Dispensing system and method for shower arm

Information

  • Patent Grant
  • 7905429
  • Patent Number
    7,905,429
  • Date Filed
    Tuesday, February 21, 2006
    19 years ago
  • Date Issued
    Tuesday, March 15, 2011
    13 years ago
Abstract
Dispensing systems for dispensing one or more materials into a fluid flow conduit, during the conveyance of fluid through the conduit are configured to connect to a fluid conduit, such as a standard pipe of a shower arm and dispense a material into the water flow in the shower arm. The system includes a first tube member having a restrictor flow passage to provide a pressure differential, as fluid flows through the tube member. The pressure differential created within the restrictor passage by the fluid flow is communicated to a flask, to provide a pressure differential between the interior and the exterior of a flexible container within the flask. The pressure differential causes material within the flexible container to be drawn out and conveyed to the fluid flowing through the tube member. The flask may be connected to the first tube member, through an extension portion that is rotatable around the first tube member for convenient positioning. A quick-release connection structure may allow the flask to be connected and selectively releasable from the system.
Description
CROSS-REFERENCE TO RELATED PATENT APPLICATIONS

1. Field of the Invention


The present invention relates to dispensing systems for dispensing one or more materials into a fluid flow conduit, during the conveyance of fluid through the conduit. Further embodiments relate to components of such systems and methods of making and using such systems and components. In one example embodiment, a dispensing unit is configured to connect to a standard pipe of a shower arm for dispensing one or more materials into a stream of water flowing through the shower arm. The dispensing unit may be configured to dispense one or more hair shampoo, hair conditioner, soap, skin conditioner, moisturizer, perfume, or other suitable materials or combinations thereof into the water flow in the shower arm.


2. Background of the Invention


Modern household showers are provided with one or more standard pipe shower arms connected to the household water plumbing system. A shower head is typically attached to the shower arm by screw threads provided on the shower head and mating screw threads provided on a free end of the shower arm. The mating screw threads allow the shower head to be connected to the shower arm by engaging the mating threads and rotating the shower head relative to the shower arm. Typical shower heads are configured with a balljoint that allows the showerhead to swivel around the axis of the shower arm, such that the shower head will remain oriented for proper operation, even after the ball joint has been rotated any suitable amount to attain a sufficiently tight connection to the shower arm. Other accessories also designed to be fitted to shower arms have swivels to allow the accessory to be positioned for proper operation regardless of the angular position of the threads required to achieve a liquid tight seal with shower arm.


Various types of hair shampoo, hair conditioner, soap, skin conditioner, moisturizer, perfume and other personal care products are available for use in showers. Typically, such products are distributed in plastic bottles or other containers that are kept within the shower stall. The bottles and other containers tend to collect inside of the shower stall, resulting in possible safety and health problems, as well as causing the shower to appear cluttered.


Dispensing units have been designed for installation in a shower stall, for dispensing quantities of flowable shampoos, conditioners, soaps into a user's hand. Other dispensing units that were configured to be connected in the water flow system have not gained significant popularity. It is believed that one reason for the lack of popularity of such previous dispensing systems is the difficulty of refilling such systems and of connecting such systems without changing the orientation or operation of the shower head or dispensing system. Another reason is that regulatory restrictions placed on the maximum flowrate of water through a showerhead has introduced flow controllers into the showerheads that raise the water pressure in the shower arm to a level where it is difficult for a conventional venturi system to work effectively. An example of a previous dispensing unit using a venturi system is described in U.S. Pat. No. 3,231,200, the contents of which are incorporated herein by reference.


SUMMARY OF THE INVENTION

The present invention relates to dispensing systems for dispensing one or more materials into a fluid flow conduit, during the conveyance of fluid through the conduit. In one example embodiment, a dispensing unit is configured to connect to a standard pipe of a shower arm for dispensing one or more materials into a stream of water flowing through the shower arm. The dispensing unit may be configured to dispense one or more hair shampoo, hair conditioner, soap, skin conditioner, moisturizer, perfume, or other suitable materials or combinations thereof into the water flow in the shower arm. In other embodiments, the dispensing unit may be configured to connect to a fluid conduit of another type of fluid flow system, for dispensing any suitable flowable material into a fluid flowing through the fluid conduit.


Embodiments employ a first tube member having a restrictor flow passage that is configured to provide a pressure differential, as fluid flows through the tube member. A flexible container is configured to hold a material to be dispensed into a fluid flow. The flexible container is held within a flask (of sufficient pressure-tight construction) that is connected in fluid-pressure communication to the tube member, such that the pressure differential is communicated to the flask and provided within the flask, between the interior and exterior of the flexible container.


In this manner, as fluid flows through the restrictor passage in the first tube member, the pressure differential created within the restrictor passage by the fluid flow is communicated to the flask, to provide a pressure differential between the interior and the exterior of the flexible container within the flask. The pressure differential causes material within the flexible container to be drawn out of the flexible container and conveyed to the fluid flowing through the tube member. Accordingly, material within the flexible container may be added to the fluid flowing through the tube member.


In one embodiment, the flask (and flexible container held within the flask) are connected in fluid-pressure communication with the first tube member, through an extension portion and a second tube member, where the second tube member and the extension portion are coupled to the first tube member, so as to be rotatable around the longitudinal axis of the first tube member (rotatable about the fluid flow passage through the first tube member). As a result, the flask may be readily rotated to a convenient position relative to the first tube member, such as below the first tube member, after the first tube member is installed in a fixed position to an existing standard pipe of a shower arm (or to a fluid conduit of another type of fluid-flow system).


In a further embodiment, a connection structure is provided for allowing the flask to be connected to the extension portion for operation, but selectively releasable from the extension portion by a user. A quick-release connection structure may be employed, to allow a user to selectively connect and release the flask, with a simple and fast manual operation (preferably an operation that requires only one hand of the user). In that manner, a user may quickly exchange one flask for another or replace a flask having an empty container with another flask, in a simple operation. A group or family sharing a shower facility may have two or more flasks, such that each family or group member (or sub-group) may have a corresponding flask and be able to easily exchange one flask for his or her corresponding flask, when using the shower facility.


In a further embodiment, the flexible container held within the flask may be secured to the flask cover by a connection structure that has mating members on the container and on the flask cover. The mating members may include one or more protrusions and mating grooves and/or non-circular mating shapes, such that only a flexible container having the correct configuration of one or more protrusions and grooves and/or mating shape may be coupled to a particular flask cover. By selecting a configuration of one or more protrusions and grooves and/or mating shape, a user or manufacturer may provide a level of control regarding which flexible container (and, thus, which material contained in the flexible container) may be operatively connected to a given flask.


In another embodiment, a volume control valve is provided to allow a user to selectively control the volume of material drawn from the flexible container within the flask. In yet a further embodiment, the volume control valve has an “off” position to block fluid-pressure communication between the interior of the flexible container and the fluid flow passage in the first tube member. A valve, such as a stop valve, may be provided in the extension member to automatically block fluid-pressure communication between the interior of the flask (outside of the flexible container) and the fluid flow passage in the first tube member, when the flask is removed from the extension member. In a further embodiment, the extension member my include a bypass passage and valve arrangement, for automatically causing fluid-pressure communication passages within the extension member to bypass the flask connection end of the extension member, when the flask is removed from the extension. In that manner, when a user desires to remove, replace or exchange a flask, the user may manually adjust the volume control valve to an “off” positions and then remove the flask (preferably, using a quick-release connector), to cause the stop valve to move into a block or bypass position. Upon re-connection of the flask or connection of another flask to the extension member, the stop valve is automatically moved into an open or non-bypass position. The user may then re-adjust the volume control valve, to allow operation with the re-connected or other flask.


Further embodiments employ one or more bypass passages within the first tube member, to allow fluid to bypass the restrictor flow passage and then combine with fluid exiting the restrictor flow passage. The bypass passage(s) may provide an increased fluid flow through the first tube member, relative to the fluid flow through the restrictor flow passage. As a result, fluid flow through the system need not be limited to the volume of fluid that is able to flow through the restrictor flow channel.


These and other aspects and advantages of embodiments of the invention will become apparent from the detailed description and drawings that follow.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a side view of a dispensing system connected to a standard pipe of a shower arm.



FIG. 2 is a cross-sectional view of a dispensing system according to FIG. 1.



FIG. 3 is a side view of a dispensing system with a released flask.



FIG. 4 is a partially exploded view of a flask for a dispensing system of FIG. 1.



FIG. 5 is a perspective view of a connector and a flask cover for a dispensing system of FIG. 1.



FIG. 6 is a cross-section view of a portion of a dispensing system according to FIG. 1, with the flask partially removed from the second extension member.



FIG. 7 is a cross-section view of a portion of a dispensing system according to FIG. 1, with the flask fully connected to the second extension member.



FIG. 8 is a cross-section view of a portion of a dispensing system according to a further embodiment.



FIG. 9 is a cross sectional view of a portion of a dispensing system according to a further embodiment, where diverter valve is in a bypass position.



FIG. 10 is a cross sectional view of a portion of a dispensing system according to a further embodiment, where diverter valve is in an open position.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present invention relates to dispensing systems for dispensing one or more materials into a fluid flow conduit, during the conveyance of fluid through the conduit. Further embodiments relate to components of such systems and methods of making and using such systems and components.


In one example embodiment, a dispensing unit is configured to connect to a standard pipe of a shower arm. The dispensing unit may be configured to dispense one or more hair shampoo, hair conditioner, soap, skin conditioner, moisturizer, medications, perfume, or other suitable materials or combinations thereof into a water flow in the shower arm. While embodiments of the present invention are described herein in the context of a shower facility having a conventional standard pipe of a shower arm that conveys water to a shower head, dispensing units according to other embodiments of the present invention may be configured to connect to other water flow pipes, hoses, supply elbows or other fluid flow systems (not limited to water) for dispensing a material into the fluid flow. For example, embodiments may be configured to dispense material into a water flow of a hose, hose bib or other suitable water source for an animal washing system (for dispensing a soap, medication, flee or other pest control substance, colorant, perfume or other materials onto a pet or other animal), a vehicle washing system (for dispensing a soap, wax, glaze or other materials onto a car, truck, boat or other vehicle), a lawn or garden dispensing system (for dispensing pesticide, herbicide, fertilizer, or other materials onto a lawn, garden, agriculture or natural area). Yet other embodiments may be configured to connect to a sink faucet for dispensing materials (soap or other suitable materials) into the water flow from the sink faucet.


An example embodiment of a dispensing system 10 is shown in FIG. 1, as connected to a standard pipe of a shower arm 12. In general, the dispensing system 10 includes a first tube member 14 configured to be connected to a free end of the shower arm 12, a second tube member 16 configured to be connected around a portion of the first tube member 14, adjacent a shower head 18. In one embodiment, the shower head 18 is part of the dispensing system 10. In a further embodiment, the shower head 18 and the shower arm 12 are part of an existing shower system, to which the dispensing system 10 is configured to connect.


The dispensing system 10 also includes a flask 20 having a flask body 21 and a flask cover 22, where the flask body and flask cover are removeably connectable to each other. One or more seals, such as, but not limited to, an O-ring seal may be provided an engaging surface of the flask cover 22 and/or the flask body 21, to enhance a fluid-tight connection between the flask cover 22 and the flask body 21. A flask connector extension structure 24 connects the flask 20 to the second tube member 16. The flask connector extension structure 24 may take any suitable form, but is shown in FIG. 1 as composed of a first extension member 26 and a second extension member 28 that are connected together at a joint 30. In the example embodiment of FIG. 1, the first extension member 26 may be formed integral, as a unitary body, with the second tube 16. However, other embodiments may include a first extension member formed separate from, but then connected to the second tube 16, Similarly, the second extension member 28 may be formed integral, as a unitary body, with the flask cover 22. However, in embodiments described herein the second extension member 28 is formed as a separate structural body relative to the flask cover 22 and is connected to the flask cover 22.


The shower head 18 may take any suitable form, including the form of a conventional shower head, but preferably includes a head member 31 having one or more nozzle outlets 32. The shower head 18 may include a ball joint 34 or other known structure that allows the head member 30 to adjust, angularly, relative to the longitudinal axis A of the first tube member 14.


An interior surface of an inlet end of the shower head 18 may be provided with threads (not shown) for connection to an end 35 of the first tube member 14. In embodiments in which the shower head 18 comprises a conventional shower head, the threads on the inlet end of the shower head 18 may be of a diameter and pitch that corresponds to that of a conventional shower arm 12. In such embodiments, the system 10 may be employed with a conventional shower head 18, for example, that was originally installed on the shower arm 12, but removed and re-installed on the end 35 of the first tube member 14. However, as described above, in other embodiments, the system 10 may include its own shower head 18 as a component of the system (instead of employing an existing shower head).


With reference to the cross-section view shown in FIG. 2, the first tube member 14 has an end 36 for connection to the shower arm 12 (FIG. 1), opposite to the end 35 for connection to the shower head 18. The interior surface of the end 36 of the first tube member 14 is provided with threads 40 for engaging corresponding threads (not shown) on the exterior surface of the shower arm 12, for connecting the first tube member 14 to the shower arm 12. The diameter of the interior surface of the end 36 of first tube member 14 and pitch of the threads 40 are selected to provide a fluid-tight connection between the first tube member 14 and the shower arm 12. Similarly, the exterior surface of the end 35 of the first tube member 14 is provided with threads 41 for engaging corresponding threads (not shown) on the interior surface of an inlet end of the shower head 18, for connecting the first tube member 14 to the shower head 18. The diameter of the exterior surface of the end 35 of the first tube member 14 and the pitch of the threads 41 are selected to provide a fluid-tight connection between the first tube member 14 and the shower head 18.


Embodiments may include one or more seal members, such as one or more ring-shaped seals 42 at or near the threads 40 of the first tube member 14, to provide or enhance the fluid-tight connection to the shower arm 12. A back-flow preventer 44 may be located within the first tube member 14, for example, adjacent the seal 42. The back-flow preventer 44 may have any suitable configuration, including, but not limited to, a conventional diaphragm seat and rubber diaphragm or other structure arranged to operate as a one-way valve, to prevent a reverse fluid flow into the shower arm, from the shower-head side. One or more additional seal members, such as one or more ring-shaped seals (not shown) may be located in the shower head 18 and/or adjacent the end 35 of the first tube member 14, to provide or enhance the fluid-tight connection between the shower head 18 and the first tube member 14.


The first tube member 14 includes a restrictor section 46, that has an interior fluid-flow passage having an interior diameter that is reduced relative to the interior diameter at the shower arm connection end 36 of the first tube member 14. In the embodiment shown in FIG. 2, the fluid-flow passage of the restrictor section 46 includes a first diameter portion 48 and a second diameter portion 49, in series with respect to a fluid flow direction. The first diameter portion 48 is located upstream (in the fluid flow direction), closer to the shower arm connection end 36 of the first tube member 14, relative to the second diameter portion 49. The first diameter portion 48 has an interior diameter that is greater than the interior diameter of the second diameter portion 49. As shown in FIG. 2, the fluid-flow passage of the restrictor section 46 may be tapered at the connection between the first diameter portion 48 and the second diameter portion 49 and may be tapered or flared at the entrance (wherein the tapers or flares define a flow passage that decreases in diameter, in the fluid-flow direction).


The exterior surface of the restrictor section 46 of the first tube member 14 is provided with two annular grooves 50 and 52. The restrictor section 46 of the first tube member 14 also includes a first passage 56 that connects groove 50 in fluid-flow communication with the first diameter portion 48, and a second passage 54 that connects groove 52 in fluid-flow communication with the second diameter portion 49 of the fluid flow passage.


The first tube member 14 extends through the second tube member 16. The second tube member 16 has an interior diameter that is about the same or slightly larger than the outer diameter of a section of the first tube member 14, such that the second tube member 16 may be arranged coaxially with the first tube member and rotatable relative to the interior of the first tube member 14, upon an application of a sufficient rotational force on the second tube member 16.


One or more seal members 58, such as annular ring seals, may be arranged around the outer diameter of the first tube member 14 and/or the inner diameter of the second tube member 16, to provide a fluid-tight seal between first passage 56 and second passage 54 and enhance frictional engagement between the first tube member 14 and the second tube member 16. Annular seal grooves may be provided around the outer surface of the first tube member 14 and/or the inner surface of the second tube member 16 for receiving the one or more seal members 58.


In one example embodiment, sufficient frictional force between the first and second tube members 14 and 16 inhibits rotation of the second tube member 16 relative to the first tube member 14, unless a user applies a rotational force above a threshold amount (sufficient to release a frictional engagement between the first and second tube members 14 and 16) to the second tube member, for example, by gripping the second tube member 16 and rotating it about the axis A of the first tube member 14. Alternatively, or in addition, the frictional force between the first and second tube members 14 and 16 may be designed to be overcome by the weight of (and gravitational pull on) the flask 20, so that the flask 20 orients itself, by gravity, to a position below the first tube member 14, as shown in FIG. 1.


The first extension member 26 comprises a tube-shaped structure that extends from a side of the second tube member 16. The first extension member 26 includes first and second fluid passages 60 and 62 arranged in fluid-flow communication with the annular grooves 50 and 52, respectively. In embodiments as shown in FIG. 2, in which the first extension member 26 is integral (as a unitary body) with the second tube member 16, the passages 60 and 62 extend directly to the annular grooves 50 and 52, respectively. However, in embodiments in which the first extension member is formed as a separate structural element relative to the second tube member, the second tube member 16 is provided with two openings on one end, that align with the passages 60 and 62, respectively, and that complete the fluid flow path between the passages 60 and 62 and the grooves 50 and 52, respectively. The annular grooves 50 and 52 allow the second tube member 16 and first extension member 26 to rotate relative to the first tube member 14, while maintaining a fluid flow path between the portions 48 and 49 of the fluid flow path within the first tube member 14 and the fluid passages 60 and 62 in the first extension member 26.


The second extension member 28 comprises a tube-shaped structure that is connected to an end of the first extension member 26 at a fluid-tight joint 30. Each of the first and second extension members 26 and 28 may have an annular lip at the joint 30, to assist in their interconnection. The annular lips of the first and second extension members 26 and 28 may be connected by any suitable connection structure, including, but not limited to welds, adhesives, rubber seals or the like.


The second extension member 28 has first and second fluid passages 64 and 66 that align, in fluid flow communication with the first and second fluid passages 60 and 62 in the first extension member 26. In this manner, the second extension member 28 may be formed separately from the first extension member 26, for example, as a manufacturing expedient. However, in other embodiments, the second extension member 28 may be formed integral, as a unitary body, with the first extension member 26. In yet further embodiments, the second extension member 28, the first extension member 26 and the second tube member 16, all may be formed integrally, as a unitary body. However, manufacturing efficiencies may be achieved by forming, at least the second extension member 28 as a separate structural element relative to the first extension member 26. In particular the second extension member 28 includes one or more control valves and other structural features that may employ more complex manufacturing techniques or facilities than would be required for other portions of the dispensing system.


The second extension member 28 preferably includes a stop valve 68 in the first fluid passage 64. The stop valve 68 comprises a check valve or other suitable structure that allows fluid flow through the first fluid passage 64 when the flask 20 (with flask cover 22) is properly attached to the second extension member 28, and inhibits fluid flow out of the first fluid passage 64 in the event that the flask 20 (with flask cover) is removed from (or otherwise not attached to) the second extension member 28. An example embodiment of a stop valve 68 is described in further detail below.


The second extension member 28 also includes a volume control valve 70 in the second fluid passage 66. The volume control valve 70 may comprise any suitable adjustable fluid flow restriction valve that allows for adjustable control of a fluid flow rate in the second fluid passage, for example, by adjusting the cross-sectional area of the second fluid passage. In example embodiments, the volume control valve 70 may include a manual actuator 72 (FIG. 1), for allowing manual adjustment of the a fluid flow rate of fluid through the second fluid passage 66. In the embodiment shown in FIG. 1, the manual actuator 72 comprises a lever that is pivotally movable by a user to adjust the cross-sectional area of the second fluid passage 66, dependent upon the pivotal position of the lever. However, in other embodiments, another suitable volume flow control valve structure may be employed for valve 70.


In some example embodiments, the flask 20 (with the flask cover 22) is attached to the second extension member 28 with a quick-release attachment structure, that allows that flask 20 (with flask cover 22) to be quickly and easily attached and detached from the second extension member 28, by a simple manual operation. In FIG. 2, an example embodiment of a quick release structure comprises threaded structures on the second extension member 28 and the flask cover 22 for allowing attachment by engaging the threaded structures and manually rotating the flask 20 in a first direction about the longitudinal axis of the second extension member 28, and disengagement by rotating the flask 20 in a second direction (opposite the first direction) and disengaging the flask 20 from the second extension member 28. In particular, the second extension member 28 may include a threaded end, for example, having eternally-facing threads, opposite to the end that is connected to the first extension member 26. Similarly, the flask cover 22 may include a threaded open end, for example, having inner-facing threads for engaging the outer-facing threads of the second extension member 28. In other embodiments, the externally-facing threads may be formed on the flask cover and inner-facing threads may be formed on the extension member 28. The threads on the second extension member 28 and the flask cover 22 may have a sufficient length and pitch to provide a suitable sealing function, while allowing the flask 20 to be quickly and easily attached to and detached from the second extension member with minimal rotation (for example, a rotation of about 180 degrees).


In other embodiments, other suitable quick-release attachment structures may be employed in place of threaded structures shown in FIG. 2. For example, any one or combination of a quick release clamp structure for clamping an end of the second extension member 28 to an opening end of the flask cover 22, or a slide connection in which the flask 20 slides into place may be employed. For example, an annular rim or lip (not shown) may be included on the connection ends of each of the flask cover 22 and the second extension member 28, for allowing one or more quick-release clamps (not shown) to grip and hold the annular rims or lips together, and be releasable by a user, to detach the flask 20 from the second extension member 28.


The flask 20 may be configured to hold a replaceable container 80 that contains a dispensable material. The replaceable container 80 may comprise a deformable bag, pouch, accordion-shaped structure, or the like, that is able to hold a fluid material and deform in response to a pressure differential (between pressure inside of the container 80 and pressure outside of the container 80) as fluid material is dispensed from the container 80. As shown in FIG. 4, the replaceable container 80 may comprise a bag or pouch 81 made of a flexible, non-porous material, such as a plastic, metal foil, or other suitable material for containing a fluid. The replaceable container 80 in FIG. 4 includes a connector 82 for releasably connecting the container 80 to the flask cover 22. The connector 82 may be made of a relatively rigid material, such as, but not limited to, a plastic, metal, ceramic or composite material. The connector 82 is connected to the bag portion 81 of the replaceable container 80, in a fluid-tight connection. The connector 82 and flask cover 22 may be configured to allow for a quick and easy manual connection and disconnection of the connector 82 and the flask cover 22.


As shown in FIG. 2, the flask cover 22 may include a hollow first connection tube 84 that protrudes outward from one end of the cover 22 and is shaped to be received within a recess provided within the connector 82. The outside diameter of the connection tube 84 and the inside diameter of the recess in the connector 82 may be selected to provide a friction and fluid tight fit between the two parts, such that a user may readily fit the connector 82 onto the connection tube 84, for a relatively secure connection, and may remove the connector 82 from the connection tube by pulling the connector 82 away from the connection tube, against the frictional engagement.


The flask cover 22 may also include a second connection tube 86, extending coaxially with at least a portion of the length of the first connection tube 84. The second connection tube 86 has an open end and an open interior configured to receive an end portion 88 of the connector 82. The end portion 88 of the connector 82 is shaped to fit within the open end of the second connection tube 86. The inside diameter of the second connection tube 86 and the outside diameter of the end portion 88 of the connector 82 may be selected to provide a friction fit between the two parts, such that a user may readily fit the connector 82 onto the second connection tube 86, for a relatively secure connection, and may remove the connector 82 from the second connection tube 86 by pulling the connector 82 away from the connection tube, against the frictional engagement.


In preferred embodiments, the shape of the exterior surface of the end portion 88 of the connector 82 and the interior surface of the second connection tube 86 may be selected to allow the end portion 88 of the connector 82 to be inserted into the open end of the second connection tube 86, when the end portion 88 is oriented in one particular orientation (or one of a plurality of specific orientations) relative to the second connection tube 86. In one embodiment, the cross-sectional shape of the end portion 88 of the connector 82 (viewed in the direction perpendicular to the plane of the page in FIGS. 2 and 4) may be non-circular, but may have other shapes such as, but not limited to, oval, triangle, square, other polygon, or the like, that correspond to a similar-shaped interior surface of the second connection tube 86. In yet further embodiments, the cross-sectional shape of the end portion 88 may include protrusions or extensions (such as keys) that engage corresponding grooves within the second connection tube 86. Alternatively, or in addition, the end portion 88 of the connector 82 may include grooves that engage corresponding protrusions or extensions (such as keys) on the interior surface of the second connection tube 86.


With such configurations, the connector 82 may be designed to mate with and connect to the second connection tube 86, but only when the connector 82 is oriented such that the shape of the end portion 88 is aligned with a corresponding shape features of the interior surface of the second connection tube 86. Furthermore, the shape of the interior surface of the second connection tube 86 may be configured to mate with only certain types of connectors 82 (for example, connectors on a particular type or style of replaceable container 80, such as containers 80 made by a particular manufacturer or containers 80 that contain a particular type of fluid material, or the like). In further embodiments, the end portion 88 of the connector 82 may have a shaped hollow tube, while the cover 22 may include a shaped extension member (instead of a second connection tube 86) for fitting within and mating with the hollow tube shaped end portion 88, in a similar manner as discussed above with respect to the mating engagement of the end portion 88 and the second connection tube 86.


The connector 82 may include a fluid flow passage 90, connecting the recess in the connector 82 in fluid flow communication with the interior of the bag portion 81 of the replaceable container 80. The length and diameter of the fluid flow passage 86 may be selected, based on the viscosity of the fluid held within the bag portion 81, to restrict fluid flow and to allow a controlled flow of fluid from the bag portion 81, through the hollow tube 84 and through the fluid passages 66 and 62, to the small diameter portion 49 of the first tube member 14. By selecting the length and diameter of the fluid flow passage 86 appropriately, the volume of fluid that is drawn from the replaceable container 80 over a given period of time may be limited to a selected, controlled volume.


An example embodiment of a shaped end portion 88 of the connector 82 and a correspondingly shaped second connection tube 86 is shown in FIG. 5. With reference to the embodiment in FIG. 5, the end portion 88 of the connector 82 includes grooves 92 arranged to engage with corresponding protrusions (in the form of ribs) 94 on the interior surface of the second connection tube 86. Accordingly, the end portion 88 of the connector 82 in FIG. 5 may engage and fit within the second connecting tube 86, only when the grooves 92 on the connector align with protrusions 94 on the second connection tube.


When the end portion 88 of the connector 82 is fully inserted within and properly engaged with the second connecting tube 86, as shown in FIG. 2, a fluid flow communication path is provided from the bag portion 81 of the disposable container 80, through the passage 90 in the connector 82, through the interior of the first connection tube 84, through the fluid passages 66 and 62 and into the small diameter portion 49 of the first tube member 14.


As discussed above, the flask cover 22 is configured to attach to one end of the second extension member 28. As shown in FIGS. 6 and 7, the flask cover 22 may be provided with and annular groove 96 having a shape and diameter that corresponds to the shape and diameter of an end portion 98 of the second extension member 28. One or more seals 100, such as but not limited to, O-ring seals, may be provided around the exterior surface of the end portion 98 of the second extension member and/or the interior surface of the annular groove 96, to enhance a fluid-tight connection between the end portion 98 and the flask cover 22. Alternatively, or in addition, one or more further seals (not shown), such as, but not limited to O-ring seals may be provided around the exterior surface of the first connection tube 84 and/or the interior surface of the mating recess of the connector 82, to enhance a fluid-tight connection between the end portion 98 and the flask cover 22. In FIG. 6, the flask cover 22 is shown as being partially, but not fully engaged with the end portion 98 of the second extension member 28. In FIG. 7, the flask cover 22 is shown as being fully engaged with the end portion 98 of the second extension member 28.


As discussed above, the second extension member 28 may include a stop valve 68 in first fluid passage 64. The stop valve 68 comprises a check valve or other suitable structure that allows fluid flow through the first fluid passage 64 when the flask 20 (with flask cover 22) is properly attached to the second extension member 28, and inhibits fluid flow out of the first fluid passage 64, in the event that the flask 20 (with flask cover) is removed from (or otherwise not attached to) the second extension member 28. The volume control valve 70 may include an “off” state (to fully block fluid communication through the passages 62 and 66), for example, corresponding to a predefined position of the volume control knob 72 (such as, but not limited to, a position in which the volume control knob 72 is manually rotated to an end-of-rotation position in the clockwise direction or, alternatively, to an end-of-rotation position in the counter-clockwise direction). In the fully engaged orientation shown in FIG. 7, a check valve member 68 is shown as being engaged with an end of the flask cover 22, such that the valve member 68 is pushed upward (relative to the orientation in FIG. 7) within the fluid passage 64.


In the upward orientation of FIG. 7, the valve member 68 is positioned to allow fluid to pass around the valve member 68, so as to provide a fluid communication from the large diameter portion 48 of the first tube member 14, through the passages 60 and 64 and to the volume in the interior area 102 of the flask (but exterior to the replaceable container 80). However, when the flask cover 22 is removed (or partially removed, as shown in FIG. 6) from the second extension member 28, the valve member 68 is forced by gravity, water pressure and/or a spring or other biasing member (not shown) into a position in which it blocks fluid communication from the passage 64 in the second extension member 28 to the interior of the flask 20. The valve member 68 may be formed of any suitable material, including, but not limited to a resilient rubber, plastic or composite material, a rigid plastic, metal, ceramic or composite material, or the like.


In an alternative embodiment, the valve member 68 may be arranged to open a bypass passage (an example of which is described below with respect to FIGS. 9 and 10) between the passages 64 and 66 when it is moved into a position to a closed position (i.e., the position described with reference to FIG. 6) and to close the bypass passage when the valve member is moved into the open position (i.e., the position described with reference to FIG. 7). In that manner, when the valve member 68 is in the closed position, fluid may be conveyed through a portion of the passage 64, to the bypass passage, through the bypass passage to the passage 66 and back through the passage 64 to the small diameter portion 49 of the first tube member 14.


According to the embodiments described above, the first tube member 14 is connected to a standard pipe 12 of a shower arm. A shower head 18 is also connected to the first tube member. When water is caused to flow through the standard pipe 12, toward the shower head 18, the water flows past the back-flow preventer 44 and into the large diameter portion 48 of the first tube member 14.


The water flows from the large diameter portion 48 into the small diameter portion 49 of the restrictor tube section of the first tube member 14. A venturi effect is created between the large diameter portion 48 and the small diameter portion 49. As a result, a first fluid pressure P1 is provided in the large diameter portion 48 and a second fluid pressure P2 is provided in the small diameter portion 49. The second fluid pressure P2 is less than the first fluid pressure P1, due to the smaller diameter of the small diameter portion 49, relative to the diameter of the large diameter portion 48.


When the flask 20 (with cover 22 and container 80) is fully connected to the second extension member 28 (and the valve 68 is, thereby, opened), fluid communication is allowed from the large diameter portion 48 of the first tube member 14, through passage 56 and groove 50, through the passages 60 and 64, to the interior of the flask 20 (but exterior to the replaceable container 80). As a result, the pressure P1 is communicated through the passages 60 and 64 and to the interior of the flask 20 (but exterior to the replaceable container 80). At the same time, fluid communication is allowed between the interior of the replaceable container 80, through the passages 66 and 62, and through groove 52 and passage 54, to the small diameter portion 49 of the first tube member 14. As a result, the interior of the replaceable container 80 will be at the same pressure P2 as the small diameter portion 49 of the first tube member 14. In this manner, the pressure P1 within the flask 20 (but exterior to the replaceable container 80) is greater than the pressure P2 within the replaceable container 80.


Thus, by selecting the diameters of the small and large diameter portions 49 and 48 to provide a suitable pressure differential (P1−P2) when water flows through the first tube member 14 from the standard pipe 12, a suitable pressure may be applied to the exterior of the flexible bag portion 81 of the container 80, to compress the flexible bag portion and force fluid contained within the flexible bag portion out of the container 80, through the fluid flow passage 90, through the first connection tube 84, through the passages 66 and 62 and into the small diameter portion 49 of the first tube member. The fluid forced from the flexible bag, into the small diameter portion 49 is, thus, mixed with water flowing through the small diameter portion 49 and conveyed, with the water flow, to the shower head 18. In this manner, fluid from the container 80 may be mixed with the water flow in the first tube member 14 and the mixed water and fluid from the container 80 is expelled through the nozzles 32 of the shower head 18.


The container 80 may be filled with a fluid, such as a fluid soap, shampoo, hair or body conditioner, medication, or other suitable material for mixing with water and expelling from a shower head. The user may adjust the volume of fluid flowing from the container 80, into the fluid flow, by adjusting the position of the volume control knob 72. The user may readily replace an empty container (or replace one container with another container containing different material) by simply removing the flask 20 from the second extension member 28, opening the flask cover 22, removing the existing container 80 from the flask cover 22 and attaching another container 80 to the flask cover 22, replacing the cover 22 on the flask body 21 and re-attaching the flask 20 to the second extension member 28, as described above. Alternatively, a user may have more than one flasks 20, each holding a container 80 containing mutually different materials, such that the user may change dispensing materials by simply replacing a flask attached to the second extension member 28 with another flask.


A further embodiment is shown in FIG. 8, wherein at least one (and preferably, a plurality) of bypass channels are provided within the first tube member 14, to allow a portion of the water flow to bypass the large and small diameter portions 48 and 49 of the restrictor tube section 46 of the first tube member 14. In the drawing in FIG. 8, a single bypass channel 110 is shown. However, in further embodiments, plural bypass channels are arranged in spaced relationships around the large and small diameter portions 48 and 49. For example, three bypass channels 110 may be arranged around the large and small diameter portions 48 and 49, and spaced apart at 120 degree intervals. The number of channels and the diameters of the bypass channels may be selected to provide a desired bypass volume. In one example embodiment, three bypass channels, each having a diameter of about 0.1 inch may be employed. However, other embodiments may employ other suitable channel numbers and diameters.


By employing one or more bypass channels, the volume of water reaching the shower head 18 may be increased (relative to embodiments in which water only flows through the large and small diameter portions 48 and 49 of the restrictor section 46 of the first tube member 14. In particular, the restricted flow of water through the large and small diameter portions 48 and 49 and resulting venturi effect may create an undesirable reduction in flow volume to the shower head. The bypass channels provide an additional flow of water to the shower head.


In further embodiments as shown in FIGS. 9 and 10, the volume control valve 70 may be replaced with a diverter valve 112. The diverter valve 112 has two positions (controlled by the knob 72), including a bypass position as shown in FIG. 9 and an open position as shown in FIG. 10. In the bypass position, the diverter valve 112, opens fluid communication through a bypass passage 114 extending between the passages 64 and 65 in the second extension member 28 and, at the same time, closes communication between the container 80 and the passage 65. In the open position, the valve opens the fluid communication path between the container 80 and the passage 65, but closes the bypass passage 114. In this regard, when a user desires to remove a flask 20 (for example, for replacement) or simply desires to not use material from the flask 20, the user may turn the diverter valve 112 into the bypass position (FIG. 9) and cause water to flow through the passage 64 to the bypass passage 114, through the bypass passage 114, to the passage 66 and back through the passage 62 to the small diameter portion 49 of the first tube member 14. As a result, any soap residue (or residue of other material from the container 80) that may be within the passages 66 and 62 may be quickly washed away by the bypass flow through those passages.


While embodiments are described above in the context of a dispenser for a shower, other embodiments may be employed as a dispenser for other fluid-flow contexts. In particular, embodiments of the invention may be configured to connect in any suitable fluid flow system, for dispensing material (form container 80) into a fluid flow.

Claims
  • 1. A dispenser system for connection to a fluid flow pipe through which a fluid may flow, the dispenser comprising: a first tube member having at least one fluid flow passage therethrough, the first tube member having an inlet configured for connecting to and receiving a fluid flow from a fluid flow pipe and conveying fluid through the at least one fluid flow passage in a fluid-flow direction, the at least one fluid flow passage including a restrictor passage having a first portion and a second portion downstream of the first portion in the fluid-flow direction, the first portion having a first fluid pressure and the second portion having a second fluid pressure that is less than the first fluid pressure, upon fluid being conveyed through the restrictor passage;a flask having an enclosed interior volume;a pressure-deformable container held within the interior volume of the flask, the pressure-deformable container having an interior first volume for holding a flowable material, the flask and the deformable container defining a second volume within the flask but external to the deformable container; anda connection structure for connecting the first volume in fluid-pressure communication with the second portion of the restrictor passage and for connecting the second volume in fluid-pressure communication with the first portion of the restrictor passage, the connection structure being rotatably coupled to the first tube member, for rotation about at least a portion of the restrictor flow passage after the first tube member is connected to the fluid flow pipe;wherein the at least one fluid flow passage through the first tube member comprises at least one bypass passage, for allowing fluid to flow through the first tube member and bypass the restrictor passage in the first tube member.
  • 2. A dispenser system as recited in claim 1, wherein the at least one bypass passage comprises a plurality of bypass passages arranged around the restrictor passage.
  • 3. A dispenser system as recited in claim 1, wherein the at least one bypass passage comprises three bypass passages substantially parallel to the restrictor passage and arranged around the restrictor passage at about 120 degree intervals.
  • 4. A dispenser system as recited in claim 1, wherein the connection structure comprises a second tube member disposed around the first tube member and rotatable relative to the first tube member.
  • 5. A dispenser system as recited in claim 1, wherein the first tube member includes first and second annular grooves arranged in fluid-pressure communication with the first and second portions, respectively, of the restrictor passage, and wherein the connection structure comprises: a second member disposed for rotation in a circumferential path of motion around the first tube member, the second member including first and second fluid-pressure communication passages arranged in fluid-pressure communication with the first and second annular grooves of the first tube member throughout the circumferential path of motion of the second member relative to the first tube member.
  • 6. A dispenser system as recited in claim 1, wherein the second member comprises a second tube member disposed around the first tube member and an extension member extending from the second tube member, the extension member including a flask connection end for connecting to the flask.
  • 7. A dispenser system as recited in claim 1, wherein the connection structure and the flask include a releasable connector for selectively coupling and de-coupling the flask to the connector structure.
  • 8. A dispenser system as recited in claim 7, wherein the releasable connector comprises at least one clamp.
  • 9. A dispenser system as recited in claim 7, wherein the releasable connector comprises a threaded connector.
  • 10. A dispenser system as recited in claim 7, further comprising at least one additional flask for allowing a user to interchange one flask for another in the system.
  • 11. A dispenser system as recited in claim 1, wherein the flask comprises a flask body and a flask cover removably connectable to the flask body, the flask cover including a keyed connection portion;the pressure-deformable container includes a keyway portion for mating with the keyed connection portion of the flask cover.
  • 12. A dispenser system as recited in claim 11, wherein the keyed connection portion of the flask cover and the keyway portion of the pressure-deformable container include at least one of a mating groove and protrusion, mating non-circular cross-sectional shapes, or a combination of a mating groove and protrusion and mating non-circular cross-sectional shapes.
  • 13. A dispenser system as recited in claim 1, wherein the connection structure comprises: an extension member including a flask connection end for selectively coupling and de-coupling the flask thereto;a first fluid-pressure passage in the extension member, the first fluid-pressure passage connected in fluid-pressure communication with the first portion of the restrictor passage of the first tube member; anda valve disposed within the first fluid-pressure passage for blocking fluid-flow from the first fluid-pressure passage in the event that the flask decouples from the extension member.
  • 14. A dispenser system as recited in claim 13, wherein the connection structure further comprises: a second fluid-pressure passage in the extension member, the second fluid-pressure passage connected in fluid-pressure communication with the second portion of the restrictor passage of the first tube member; anda volume control valve for manually adjustable volume control disposed within the second fluid-pressure passage having a manual actuator and an off position in which fluid-pressure through the second fluid-pressure passage is blocked.
US Referenced Citations (318)
Number Name Date Kind
203094 Wakeman Apr 1878 A
428023 Schoff May 1890 A
445250 Lawless Jan 1891 A
486986 Schinke Nov 1892 A
566410 Schinke Aug 1896 A
570405 Jerguson et al. Oct 1896 A
800802 Franquist Oct 1905 A
832523 Andersson Oct 1906 A
854094 Klein May 1907 A
926929 Dusseau Jul 1909 A
1001842 Greenfield Aug 1911 A
1003037 Crowe Sep 1911 A
1018143 Vissering Feb 1912 A
1193302 Seltner Aug 1916 A
1207380 Duffy Dec 1916 A
1217254 Winslow Feb 1917 A
1218895 Porter Mar 1917 A
1255577 Berry Feb 1918 A
1260181 Gamero Mar 1918 A
1276117 Riebe Aug 1918 A
1284099 Harris Nov 1918 A
1327428 Gregory Jan 1920 A
1451800 Agner Apr 1923 A
1469528 Owens Oct 1923 A
1500921 Bramson et al. Jul 1924 A
1560789 Johnson et al. Nov 1925 A
1597477 Panhorst Aug 1926 A
1692394 Sundh Nov 1928 A
1695263 Jacques Dec 1928 A
1724147 Russell Aug 1929 A
1736160 Jonsson Nov 1929 A
1754127 Srulowitz Apr 1930 A
1758115 Kelly May 1930 A
1778658 Baker Oct 1930 A
1821274 Plummer Sep 1931 A
1906575 Goeriz May 1933 A
2011446 Judell Aug 1935 A
2024930 Judell Aug 1935 A
2044445 Price et al. Jun 1936 A
2117152 Crosti May 1938 A
2196783 Shook Apr 1940 A
2197667 Shook Apr 1940 A
2268263 Newell et al. May 1941 A
2342757 Roser Feb 1944 A
D147258 Becker Aug 1947 S
D152584 Becker Feb 1949 S
2467954 Becker Apr 1949 A
2546348 Schuman Mar 1951 A
2581129 Muldoon Jan 1952 A
D166073 Dunkelberger Mar 1952 S
2648762 Dunkelberger Aug 1953 A
2664271 Arutunoff Dec 1953 A
2676806 Bachman Apr 1954 A
2679575 Haberstump May 1954 A
2680358 Zublin Jun 1954 A
2721089 Shames Oct 1955 A
2759765 Pawley Aug 1956 A
2776168 Schweda Jan 1957 A
2825135 Tilden Mar 1958 A
2873999 Webb Feb 1959 A
2931672 Merritt et al. Apr 1960 A
2966311 Davis Dec 1960 A
D190295 Becker May 1961 S
D192935 Becker May 1962 S
3032357 Shames et al. May 1962 A
3034809 Greenberg May 1962 A
3064998 Syverson Nov 1962 A
3103723 Becker Sep 1963 A
3111277 Grimsley Nov 1963 A
3121235 Gellmann Feb 1964 A
3143857 Eaton Aug 1964 A
3196463 Fameth Jul 1965 A
3231200 Heald Jan 1966 A
3266059 Stelle Aug 1966 A
3306634 Groves et al. Feb 1967 A
3329967 Martinez et al. Jul 1967 A
3389925 Gottschald Jun 1968 A
3393311 Dahl Jul 1968 A
3393312 Dahl Jul 1968 A
3402893 Hindman Sep 1968 A
3492029 French et al. Jan 1970 A
3546961 Marton Dec 1970 A
3565116 Gabin Feb 1971 A
3584822 Oram Jun 1971 A
3612577 Pope Oct 1971 A
3641333 Gendron Feb 1972 A
3663044 Contreras et al. May 1972 A
3669362 Meyerhofer et al. Jun 1972 A
3669470 Deurloo Jun 1972 A
3685745 Peschcke-Koedt Aug 1972 A
3731084 Trevorrow May 1973 A
3754779 Peress Aug 1973 A
3778610 Wolf Dec 1973 A
3860271 Rodgers Jan 1975 A
3861719 Hand Jan 1975 A
3869151 Fletcher et al. Mar 1975 A
3910277 Zimmer Oct 1975 A
D237708 Grohe Nov 1975 S
3929164 Richter Dec 1975 A
3931992 Coel Jan 1976 A
D240178 Johansen Jun 1976 S
D240322 Staub Jun 1976 S
3971074 Yxfeldt Jul 1976 A
4005880 Anderson et al. Feb 1977 A
4006920 Sadler et al. Feb 1977 A
4023782 Eifer May 1977 A
4045054 Arnold Aug 1977 A
D249356 Nagy Sep 1978 S
4162801 Kresky et al. Jul 1979 A
4174822 Larsson Nov 1979 A
4243253 Rogers, Jr. Jan 1981 A
4258414 Sokol Mar 1981 A
4274400 Baus Jun 1981 A
4282612 King Aug 1981 A
D262353 Kitson Dec 1981 S
4358056 Greenhut et al. Nov 1982 A
D268442 Darmon Mar 1983 S
4383554 Merriman May 1983 A
4396797 Sakuragi et al. Aug 1983 A
4425965 Bayh, III et al. Jan 1984 A
4465308 Martini Aug 1984 A
4479610 Etheridge et al. Oct 1984 A
4495550 Visciano Jan 1985 A
4540202 Amphoux et al. Sep 1985 A
4545081 Nestor et al. Oct 1985 A
4545535 Knapp Oct 1985 A
4553775 Halling Nov 1985 A
D281820 Oba et al. Dec 1985 S
4568216 Mizusawa et al. Feb 1986 A
4571003 Roling et al. Feb 1986 A
D283645 Tanaka Apr 1986 S
4643463 Halling et al. Feb 1987 A
4645244 Curtis Feb 1987 A
4652025 Conroy, Sr. Mar 1987 A
4669757 Bartholomew Jun 1987 A
4683917 Bartholomew Aug 1987 A
4707770 Van Duyn Nov 1987 A
4722029 Ahle et al. Jan 1988 A
4733337 Bieberstein Mar 1988 A
4739801 Kimura et al. Apr 1988 A
4752975 Yates Jun 1988 A
4790294 Allred, III et al. Dec 1988 A
4809369 Bowden Mar 1989 A
4839599 Fischer Jun 1989 A
4842059 Tomek Jun 1989 A
D302325 Charet et al. Jul 1989 S
4850616 Pava Jul 1989 A
4856822 Parker Aug 1989 A
4863328 Malek Sep 1989 A
4865362 Holden Sep 1989 A
4871196 Kingsford Oct 1989 A
D306351 Charet et al. Feb 1990 S
4901765 Poe Feb 1990 A
4901927 Valdivia Feb 1990 A
4903178 Englot et al. Feb 1990 A
4907137 Schladitz et al. Mar 1990 A
4946202 Perricone Aug 1990 A
4951329 Shaw Aug 1990 A
4959758 Filosa et al. Sep 1990 A
4964573 Lipski Oct 1990 A
4972048 Martin Nov 1990 A
4975123 Gray Dec 1990 A
D314246 Bache Jan 1991 S
5004158 Halem et al. Apr 1991 A
5022103 Faist Jun 1991 A
5032015 Christianson Jul 1991 A
5033528 Volcani Jul 1991 A
5046764 Kimura et al. Sep 1991 A
D321062 Bonbright Oct 1991 S
D322681 Yuen Dec 1991 S
5071070 Hardy Dec 1991 A
5086878 Swift Feb 1992 A
D325769 Haug et al. Apr 1992 S
5103384 Drohan Apr 1992 A
5107406 Sekido et al. Apr 1992 A
5134251 Martin Jul 1992 A
5135173 Cho Aug 1992 A
D329504 Yuen Sep 1992 S
5143123 Richards et al. Sep 1992 A
5148556 Bottoms, Jr. et al. Sep 1992 A
5153976 Benchaar et al. Oct 1992 A
5154483 Zeller Oct 1992 A
5163752 Copeland et al. Nov 1992 A
5197767 Kimura et al. Mar 1993 A
5215338 Kimura et al. Jun 1993 A
5220697 Birchfield Jun 1993 A
D337839 Zeller Jul 1993 S
D338542 Yuen Aug 1993 S
5254809 Martin Oct 1993 A
D341220 Eagan Nov 1993 S
5263646 McCauley Nov 1993 A
5265833 Heimann et al. Nov 1993 A
5268826 Greene Dec 1993 A
5276596 Krenzel Jan 1994 A
5286071 Storage Feb 1994 A
5288110 Allread Feb 1994 A
D345811 Van Deursen et al. Apr 1994 S
5333787 Smith et al. Aug 1994 A
5333789 Garneys Aug 1994 A
5340165 Sheppard Aug 1994 A
5349987 Shieh Sep 1994 A
5356076 Bishop Oct 1994 A
5368235 Drozdoff et al. Nov 1994 A
5369556 Zeller Nov 1994 A
5370427 Hoelle et al. Dec 1994 A
5385500 Schmidt Jan 1995 A
D356626 Wang Mar 1995 S
5398977 Berger et al. Mar 1995 A
D361399 Carbone et al. Aug 1995 S
5449206 Lockwood Sep 1995 A
D363360 Santarsiero Oct 1995 S
5468057 Megerle et al. Nov 1995 A
D364935 deBlois Dec 1995 S
D365625 Bova Dec 1995 S
D365646 deBlois Dec 1995 S
D366707 Kaiser Jan 1996 S
D366708 Santarsiero Jan 1996 S
D366709 Szymanski Jan 1996 S
D366710 Szymanski Jan 1996 S
5481765 Wang Jan 1996 A
D366948 Carbone Feb 1996 S
D367333 Swyst Feb 1996 S
D367934 Carbone Mar 1996 S
D368146 Carbone Mar 1996 S
D368317 Swyst Mar 1996 S
D368539 Carbone et al. Apr 1996 S
D368540 Santarsiero Apr 1996 S
D368541 Kaiser et al. Apr 1996 S
D368542 deBlois et al. Apr 1996 S
D369873 deBlois et al. May 1996 S
D369874 Santarsiero May 1996 S
D369875 Carbone May 1996 S
D370277 Kaiser May 1996 S
D370278 Nolan May 1996 S
D370279 deBlois May 1996 S
D370280 Kaiser May 1996 S
D370281 Johnstone et al. May 1996 S
5517392 Rousso et al. May 1996 A
5521803 Eckert et al. May 1996 A
D370542 Santarsiero Jun 1996 S
D370735 DeBlois Jun 1996 S
D370987 Santarsiero Jun 1996 S
D370988 Santarsiero Jun 1996 S
D371448 Santarsiero Jul 1996 S
D371618 Nolan Jul 1996 S
D371619 Szymanski Jul 1996 S
D371856 Carbone Jul 1996 S
D372318 Szymanski Jul 1996 S
D372319 Carbone Jul 1996 S
5531625 Zhong Jul 1996 A
D372548 Carbone Aug 1996 S
D372998 Carbone Aug 1996 S
D373210 Santarsiero Aug 1996 S
D373434 Nolan Sep 1996 S
D373435 Nolan Sep 1996 S
D373645 Johnstone et al. Sep 1996 S
D373646 Szymanski et al. Sep 1996 S
D373647 Kaiser Sep 1996 S
D373648 Kaiser Sep 1996 S
D373649 Carbone Sep 1996 S
D373651 Szymanski Sep 1996 S
D373652 Kaiser Sep 1996 S
D374297 Kaiser Oct 1996 S
D374298 Swyst Oct 1996 S
D374299 Carbone Oct 1996 S
D374493 Szymanski Oct 1996 S
D374494 Santarsiero Oct 1996 S
D374732 Kaiser Oct 1996 S
D374733 Santarsiero Oct 1996 S
5567115 Carbone Oct 1996 A
D376217 Kaiser Dec 1996 S
D376860 Santarsiero Dec 1996 S
D376861 Johnstone et al. Dec 1996 S
D376862 Carbone Dec 1996 S
5624074 Parisi Apr 1997 A
D379404 Spelts May 1997 S
D381405 Waidele et al. Jul 1997 S
5660079 Friedrich Aug 1997 A
5667146 Pimentel et al. Sep 1997 A
5692252 Zwezdaryk Dec 1997 A
5749602 Delaney et al. May 1998 A
5778939 Hok-Yin Jul 1998 A
D401680 Tiernan Nov 1998 S
5865378 Hollinshead et al. Feb 1999 A
D406636 Male et al. Mar 1999 S
D413157 Ratzlaff Aug 1999 S
5997047 Pimentel et al. Dec 1999 A
6042155 Lockwood Mar 2000 A
6095801 Spiewak Aug 2000 A
6164569 Hollinshead et al. Dec 2000 A
6164570 Smeltzer Dec 2000 A
6199729 Drzymkowski Mar 2001 B1
D440641 Hollinshead et al. Apr 2001 S
6227456 Colman May 2001 B1
6425149 Wang Jul 2002 B1
6450425 Chen Sep 2002 B1
D465553 Singtoroj Nov 2002 S
D470219 Schweitzer Feb 2003 S
6537455 Farley Mar 2003 B2
6626210 Luettgen et al. Sep 2003 B2
6629651 Male et al. Oct 2003 B1
6643862 Aitken Nov 2003 B2
6659117 Gilmore Dec 2003 B2
6701953 Agosta Mar 2004 B2
D496446 Zwezdaryk Sep 2004 S
D502761 Zieger et al. Mar 2005 S
6926212 Glass Aug 2005 B1
D517669 Zieger et al. Mar 2006 S
7066411 Male et al. Jun 2006 B2
D529151 Macan Sep 2006 S
7147172 Darling et al. Dec 2006 B2
7201331 Bertrand Apr 2007 B2
7299510 Tsai Nov 2007 B2
20020033424 Rivera et al. Mar 2002 A1
20020070292 Hazenfield Jun 2002 A1
20040163169 Kollmann et al. Aug 2004 A1
20050283904 Macan et al. Dec 2005 A1
20060231648 Male et al. Oct 2006 A1
Foreign Referenced Citations (37)
Number Date Country
687527 Nov 1996 AU
659510 Mar 1963 CA
2150317 Nov 1995 CA
352813 May 1922 DE
854100 Oct 1952 DE
2360534 Jun 1974 DE
2806093 Aug 1979 DE
3246327 Dec 1982 DE
4034695 May 1991 DE
4142198 Apr 1993 DE
19608085 Mar 1998 DE
0167063 Jun 1985 EP
0683354 Nov 1995 EP
0687851 Dec 1995 EP
0695907 Feb 1996 EP
0721082 Jul 1996 EP
538538 Jun 1922 FR
1098836 Aug 1955 FR
2596492 Oct 1987 FR
2695452 Mar 1994 FR
10086 May 1893 GB
3314 Dec 1914 GB
129812 Jul 1919 GB
204600 Oct 1923 GB
634483 Mar 1950 GB
971866 Oct 1964 GB
2156932 Oct 1985 GB
2298595 Sep 1996 GB
327400 Jul 1936 IT
350359 Jul 1937 IT
S63-181459 Nov 1988 JP
H2-78660 Jun 1990 JP
8902957 Jun 1991 NL
WO9312894 Jul 1993 WO
WO9325839 Dec 1993 WO
WO9623999 Aug 1996 WO
WO9830336 Jul 1998 WO
Related Publications (1)
Number Date Country
20070119980 A1 May 2007 US
Provisional Applications (1)
Number Date Country
60727725 Oct 2005 US