This disclosure relates to fluid dispensers, and more particularly to fluid dispensers that can dispense fluid from a drinking container on demand.
Drinking containers (e.g., baby bottles and “sippy cups”) can be used to dispense fluid to young children on demand, such as when a child applies suction to a fluid dispenser of a drinking container. Such drinking containers can contain enough fluid content for a typical feeding of a young child. When a child applies suction to the fluid dispenser, the child occasionally needs to pause the suctioning action to allow air into the drinking container to equalize a pressure in the drinking container, which can cause frustration. Drinking containers used to dispense fluid to young children should be designed for easy use, handling, and cleaning.
This disclosure generally relates to fluid dispensers, and more particularly to fluid dispensers that can dispense fluid from a drinking container to a young child on demand.
In one aspect, a fluid dispenser includes a lid that defines an opening and that includes a first sealing element. The fluid dispenser further includes a flexible fluid delivery component that defines an interior fluid channel. The flexible fluid delivery component includes a second sealing element configured to cooperate with the first sealing element of the lid to form a fluid-tight seal between the flexible fluid delivery component and the lid and a valve element configured to cooperate with the opening in the lid to regulate an airflow through the opening in the lid.
Embodiments may include one or more of the following features.
In some embodiments, the lid is a rigid component that is configured to be secured to a container.
In certain embodiments, the lid is configured to support the flexible fluid delivery component.
In some embodiments, the first sealing element includes a protruding edge.
In certain embodiments, the second sealing element includes one or more flanges that are configured to form a compression fit with the protruding edge.
In some embodiments, the opening in the lid is a first opening, and the lid further defines a second opening that is sized to allow passage of the flexible fluid delivery component.
In certain embodiments, the valve element of the flexible fluid delivery component is configured to contact the lid to close the opening in the lid to prevent air from flowing through the opening.
In some embodiments, the valve element of the flexible fluid delivery component is configured to separate from the lid to permit air to flow through the opening in the lid.
In certain embodiments, the valve element of the flexible fluid delivery component is configured to be forced away from the lid while the first and second sealing elements are engaged to form the fluid-tight seal.
In some embodiments, the valve element of the flexible fluid delivery component is configured to deform in response to a change in a pressure of fluid in contact with the flexible fluid delivery component.
In certain embodiments, the flexible fluid delivery component is foldable upon itself to a compressed configuration.
In some embodiments, the lid defines a protrusion configured to retain the flexible fluid delivery component within a cavity of the lid in the compressed configuration.
In certain embodiments, the flexible fluid delivery component includes an elongate mouthpiece that defines a portion of the interior fluid channel.
In some embodiments, the elongate mouthpiece includes a curved end surface that closes the interior fluid channel.
In certain embodiments, the curved end surface defines a slit through which fluid can flow out of the interior fluid channel of the flexible fluid delivery component.
In some embodiments, the flexible fluid delivery component includes multiple elongate support elements disposed about the interior fluid channel.
In certain embodiments, the fluid dispenser further includes a container to which the lid can be secured for containing a fluid within the container.
In some embodiments, the lid and the container include threaded portions by which the lid and the container can be secured to each other.
In certain embodiments, the flexible fluid dispenser is configured to dispense a liquid or a slurry.
In some embodiments, the fluid dispenser further includes a straw sized to fit within the flexible fluid delivery component.
Embodiments may provide one or more of the following advantages.
In some embodiments, a spout includes a flange that is seated against a ridge of the lid such that the flange and the ridge together form a pressure relief valve (e.g., an atmospheric vent) adjacent a small opening in the ridge. For example, when a mouthpiece of the spout is not in use (e.g., free from a suction force), the flange contacts the ridge and therefore closes the small opening in the ridge. However, as fluid is suctioned out of the container through the mouthpiece (e.g., thereby reducing the pressure inside of the container), the flange is forced downward (e.g., pulled inward) by negative pressure generated within the container by the suction force. For example, the negative pressure within the container is equalized by the atmospheric pressure external to the fluid dispenser, thereby forcing air past an interface between the ridge and the flange. In this manner, the spout acts as pressure relief valve that can modulate (e.g., equalize) the pressure within the container without the child having to pause a suctioning action to equalize the pressure within the container.
In some embodiments, a relatively large proximal region of the mouthpiece can comfortably fit within the mouth of a child, which is wider than an area formed by the lips of the mouth when the lips are pursed about a smaller, central region of the mouthpiece.
In some embodiments, the mouthpiece defines multiple ribs disposed along each side of a fluid channel. An arrangement of the ribs along an inner surface of the fluid channel generally follows a curvature of the roof of the mouth such that the mouthpiece can be comfortably disposed in the child's mouth. Furthermore, the ribs maintain a structural integrity of the spout, while still allowing the spout to be flexibly deformed (e.g., compressed) by the lips or teeth during suctioning. In some embodiments, the spout also defines multiple ribs that extend from a base to the mouthpiece along the fluid channel. Such ribs maintain a structural integrity of a distal region of the mouthpiece, while still allowing the spout to be flexibly folded upon itself in the compressed configuration.
In some embodiments, an end of the mouthpiece is formed as a recessed cavity. A bottom wall of the recessed cavity closes the fluid channel, which itself has a cross-sectional shape that is generally round-rectangular. The bottom wall has a generally oval or elliptical cross-sectional shape in one plane and has a generally dome-shaped cross-sectional profile in a second, orthogonal plane. A slit is disposed along a centerline of the bottom wall in a vertical or horizontal orientation. Fluid can be withdrawn from the container through the slit when a suction force is applied to the mouthpiece, and a small amount of withdrawn fluid can pool in the recessed cavity. Owing to the dome shape of the bottom wall, when the proximal region of the mouthpiece is compressed, the bottom wall bows outward to open the mouthpiece along the slit to allow fluid to flow through the slit. Such configuration advantageously allows the mouthpiece to open to a wider extent than can other conventional mouthpieces with flat end surfaces that do not bow outward to such an extent when compressed. While the fluid dispenser is at rest (e.g., while no suction is applied), the slit in the bottom wall also provides a fluid-tight seal. Additionally, the rounded dome shape of the bottom wall is more durable than what would otherwise be a similar bottom wall that has a flat surface. For example, the dome-shaped bottom wall, when at rest, directs force against the bottom wall toward a top central region of the bottom wall, such that the slit is effectively forced shut and such that pressure is distributed against the bottom wall (e.g., in a manner that mechanics are similarly effected by an archway structure in a bridge or domed building).
Other aspects, features, and advantages will be apparent from the description, the drawings, and the claims.
The container 101 includes a threaded flange 106 to which the lid 102 can be secured and a body 107 that defines an interior region 108 that can be filled with fluid. The body 107 defines a shoulder 109 that supports the sheath 105, two lateral depressions 110 that facilitate grasping of the container 101, and a bottom depression 111 that causes the fluid to pool within a circumferential fluid channel 149 of the container 101 for suction of the fluid through the straw 104. The container 101 has a generally circular cross-sectional shape and is sized such that the container 101 can easily be held by one hand of an adult or both hands of a young child. The body 107 of the container 101 typically has a length of about 6 cm to about 12 cm and an outer diameter of about 6 cm to about 8 cm. The interior region 108 of the body 107 can typically hold a fluid volume of about 150 mL to about 300 mL. The container 101 is a rigid component that is typically made of one or more materials, such as polypropylene, polyethylene, polyamide, polycarbonate, copolyester, silicone, and other thermoplastic elastomers. The container 101 may be manufactured via one or more techniques, such as stretch blow molding, blow molding, injection molding, or compression molding, depending on a material formulation of the container 101. For example, in embodiments wherein the container 101 is made of a thermoplastic elastomer (TPE) or silicone, the container 101 may be manufactured via injection molding or compression molding.
Referring to
Referring particularly to
Referring to
Referring to
The spout 103 is a unitary component that defines a base 122 by which the spout 103 can be secured to the lid 102 within the opening 117 and the mouthpiece 123 (e.g., a mouthpiece), which extends from the base 122. The base 122 has a generally circular outer cross-sectional profile and includes an upper flange 124 (e.g., having a generally triangular cross-sectional shape), an intermediate flange 125, a lower flange 126, and an end piece 127. The lower flange 126 typically has a thickness in a range of about 0.5 mm to about 2.0 mm. Referring to
Furthermore, the lower flange 126 of the spout 103 is seated against the lower ridge 119 of the lid 102 such that the lower flange 126 and the lower ridge 119 together form a pressure relief valve (e.g., an atmospheric vent) adjacent the small opening 120 in the lower ridge 119. For example, when the mouthpiece 123 of the spout 103 is not in use (e.g., free from a suction force), the lower flange 126 contacts the lower ridge 119 and therefore closes the small opening 120 in the lower ridge 119, such that a fluid-tight seal is formed between the lower ridge 119 and the lower flange 126. However, as fluid is suctioned out of the container 101 through the mouthpiece 123 (e.g., thereby reducing the pressure inside of the container 101), the lower flange 126 is forced downward (e.g., pulled inward) by negative pressure generated within the container 101 by the suction force. When a magnitude of the suction force becomes large enough (e.g., such that a difference between the pressure inside of the container 101 and the atmospheric pressure external to the container 101 is large enough) to separate the lower flange 126 from the lower ridge 119, air passes through the small opening 120 in the lower ridge 119 into the container 101, thereby increasing the pressure within the container 101 that has been reduced by suctioning. In this manner, the spout 103 acts as pressure relief valve that can modulate (e.g., equalize) the pressure within the container 101 without the child having to pause a suctioning action to equalize the pressure within the container 101. Once the internal and external pressures are equalized, the lower flange 126 reseals to the lower ridge 119.
Referring to
Referring to
Referring to
Referring to
The spout 103 also defines two opposite ribs 142 that extend from the base 122 to the mouthpiece 123 along the fluid channel 129. The ribs 142 maintain a structural integrity of a distal region 143 of the mouthpiece 123, while still allowing the spout 103 to be flexibly folded upon itself in the compressed configuration 134 (as shown in FIGS. 2 and 3). The ribs 142 also define locations at which the spout 123 can be folded into the compressed configuration 134. For example, the spout 123 is structurally weaker just above the ribs 142 and can therefore be bent more easily by a user at apexes of the ribs 142. The ribs 142 typically have a length of about 10 mm to about 40 mm and are typically spaced apart from each other by about 180°.
Referring particularly to
Referring to
The mouthpiece 123 is oriented at an angle of about 45° to about 80° with respect to the lid 102 (e.g., defined between the axis 141 of the fluid channel 129 and the central axis 121 of the lid). Such angle allows the fluid dispenser 100 to be held in an upright position while placing the spout 103 within the mouth without having to bend the head sufficiently forward to place the spout 103 in the mouth. The spout 103 further defines an extension piece 147 along the mouthpiece 123. The extension piece 147 can be pulled to release the spout 103 from the compressed configuration 134 (shown in
The spout 103 is a flexible component that is typically made of one or more elastomeric materials, such silicone or a TPE. The spout 103 is typically manufactured via compression molding or injection molding. Accordingly, the spout 103 typically has a hardness in a range of 35 Shore A to 60 Shore A.
Referring again to
In some embodiments, as shown in
In use, the fluid dispenser 100 can be disassembled into its component parts (e.g., the container 101, the lid 102, the spout 103, the straw 104, the sheath 105, and the cap 151) for easy washing of the components parts. The component parts can be easily reassembled for use. For example, to assemble the fluid dispenser 100, the straw 104 is inserted within the base 122 of the spout 103, and the mouthpiece 123 of the spout 103 (e.g., with the straw 104 attached to the spout 103) is inserted through the opening 117 of the lid 102. For example, the mouthpiece 123 is inserted from beneath the opening 117 and pulled upward through the opening 117 until the base 122 of the spout 103 is positioned within the opening 117 (e.g., compressed to the inner wall 113 of the lid 102) to form a fluid-tight seal between the spout 103 and the lid 102. Fluid is poured into the container 101. The sheath 105 can be optionally placed upon the shoulder 109 of the container 101, and the lid 102, with the spout 103 secured thereto, is screwed onto the container 101.
The mouthpiece 123 of the spout 103 is inserted into the mouth, and suction is applied to the mouthpiece 123, thereby causing fluid to flow into the straw 104 through the spout 103 on demand. As suction is applied, the fluid forces the slit 146 open and exits the spout 103 into the mouth. Furthermore, upon the suction force reaching a threshold magnitude, the lower flange 126 of the base 122 of the spout 103 separates (e.g., moves downward) from the lower ridge 119 of the lid 102 to allow ambient air to flow through the small opening 120 in the lid 102 into the container 101 to increase (e.g., equalize) the pressure within container 101, even while the fluid-tight seal is maintained between the upper ridge 118 and the upper and intermediate flanges 124, 125 to prevent spillage of fluid through the opening 117 of the lid 102. While suction is applied to the mouthpiece 123, the lower flange 126 of the base 122 will remain separated from the lower ridge 119 of the lid 102 until the pressure in the container 101 is substantially equal to the ambient air pressure. Once the pressure within the container 101 has equalized with the ambient air pressure, the lower flange 126 will rebound toward the lid 102 to close the small opening 120 in the lid 102.
The suction force can be removed from the mouthpiece 123 to cease the flow of fluid out of the fluid dispenser 100. When the fluid dispenser 100 is not in use, the spout 103 can optionally be bent from the extended configuration 132 (shown in
Other embodiments are possible.
For example, while the fluid dispenser 100 has been described as a baby bottle or a sippy cup, in some embodiments, a fluid dispenser that is otherwise substantially similar in construction and function to the fluid dispenser 100 may be configured (e.g., according to various component dimensions) to serve as a general-purpose water bottle or a sports bottle that is suitable for individuals of any age. For such embodiments, a body of the container typically has a length of about 12 cm to about 20 cm and an outer diameter of about 6 cm to about 10 cm. An interior region of the body can typically hold a fluid volume of about 300 mL to about 1,000 mL.
While the fluid dispenser 100 has been described and illustrated as including the slit 146 in a horizontal orientation (e.g., parallel to a width of the mouthpiece 123, as shown in
While the center of the opening 117 of the lid 102 has been described and illustrated as spaced apart from the central axis 121 of the lid 102, in some embodiments, a fluid dispenser that is otherwise substantially similar in construction and function to the fluid dispenser 100 includes a lid with an opening that is centered on a central axis of the lid, such that the lid (e.g., including upper and lower ridges) has a symmetric profile (e.g., excluding a protrusion, such as the protrusion 116) about the central axis of the lid.
While the fluid dispenser 100 has been described and illustrated as including a single protrusion 116 for retaining the spout 103 in the compressed configuration 134, in some embodiments, a fluid dispenser that is otherwise substantially similar in construction and function to the fluid dispenser 100 includes multiple (e.g., three to five) protrusions spaced about a cavity of the lid such that a straw of the fluid dispenser can be retained in a compressed configuration in multiple locations about a circumference of the cavity. For example,
In some embodiments, a fluid dispenser that is otherwise substantially similar in construction and function to any of the fluid dispensers described above does not include one or more of the straw 104, the sheath 105, and the cap 151. In embodiments that exclude the straw 104, a child can simply tilt the fluid dispenser towards his or her mouth (e.g., as a sports bottle is handled) to drink from the fluid dispenser.
While the fluid dispenser 100 has been described and illustrated as including the cap 151 as a component that is unattached to other components of the fluid dispenser 100, in some embodiments, a fluid dispenser that is otherwise substantially similar in construction and function to any of the above-mentioned fluid dispensers includes a cap that is tethered to a container or to a sheath of the fluid dispenser.
Furthermore, while the above-mentioned fluid dispensers has been described with respect to certain dimensions, shapes, and material formulations, in other embodiments, a fluid dispenser that is substantially similar in construction and function to any of the above-mentioned fluid dispensers may include one or more similar features that have one or more dimensions, shapes, and/or material formulations that are different from those described with respect to the above-mentioned fluid dispensers. Other embodiments are also within the scope of the following claims.