued as U.S. Pat. No. 6,082,358, the entire disclosures of which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
165054 | Baldwin | Jun 1875 | A |
498851 | Jones | Jun 1893 | A |
1219858 | Patterson | Mar 1917 | A |
2455962 | Wheeler et al. | Dec 1948 | A |
2580292 | Geary et al. | Dec 1951 | A |
2587147 | Guion et al. | Feb 1952 | A |
2630027 | Wunderlich | Mar 1953 | A |
2644452 | Brown | Jul 1953 | A |
2767680 | Lermer | Oct 1956 | A |
2770711 | Baranowski | Nov 1956 | A |
2883086 | Davison et al. | Apr 1959 | A |
2939597 | Greene | Jun 1960 | A |
2943730 | Tregilgas | Jul 1960 | A |
2953242 | Shaw | Sep 1960 | A |
3001524 | Maison et al. | Sep 1961 | A |
3073468 | Arneson | Jan 1963 | A |
3085745 | Auberger | Apr 1963 | A |
3119557 | Chapman | Jan 1964 | A |
3120318 | Rigor | Feb 1964 | A |
3148801 | Radeloff et al. | Sep 1964 | A |
3151599 | Livingston | Oct 1964 | A |
3170597 | Reichenberger | Feb 1965 | A |
3187963 | Anderson | Jun 1965 | A |
3189232 | Joffe | Jun 1965 | A |
3191867 | Helms | Jun 1965 | A |
3240389 | Genua | Mar 1966 | A |
3334731 | Dale | Aug 1967 | A |
3344951 | Gervais | Oct 1967 | A |
3361306 | Grim | Jan 1968 | A |
3402863 | Green | Sep 1968 | A |
3419187 | Bazarnic | Dec 1968 | A |
3446179 | Bender | May 1969 | A |
3477561 | Espinal | Nov 1969 | A |
3495567 | Hayes et al. | Feb 1970 | A |
3511409 | Huck | May 1970 | A |
3549057 | Perez | Dec 1970 | A |
3568629 | Porter | Mar 1971 | A |
3572282 | Trump et al. | Mar 1971 | A |
3589563 | Carragan et al. | Jun 1971 | A |
3612349 | Thomas | Oct 1971 | A |
3654890 | Rigney et al. | Apr 1972 | A |
3655952 | Johnson et al. | Apr 1972 | A |
3688945 | Harman, Jr. et al. | Sep 1972 | A |
3753417 | Garby | Aug 1973 | A |
3757732 | Frey et al. | Sep 1973 | A |
3766882 | Babbitt, III | Oct 1973 | A |
3789843 | Armstrong et al. | Feb 1974 | A |
3792242 | Hanson | Feb 1974 | A |
3796348 | Zipper | Mar 1974 | A |
3797748 | Nozawa et al. | Mar 1974 | A |
3802608 | Gullett | Apr 1974 | A |
3831808 | Bender | Aug 1974 | A |
3831812 | Dolan | Aug 1974 | A |
3845883 | Johnson et al. | Nov 1974 | A |
3848774 | Schimke | Nov 1974 | A |
3886879 | Frost et al. | Jun 1975 | A |
3887099 | Gillman et al. | Jun 1975 | A |
3921568 | Fish | Nov 1975 | A |
3926326 | Grau | Dec 1975 | A |
3950939 | Meisner | Apr 1976 | A |
3960713 | Carey | Jun 1976 | A |
3977554 | Costa | Aug 1976 | A |
3994421 | Hansen | Nov 1976 | A |
4011829 | Wachsmann et al. | Mar 1977 | A |
4029033 | Kerwin et al. | Jun 1977 | A |
4034757 | Glover | Jul 1977 | A |
4037719 | Perlmutter | Jul 1977 | A |
4069935 | Hampel | Jan 1978 | A |
4069942 | Marshall et al. | Jan 1978 | A |
4074831 | Roach | Feb 1978 | A |
4078661 | Thomas | Mar 1978 | A |
4094408 | Ford | Jun 1978 | A |
4117952 | Grimes | Oct 1978 | A |
4162746 | Anderson et al. | Jul 1979 | A |
4164301 | Thayer | Aug 1979 | A |
4171753 | Vreede | Oct 1979 | A |
4188984 | Lyall | Feb 1980 | A |
4220247 | Kramer | Sep 1980 | A |
4291688 | Kistler | Sep 1981 | A |
4300548 | Jones | Nov 1981 | A |
4319128 | Dow, Jr. et al. | Mar 1982 | A |
4345541 | Villa-Real | Aug 1982 | A |
4347804 | Villa-Real | Sep 1982 | A |
4347853 | Gereg et al. | Sep 1982 | A |
4350265 | Griffiths et al. | Sep 1982 | A |
4354621 | Knickerbocker | Oct 1982 | A |
4357192 | Moser | Nov 1982 | A |
4365722 | Kramer | Dec 1982 | A |
4368381 | Ishiyama | Jan 1983 | A |
4405045 | Villa-Real | Sep 1983 | A |
4419016 | Zoltan | Dec 1983 | A |
4432300 | Lyss | Feb 1984 | A |
4436223 | Wilson | Mar 1984 | A |
4440306 | Van Buskirk et al. | Apr 1984 | A |
4489834 | Thackrey | Dec 1984 | A |
4500005 | Forrester | Feb 1985 | A |
4501370 | Kelley | Feb 1985 | A |
4511150 | Seguenot | Apr 1985 | A |
4523933 | Laush et al. | Jun 1985 | A |
4528933 | Allen | Jul 1985 | A |
4534345 | Wetterlin | Aug 1985 | A |
4538744 | Weissenborn | Sep 1985 | A |
4548157 | Hevoyan | Oct 1985 | A |
4562933 | Dennis | Jan 1986 | A |
4565302 | Pfeiffer et al. | Jan 1986 | A |
4599508 | Smetaniuk | Jul 1986 | A |
4634012 | Kelley | Jan 1987 | A |
4637528 | Wachinski et al. | Jan 1987 | A |
4641759 | Kelley | Feb 1987 | A |
4646936 | Frazier et al. | Mar 1987 | A |
4662520 | Griffin | May 1987 | A |
4664107 | Wass | May 1987 | A |
4666051 | Trick | May 1987 | A |
4668218 | Virtanen | May 1987 | A |
2841190 | Sheck | Jul 1987 | A |
4677975 | Edgar et al. | Jul 1987 | A |
4693399 | Hickman et al. | Sep 1987 | A |
4705182 | Newel-Lewis | Nov 1987 | A |
4722729 | Dettbarn et al. | Feb 1988 | A |
4723673 | Tartaglia et al. | Feb 1988 | A |
4727886 | Conrardy et al. | Mar 1988 | A |
4736871 | Luciani et al. | Apr 1988 | A |
4749093 | Trick | Jun 1988 | A |
4753189 | Mastman et al. | Jun 1988 | A |
4756423 | Holtsch | Jul 1988 | A |
4782966 | Thackrey | Nov 1988 | A |
4792664 | Schwab | Dec 1988 | A |
4817822 | Rand et al. | Apr 1989 | A |
4890572 | Huang | Jan 1990 | A |
4934358 | Nilsson et al. | Jun 1990 | A |
4934568 | Fuchs | Jun 1990 | A |
4947875 | Brooks et al. | Aug 1990 | A |
4955371 | Zamba et al. | Sep 1990 | A |
4969578 | Gander et al. | Nov 1990 | A |
4973250 | Milman | Nov 1990 | A |
4984158 | Hillsman | Jan 1991 | A |
5009338 | Barker | Apr 1991 | A |
5011032 | Rollman | Apr 1991 | A |
5020527 | Dessertine | Jun 1991 | A |
5027806 | Zoltan et al. | Jul 1991 | A |
5027808 | Rich et al. | Jul 1991 | A |
5038972 | Muderlak et al. | Aug 1991 | A |
5056454 | Turner | Oct 1991 | A |
5060643 | Rich et al. | Oct 1991 | A |
5069204 | Smith et al. | Dec 1991 | A |
5082129 | Kramer | Jan 1992 | A |
5082130 | Weinstein | Jan 1992 | A |
5115929 | Buono | May 1992 | A |
5174473 | Marelli | Dec 1992 | A |
5184761 | Lee | Feb 1993 | A |
5188251 | Kusz | Feb 1993 | A |
5190643 | Duncan et al. | Mar 1993 | A |
5209375 | Fuchs | May 1993 | A |
5215079 | Fine et al. | Jun 1993 | A |
5217004 | Blasnik et al. | Jun 1993 | A |
5224474 | Bloomfield | Jul 1993 | A |
5226539 | Cheng | Jul 1993 | A |
5227764 | Umemoto | Jul 1993 | A |
5228586 | Fuchs | Jul 1993 | A |
5242067 | Garby et al. | Sep 1993 | A |
5243970 | Ambrosio et al. | Sep 1993 | A |
5261548 | Barker et al. | Nov 1993 | A |
5263475 | Altermatt et al. | Nov 1993 | A |
5284133 | Burns et al. | Feb 1994 | A |
5289946 | Fuchs | Mar 1994 | A |
5299701 | Barker et al. | Apr 1994 | A |
5300042 | Kossoff et al. | Apr 1994 | A |
5301873 | Burke et al. | Apr 1994 | A |
5328597 | Boldt, Jr. et al. | Jul 1994 | A |
5331953 | Andersson et al. | Jul 1994 | A |
5335823 | Fuchs et al. | Aug 1994 | A |
5349944 | Chippendale et al. | Sep 1994 | A |
5349945 | Wass et al. | Sep 1994 | A |
5356012 | Tang et al. | Oct 1994 | A |
5356406 | Schraga | Oct 1994 | A |
5363842 | Mishelevich et al. | Nov 1994 | A |
5370267 | Schroeder | Dec 1994 | A |
5378233 | Haber et al. | Jan 1995 | A |
5379804 | Dunn et al. | Jan 1995 | A |
5382243 | Mulholland | Jan 1995 | A |
RE34847 | Muderlak et al. | Feb 1995 | E |
5388572 | Mulhauser et al. | Feb 1995 | A |
5392768 | Johansson et al. | Feb 1995 | A |
5394866 | Ritson et al. | Mar 1995 | A |
5397028 | Jesadanont | Mar 1995 | A |
5411173 | Weinstein | May 1995 | A |
5421482 | Garby et al. | Jun 1995 | A |
5437270 | Braithwaite | Aug 1995 | A |
5447150 | Bacon | Sep 1995 | A |
5448042 | Robinson et al. | Sep 1995 | A |
5468233 | Schraga | Nov 1995 | A |
5482030 | Klein | Jan 1996 | A |
5482163 | Hoffman | Jan 1996 | A |
5498243 | Vallelunga et al. | Mar 1996 | A |
5505192 | Samiotes et al. | Apr 1996 | A |
5505195 | Wolf et al. | Apr 1996 | A |
5509905 | Michel | Apr 1996 | A |
5519197 | Robinson et al. | May 1996 | A |
5520166 | Ritson et al. | May 1996 | A |
5522378 | Ritson et al. | Jun 1996 | A |
5524613 | Haber et al. | Jun 1996 | A |
5544647 | Jewett et al. | Aug 1996 | A |
5549101 | Trofast et al. | Aug 1996 | A |
5564414 | Walker et al. | Oct 1996 | A |
5574268 | Herman et al. | Nov 1996 | A |
5577335 | Tucker | Nov 1996 | A |
5584815 | Pawelka et al. | Dec 1996 | A |
5611444 | Garby et al. | Mar 1997 | A |
5617844 | King | Apr 1997 | A |
5622163 | Jewett et al. | Apr 1997 | A |
5625334 | Compton | Apr 1997 | A |
5625659 | Sears | Apr 1997 | A |
5626566 | Petersen et al. | May 1997 | A |
5638970 | Garby et al. | Jun 1997 | A |
5657748 | Braithwaite | Aug 1997 | A |
5676129 | Rocci, Jr. et al. | Oct 1997 | A |
5687710 | Ambrosio et al. | Nov 1997 | A |
5692492 | Bruna et al. | Dec 1997 | A |
5694882 | Marshall | Dec 1997 | A |
5697916 | Schraga | Dec 1997 | A |
5718355 | Garby et al. | Feb 1998 | A |
5720392 | Price | Feb 1998 | A |
5724957 | Rubsamen et al. | Mar 1998 | A |
5732836 | Barker et al. | Mar 1998 | A |
5740792 | Ashley et al. | Apr 1998 | A |
5758638 | Kreamer | Jun 1998 | A |
5772074 | Dial et al. | Jun 1998 | A |
5794612 | Wachter et al. | Aug 1998 | A |
5799651 | Garby et al. | Sep 1998 | A |
5803283 | Barker et al. | Sep 1998 | A |
5809997 | Wolf | Sep 1998 | A |
5826571 | Casper et al. | Oct 1998 | A |
5829434 | Ambrosio et al. | Nov 1998 | A |
5845777 | Najmi | Dec 1998 | A |
5852590 | de la Huerga | Dec 1998 | A |
5871007 | Clark, Jr. | Feb 1999 | A |
5873995 | Huang et al. | Feb 1999 | A |
5882507 | Tanner et al. | Mar 1999 | A |
5896855 | Hobbs | Apr 1999 | A |
5896990 | Barzana | Apr 1999 | A |
5899201 | Schultz et al. | May 1999 | A |
5904139 | Hauser | May 1999 | A |
5957896 | Bendek et al. | Sep 1999 | A |
5961495 | Walters et al. | Oct 1999 | A |
5979698 | Deal | Nov 1999 | A |
5988496 | Bruna | Nov 1999 | A |
6000159 | Hornung | Dec 1999 | A |
6001082 | Dair et al. | Dec 1999 | A |
6003467 | Shelton-Ferrelle et al. | Dec 1999 | A |
6012450 | Rubsamen | Jan 2000 | A |
6029659 | O'Connor | Feb 2000 | A |
6032609 | Luoma | Mar 2000 | A |
6059133 | Lai | May 2000 | A |
6062214 | Howlett | May 2000 | A |
6076521 | Lindahl et al. | Jun 2000 | A |
6082358 | Scarrott et al. | Jul 2000 | A |
6089180 | Nichols, Jr. | Jul 2000 | A |
6096010 | Walters et al. | Aug 2000 | A |
6119684 | Nohl et al. | Sep 2000 | A |
6138669 | Rocci, Jr. et al. | Oct 2000 | A |
6142339 | Blacker et al. | Nov 2000 | A |
6148815 | Wolf | Nov 2000 | A |
6149054 | Cirrillo | Nov 2000 | A |
6152067 | Mathison | Nov 2000 | A |
6155251 | Hauser | Dec 2000 | A |
6161724 | Blacker et al. | Dec 2000 | A |
6164494 | Marelli | Dec 2000 | A |
6182655 | Keller et al. | Feb 2001 | B1 |
6186364 | Dobbs | Feb 2001 | B1 |
6202642 | McKinnon et al. | Mar 2001 | B1 |
6221053 | Walters et al. | Apr 2001 | B1 |
6223744 | Garon | May 2001 | B1 |
6234168 | Bruna | May 2001 | B1 |
6283365 | Bason | Sep 2001 | B1 |
6328037 | Scarrott et al. | Dec 2001 | B1 |
6336453 | Scarrott et al. | Jan 2002 | B1 |
6360739 | Rand et al. | Mar 2002 | B1 |
6405727 | MacMichael et al. | Jun 2002 | B1 |
6415785 | Stage | Jul 2002 | B1 |
6425392 | Sosiak | Jul 2002 | B1 |
6431168 | Rand et al. | Aug 2002 | B1 |
6435372 | Blacker et al. | Aug 2002 | B1 |
6446627 | Bowman et al. | Sep 2002 | B1 |
6474331 | Rand et al. | Nov 2002 | B1 |
6481438 | Gallem et al. | Nov 2002 | B1 |
6484717 | Dagsland et al. | Nov 2002 | B1 |
6516799 | Greenwood et al. | Feb 2003 | B1 |
6523688 | Palmieri | Feb 2003 | B1 |
6529446 | de la Huerga | Mar 2003 | B1 |
6561384 | Blacker et al. | May 2003 | B2 |
6601582 | Rand et al. | Aug 2003 | B2 |
6615827 | Greenwood et al. | Sep 2003 | B2 |
6659307 | Stradella | Dec 2003 | B1 |
6679251 | Gallem et al. | Jan 2004 | B1 |
6701917 | O'Leary | Mar 2004 | B2 |
6718972 | O'Leary | Apr 2004 | B2 |
6729330 | Scarrott et al. | May 2004 | B2 |
6752153 | Eckert | Jun 2004 | B1 |
6761161 | Scarrott et al. | Jul 2004 | B2 |
6766799 | Edwards et al. | Jul 2004 | B2 |
6769601 | Haikarainen et al. | Aug 2004 | B2 |
6796267 | Dubarry | Sep 2004 | B2 |
6907876 | Clark et al. | Jun 2005 | B1 |
6926002 | Scarrott et al. | Aug 2005 | B2 |
6938796 | Blacker et al. | Sep 2005 | B2 |
6997349 | Blacker et al. | Feb 2006 | B2 |
7004164 | Scarrott | Feb 2006 | B2 |
7100530 | Lu | Sep 2006 | B2 |
7107986 | Rand et al. | Sep 2006 | B2 |
7137391 | Bruna | Nov 2006 | B2 |
7143764 | Dagsland et al. | Dec 2006 | B1 |
7143908 | Blacker et al. | Dec 2006 | B2 |
7156258 | Eckert | Jan 2007 | B2 |
7191918 | Ouyang et al. | Mar 2007 | B2 |
7195134 | Ouyang et al. | Mar 2007 | B2 |
7407066 | Ouyang et al. | Aug 2008 | B2 |
7555995 | Stump et al. | Jul 2009 | B1 |
7575130 | Blacker et al. | Aug 2009 | B2 |
7793798 | Stradella et al. | Sep 2010 | B2 |
20020000225 | Schuler et al. | Jan 2002 | A1 |
20020153005 | Scarrott et al. | Oct 2002 | A1 |
20030183225 | Knudsen | Oct 2003 | A1 |
20030200964 | Blakley et al. | Oct 2003 | A1 |
20030205227 | Hodson | Nov 2003 | A1 |
20030209239 | Rand et al. | Nov 2003 | A1 |
20040065326 | Macmichael et al. | Apr 2004 | A1 |
20040069301 | Bacon | Apr 2004 | A1 |
20040094147 | Schyra et al. | May 2004 | A1 |
20040144798 | Ouyang et al. | Jul 2004 | A1 |
20040149772 | Ouyang | Aug 2004 | A1 |
20040149773 | Ouyang et al. | Aug 2004 | A1 |
20040221840 | Stockman-Lamb | Nov 2004 | A1 |
20040255935 | Bruna | Dec 2004 | A1 |
20040255936 | Urbanus | Dec 2004 | A1 |
20050011515 | Lee et al. | Jan 2005 | A1 |
20050056276 | Schuler et al. | Mar 2005 | A1 |
20050268905 | Rasmussen et al. | Dec 2005 | A1 |
20050284471 | Bruna | Dec 2005 | A1 |
20060254581 | Genova et al. | Nov 2006 | A1 |
20070084462 | Allen et al. | Apr 2007 | A1 |
20090173346 | Stuart et al. | Jul 2009 | A1 |
Number | Date | Country |
---|---|---|
598250 | Jun 1990 | AU |
535518 | Jan 1957 | CA |
2 152 088 | Jul 1994 | CA |
2 181 789 | Jun 1996 | CA |
2 486 892 | Dec 1998 | CA |
2 315 777 | Jul 1999 | CA |
2 331 179 | Nov 1999 | CA |
2 383 425 | Mar 2001 | CA |
2 388 958 | Mar 2001 | CA |
2 414 118 | Jan 2002 | CA |
2 420 171 | Mar 2002 | CA |
6 603 758 | Jul 1969 | DE |
27 02 539 | Jan 1977 | DE |
33 36 486 | Apr 1984 | DE |
85 90 143.1 | Oct 1985 | DE |
86 02 238.5 | May 1986 | DE |
0 028 929 | May 1981 | EP |
0 098 939 | Jan 1984 | EP |
0 114 617 | Aug 1984 | EP |
0 063 599 | Jun 1986 | EP |
0 230 323 | Jul 1987 | EP |
0 236 871 | Sep 1987 | EP |
0 269 496 | Jun 1988 | EP |
0 280 104 | Aug 1988 | EP |
0 488 609 | Jun 1992 | EP |
0 559 757 | Sep 1993 | EP |
0 949 584 | Oct 1999 | EP |
1 369 139 | Dec 2003 | EP |
1 220 802 | Feb 2004 | EP |
2 743 055 | Jul 1997 | FR |
998 148 | Jul 1965 | GB |
1 058 636 | Feb 1967 | GB |
1 290 484 | Sep 1972 | GB |
1 317 315 | May 1973 | GB |
2 036 695 | Jul 1980 | GB |
2 063 075 | Jun 1981 | GB |
2 092 991 | Aug 1982 | GB |
2 104 393 | Mar 1983 | GB |
2 191 032 | Dec 1987 | GB |
2 195 544 | Apr 1988 | GB |
2 348 928 | Oct 2000 | GB |
2 414 187 | Nov 2005 | GB |
61-055759 | Apr 1986 | JP |
62-121670 | Aug 1987 | JP |
04-050059 | Apr 1992 | JP |
06-026891 | Apr 1994 | JP |
WO 8602275 | Apr 1986 | WO |
WO 8704354 | Aug 1987 | WO |
WO 9010470 | Sep 1990 | WO |
WO 9106334 | May 1991 | WO |
WO 9207600 | May 1992 | WO |
WO 9209324 | Jun 1992 | WO |
WO 9215353 | Sep 1992 | WO |
WO 9217231 | Oct 1992 | WO |
WO 9324167 | Dec 1993 | WO |
WO 9411272 | May 1994 | WO |
WO 9414492 | Jul 1994 | WO |
WO 9534874 | Dec 1995 | WO |
WO 9616686 | Jun 1996 | WO |
WO 9616687 | Jun 1996 | WO |
WO 9639337 | Dec 1996 | WO |
WO 9801822 | Jan 1998 | WO |
WO 9856444 | Dec 1998 | WO |
WO 9856445 | Dec 1998 | WO |
WO 9936115 | Jul 1999 | WO |
WO 9957019 | Nov 1999 | WO |
WO 0009187 | Feb 2000 | WO |
WO 0059806 | Oct 2000 | WO |
WO 0128887 | Apr 2001 | WO |
WO 0129765 | Apr 2001 | WO |
WO 0137909 | May 2001 | WO |
WO 03101514 | Dec 2003 | WO |
WO 03103759 | Dec 2003 | WO |
WO 2004089451 | Oct 2004 | WO |
WO 2005060535 | Jul 2005 | WO |
WO 2006110080 | Oct 2006 | WO |
Entry |
---|
International Search Report in International Application No. PCT/IB03/01032, dated Aug. 19, 2003, 10 pages. |
Written Opinion of the International Searching Authority in International Application No. PCT/CA2004/001884, dated Mar. 4, 2005, 6 pages. |
International Search Report in International Application No. PCT/IB2004/004062, dated Apr. 6, 2005, 7 pages. |
International Search Report in International Application No. PCT/IB2006/000084, dated Jun. 2, 2006, 9 pages. |
Written Opinion of the International Searching Authority in International Application No. PCT/IB2006/000084, dated Jun. 2, 2006, 8 pages. |
U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER)—Clinical, “Guidance for Industry: Integration of Dose-Counting Mechanisms into MDI Drug Products—Draft Guidance,” dated Nov. 2001, 6 pages. |
Office Action from counterpart Japanese Application No. 2008-189362, dated Jun. 14, 2011, 4 pages (with translation). |
Office Action from counterpart Japanese Application No. 2008-019458, dated Sep. 29, 2009, 2 pages (with translation). |
Number | Date | Country | |
---|---|---|---|
20120222672 A1 | Sep 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12835275 | Jul 2010 | US |
Child | 13313840 | US | |
Parent | 11639175 | Dec 2006 | US |
Child | 12835275 | US | |
Parent | 11370748 | Mar 2006 | US |
Child | 11639175 | US | |
Parent | 11289050 | Nov 2005 | US |
Child | 11370748 | US | |
Parent | 11136044 | May 2005 | US |
Child | 11289050 | US | |
Parent | 10876005 | Jun 2004 | US |
Child | 11136044 | US | |
Parent | 10409247 | Apr 2003 | US |
Child | 10876005 | US | |
Parent | 10039744 | Oct 2001 | US |
Child | 10409247 | US | |
Parent | 09303043 | Apr 1999 | US |
Child | 10039744 | US | |
Parent | 09073275 | May 1998 | US |
Child | 09603427 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09603427 | Jun 2000 | US |
Child | 09303043 | US |