Dispensing system and user interface

Information

  • Patent Grant
  • 10005657
  • Patent Number
    10,005,657
  • Date Filed
    Monday, December 21, 2015
    9 years ago
  • Date Issued
    Tuesday, June 26, 2018
    6 years ago
Abstract
A dispensing system may be configured to dispense a custom product based on a user selection. The user selection may be provided via a user interface of the dispensing system. The user interface may simultaneously display selectable icons for the available types of products (e.g., types of beverages) and other icons for modifying a chosen product (e.g., a flavoring or additive to a beverage, such as a sweetener or a cherry flavoring). The user interface may receive input from a user in order for the user to select a custom product (e.g., a custom drink) and the dispensing system may dispense the custom product to the user.
Description
BACKGROUND

Various dispensing systems, such as those at restaurants and other entertainment and/or food service venues, typically allow a user to select and receive a beverage, such as a soft-drink. A dispensing head is coupled to a drink syrup supply source via a single pipe dedicated to supply drink syrup to each dispensing head. A user places a cup under a logo corresponding to the selected beverage and either presses a button or presses the cup against a dispensing lever to activate the dispenser so that the selected beverage is delivered from the dispensing head corresponding to the selected beverage and into the cup until pressure is withdrawn from the button or lever.


A limited number of drinks are typically available at a conventional beverage dispenser. For example, drinks typically available at a conventional beverage dispenser are a regular cola beverage, a diet cola beverage, one or several non-cola carbonated beverages, such as a lemon-lime flavored carbonated beverage or some other fruit-flavored drink (e.g., orange flavored carbonated beverage, and/or root beer), and one more non-carbonated beverage(s), such as a tea and/or a lemonade.


The conventional beverage dispenser generally provides information about the available drinks using signage or labels for each type of drink (e.g., a label for each available soft-drink attached to the dispenser head corresponding the selected beverage). As the number of available drinks increases, it becomes more difficult to provide information related to the available drinks to a user.


There exists a need for an improved dispensing system and method to provide an increased number of available products (e.g., beverages) and to more efficiently provide information related to the available products.


SUMMARY

Described herein are methods and systems for providing an increased number of available products in a dispenser and/or for more efficiently providing information related to the products available in a dispenser.


One or more features relate to providing, on a display device of a dispenser, a display screen that is arranged to allow a user to select and cause dispensing of a custom beverage. In some arrangements, the user may progress down the display screen to make desired selections, such as selections of a desired brand of beverage and/or one or more flavorings that can be used as ingredients to the custom beverage. For example, in one or more embodiments, the display screen may include a first region comprising a plurality of icons that represent the types or brands of beverages available for dispensing from the dispenser as part of the custom beverage. Below the first region, the display screen may include a second region comprising a plurality of modifier buttons that represent flavorings or additives available for dispensing from the dispenser as part of the custom beverage. Below the first and second regions, the display screen may include a third region comprising a pour button that causes the dispenser to dispense the custom beverage.


In some arrangements, the display screen may present all information required to select and dispense a custom beverage to a user simultaneously. For example, the display screen could, among other features, simultaneously include icons for the types or brands of beverages available for dispensing from the dispenser, buttons for the flavorings or additives that can be added to as part of the custom beverage, and a pour button that causes the dispenser to dispense the custom beverage. Such arrangements may avoid more complex multi-layered methods of presenting information required to select and dispense a custom beverage.


The preceding presents a simplified summary in order to provide a basic understanding of some aspects of the disclosure. The summary is not an extensive overview of the disclosure. It is neither intended to identify key or critical elements of the disclosure nor to delineate the scope of the disclosure. The summary merely presents some concepts of the disclosure in a simplified form as a prelude to the description below.





BRIEF DESCRIPTION OF THE DRAWINGS

Certain embodiments are illustrated by way of example and not limited in the accompanying figures in which like reference numerals indicate similar elements and in which:



FIG. 1 illustrates a block diagram of an example communication network in which one or more embodiments may be implemented.



FIG. 2 illustrates an example hardware platform on which at least some of the various elements described herein can be implemented.



FIG. 3 is a schematic view of an embodiment of a dispensing system according to various aspects described herein.



FIGS. 4A-4E illustrate example interface displays according to various aspects described herein.



FIG. 5A illustrates an example method for dispensing an available product according to one or more aspects described herein.



FIG. 5B illustrates an example of the progression of a user when using an interface to select and/or dispense a desired product according to various aspects described herein.



FIG. 6 illustrates an example method for updating a dispensing system according to one or more aspects described herein.



FIGS. 7A-7E illustrate example interface displays for other embodiments according to various aspects described herein.





DETAILED DESCRIPTION

In the following description of various illustrative embodiments, reference is made to the accompanying drawings, which form a part hereof, and in which is shown, by way of illustration, various embodiments in which aspects of the disclosure may be practiced. It is to be understood that other embodiments may be utilized, and structural and functional modifications may be made, without departing from the scope of the present disclosure.


The embodiments discussed below may be used to form a wide variety of products, such as beverages, including but not limited to cold and hot beverages, and including but not limited to beverages known under any PepsiCo branded name, such as Pepsi-Cola®.



FIG. 1 illustrates a block diagram of an example communication network in which one or more embodiments may be implemented. A dispensing system may be configured to dispense a product according to a user's selection. For example, a user may approach dispensing system 104, and interact with the dispenser 104 to make a selection (e.g., input a code or press a button corresponding to the desired product). In response, the dispenser 104 may dispense the selected product. In general, examples of this disclosure relate to a beverage dispensing system; however, various aspects of this disclosure could be used in a dispenser for other types of products (e.g., candy or snack dispenser).


Dispensing systems may be located across different locations or premises. For example, FIG. 1 illustrates three dispensers: dispensing system 104, dispensing system 106 and dispensing system 108. In one arrangement, dispensing system 104 may be located in a convenience store, and dispensing systems 106 and 108 may be located at a school.


Additionally, in one or more arrangements, dispensing systems may be connected to a controller. A controller may be centrally located and/or a separate controller may be incorporated into each dispenser. As illustrated in FIG. 1, dispensing system 106 and 108 are connected to controller 105. Controller 105 may be configured to receive instructions from dispensing system 106 and/or 108, and to cause the appropriate dispensing system to dispense an appropriate amount of the selected product. For example, if dispensing system 106 is a beverage dispenser, a user may interact with the dispenser to select a beverage (e.g., via a touchpad, touch screen, keypad, etc.), instructions for the selected beverage may be transmitted to controller 105, and controller 105 may be configured to dispense an appropriate amount of the selected beverage in response to the instructions.


Components of a dispensing system may include a processor 120, memory 130, software 140, and/or additional components suitable for implementing the functions and methods of the dispensing system. Software 140 may be stored in computer-readable memory 130 such as read only or random access memory in dispenser 104 and may include instructions that cause one or more components (e.g., processor 120, display, etc.) of a dispenser (e.g., dispenser 104) to perform various functions and methods including those described herein.


A dispenser may communicate with other devices using one or more networks. For example, as illustrated in FIG. 1, dispensing system 104, 106 and 108 may communicate with server 100 via network 102 and/or network 103. Network 102 and network 103 may include multiple networks that are interlinked so as to provide internetworked communications. Such networks may include one or more private or public packet-switched networks (e.g., the Internet), one or more private or public circuit-switched networks (e.g., a public switched telephone network), a cellular network, a short or medium range wireless communication connection (e.g., Bluetooth®, ultra wideband (UWB), infrared, WiBree, wireless local area network (WLAN) according to one or more versions of Institute of Electrical and Electronics Engineers (IEEE) standard no. 802.11), or any other suitable network. Devices in communication with each other (e.g., dispensing systems 104, 106, and 108, server 100, and/or data repository 101) may use various communication protocols such as Internet Protocol (IP), Transmission Control Protocol (TCP), Simple Mail Transfer Protocol (SMTP), File Transfer Protocol (FTP), among others known in the art.


Server 100, controller 105, and dispensing systems 104, 106 and 108 may be configured to interact with each other and other devices. In one example, dispenser 104 may include software 140 that is configured to coordinate the transmission and reception of information to and from server 100. In one arrangement, software 140 may include application or server specific protocols for requesting and receiving data from server 100. For example, software 140 may comprise a browser or variants thereof and server 100 may comprise a web server. In some arrangements, server 100 may transmit application data to dispensing systems, such as software updates to various components of the dispensing system (e.g., updates to the user interface, updates to firmware of the dispensing system, updates to drivers of the dispensing system, etc.). In one or more arrangements, server 100 may receive data from the dispensing systems, such as data describing the current stock of the dispenser (e.g., a listing of products and the number remaining at the dispenser), operation history and/or usage metrics of the dispenser (e.g. counters tracking the selections of users of the machine), status of the dispenser (e.g., whether any components are working improperly), etc. Server 100 may be configured to access and store data in data repository 101, such as data that it receives and transmits in data repository 101. Data repository 101 may also include other data accessible to server 100, such as different drink recipes that can be downloaded to dispensers.



FIG. 2 illustrates an example computing device on which at least some of the various elements described herein can be implemented, including, but not limited to, various components of dispenser systems (e.g., dispensers 104, 106 and 108, dispenser 300 of FIG. 3). Computing device 200 may include one or more processors 201, which may execute instructions of a computer program to perform, or cause to perform, any of the steps or functions described herein. The instructions may be stored in any type of computer-readable medium or memory, to configure the operation of the processor 201. For example, instructions may be stored in a read-only memory (ROM) 202, random access memory (RAM) 203, removable media 204, such as a Universal Serial Bus (USB) drive, compact disk (CD) or digital versatile disk (DVD), floppy disk drive, flash card, or any other desired electronic storage medium. Instructions may also be stored in an attached (or internal) hard drive 205.


Computing device 200 may include one or more output devices, such as a display 206, and may include one or more output device controllers 207, such as a video processor. There may also be one or more user input devices 208, such as a touch screen, remote control, keyboard, mouse, microphone, card reader, RFID reader, etc. The computing device 200 may also include one or more network interfaces, such as input/output circuits 209 to communicate with an external network 210. The network interface may be a wired interface, wireless interface, or a combination of the two. In some embodiments, the interface 209 may include a modem (e.g., a cable modern), and network 210 may include the communication lines of the networks illustrated in FIG. 1, or any other desired network.


The FIG. 2 example is an illustrative hardware configuration. Modifications may be made to add, remove, combine, divide, etc. components as desired. Additionally, the components illustrated may be implemented using basic computing devices and components, and the same components (e.g., processor 201, storage 202, user input device 208, etc.) may be used to implement any of the other computing devices and components described herein.


One or more aspects of the disclosure may be embodied in a computer-usable data and/or computer-executable instructions, such as in one or more program modules, executed by one or more computers or other devices. Generally, program modules include routines, programs, objects, components, data structures, etc. that perform particular tasks or implement particular abstract data types when executed by a processor in a computer or other data processing device. The computer executable instructions may be stored on one or more computer readable media such as a hard disk, optical disk, removable storage media, solid state memory, RAM, etc. The functionality of the program modules may be combined or distributed as desired in various embodiments. In addition, the functionality may be embodied in whole or in part in firmware or hardware equivalents such as integrated circuits, field programmable gate arrays (FPGA), controllers, application-specific integrated circuits (ASICS), combinations of hardware/firmware/software, and the like. Particular data structures may be used to more effectively implement one or more aspects of the invention, and such data structures are contemplated within the scope of computer executable instructions and computer-usable data described herein.



FIG. 3 is a schematic view of an embodiment of a dispensing system, in particular, a beverage dispenser. In some variations, beverage dispenser 300 may be approximately six feet tall, two feet wide, and three feet deep. Beverage dispenser 300 may be configured to dispense a beverage, such as a soft drink or a custom beverage made up of a base liquid (e.g., a brand of beverage) and one or more flavorings (e.g., lime, cherry, vanilla, and/or lemon flavorings). A user may make a beverage selection using touch screen 303 and/or other input components of the beverage dispenser 300. To receive the selected beverage, a user may place a cup or other suitable container (e.g., bottle, can, pouch) on or near shelf 302. When the container is in position to receive the selected beverage, the user may make selections on the touch screen 303 to cause the selected beverage to be dispensed from a dispensing head. FIG. 3, via item 301, shows an approximate placement of a dispensing head and a detail of a portion of a dispensing head. In one or more arrangements, a user may cause the dispensing of a drink by pressing a button (e.g., a button labeled “pour”) or pressing the container against a dispensing lever to activate the dispenser. In some embodiments, the button may be an icon on touch screen 303, or an electrical push button located elsewhere on the chassis of beverage dispenser 300.


The beverage dispenser 300 can include various components for dispensing a beverage, such as one or more of the following: a dispensing head, for dispensing the products; one or more repositories that store the products or ingredients for generating the products; and transfer components, such as ingredient systems, mixing systems, and/or piping, for transferring the products or ingredients from the repositories. In some arrangements, an ingredient system may supply beverage ingredients for a greater number of beverages than the number of dispensing heads that are included as part of beverage dispenser 300. In some embodiments, the ingredient system is hidden from by patrons or customers when using dispenser 300. Additionally, in some embodiments, components of the ingredient system may be located remotely from beverage dispenser and piping may connect the beverage dispenser with the remote ingredient system.


In one or more embodiments, the ingredient system may comprise a plurality of highly concentrated ingredients for micro dosing in the preparation of a wide variety of beverages. For example, the ingredient system may be configured to use thirty-six beverage ingredients, such as one or more syrups provided by PepsiCo Inc. to form beverages known under any PepsiCo branded name, such as Pepsi-Cola®. Each beverage ingredient may be stored in a cartridge or storage container.


Additionally, the ingredient system may hold a plurality of sweeteners, such as nutritive sweeteners and non-nutritive sweeteners. Each sweetener may be stored in a cartridge or storage container. Sweeteners and ingredients may be transferred throughout the ingredient system or beverage dispenser using pumps and input/output pump lines. For example, a pump may pump a nutritive sweetener through piping to a dispensing head of the beverage dispenser 300, and another pump may do the same for a non-nutritive sweetener. Other pumps may be used to pump beverage ingredients or water through piping to a dispensing head of the beverage dispenser 300. Another pump or pumps may be used to pump ice to a dispensing head of the beverage dispenser 300. The beverage dispenser may include an ice machine.


In one or more arrangements, a beverage dispenser may comprise a water treatment system, which may be used to treat water. For example, a water treatment system (not shown) may be used to cool water to a desired temperature for a cold beverage. A second water treatment system (not shown) may be used to heat water to desired temperature for hot beverages. A water treatment system may be any suitable water treatment system that improves taste, reduces odors, or reduces chlorines, such as a system that improves water quality (e.g., via reverse osmosis).


The beverage dispenser 300 may be configured to combine the ingredients, sweeteners, and water to create a beverage. Dispenser 300 may be configured to mix water and one or more beverage ingredients according to one or more ratios such as about 200:1, or about 75:1, or about 40:1 (e.g., in the form of a flavor or acid), for non-nutritive sweeteners, and about 6:1 for non-nutritive sweeteners. A base beverage may be prepared with about four streams, e.g., water, a sweetener, flavor, and acid. Additional streams may be added to provide top notes, such as cherry or vanilla flavor, or sweetener blends to reduce calories.


The beverage dispenser 300 may comprise one or more mixing chambers (not shown). Beverage ingredients may be supplied to mixing chambers from their respective containers. For example, syrup and other beverage ingredients may be pumped from their respective containers by pumps to mixing chambers as desired. These pumps may be driven by CO2 from a tank and supplied through a CO2, gas branch line. These pumps may comprise conventional syrup pumps, e.g., BIP pumps. Inlets to a mixing chamber may comprise a water supply line, a sweetener supply line, an acid supply line, and a flavor supply line. The sweetener, acid, and flavor ingredients supplied to mixing chamber may be highly concentrated amounts of those ingredients that have been mixed with water prior to being supplied to the mixing chamber, e.g., a ratio of beverage ingredient to water of about 200 to 1 by weight. After being mixed with water from water supply line, the mixture exiting a mixing chamber may have a lesser ratio of beverage ingredient to water (e.g., 1 to 5 by weight).


The beverage dispenser 300 may comprise a doser unit that includes a dispenser head. A doser unit may receive liquid under pressure and dose appropriately to provide a desired beverage. The dosing of a beverage ingredient may be between about 0.1 cc up to about 0.1 cc to about 17 cc. In one embodiment, dosing may be about 0.5 cc to 17 cc for nutritive sweetener. In some arrangements, dosing may be performed by a sliding vane pump, or other suitable positive displacement pump, gear pump piston pump, oscillating pump, or diaphragm pump. The pump may be controlled through, pulse width modulation, stroked or stepped to deliver the appropriate volume of an ingredient to form a beverage. Those of skill in the art will recognize that control of delivery may be achieved through use of an intelligent device, such as a computer or purpose embedded electronics. In one or more embodiments, a doser unit may comprise an ice hopper.


As shown in the blow-up view of a portion of dispenser head 301 in FIG. 3, a micro bundle may be used to dispense the selected beverage from the beverage dispenser 300. In the embodiment depicted, micro bundle 301 comprises an ice line 380, nine carbonated water lines 304-320, nine non-carbonated water lines 321-337 (including one that may be re-circulated or created on demand, e.g., from the cold water circuit), eighteen flavor lines 338-355, eighteen acid lines 356-373, a nutritive sweetener line 376, and a non-nutritive sweetener line 378. Micro bundle 301 may comprise any suitable cladding, including slots and piping.


A beverage ingredient, such as a sweetener, may be sent through a micro bundle to get better mixing. For example, in one or more embodiments, instead of using a traditional ⅜″ inside diameter (ID) or ¼″ ID pipe wherein a sweetener may be dropped to the bottom of a cup and a consumer may not taste the sweetener when drinking a top portion of the beverage in a cup, smaller microtubes may be used to get better mixing and have multiple dispense points, and allow for greater dispersion throughout the beverage.


The beverage dispenser 300 may comprise not only a central acid and flavor system, but also a local dairy and/or juice system. In such embodiments, a beverage may be prepared with a shot of juice, e.g., a cola with a shot of lemon juice and/or lime juice. A beverage, such as a cool frappuccino or hot coffee, may be prepared with a shot of a dairy product, e.g., milk or cream.


The beverage dispenser 300 may comprise auto sanitizing systems. The sanitizing system may include a sanitizer cartridge, such as a sanitizer cartridge replacing an ingredient cartridge. When sanitizing, one or more components of the system may be locked so that a sanitizing cycle may be run without interruption. For example, a lock out feature with cartridge recognition of the sanitizer may be provided to prevent unintentional beverage dispensing. The lock out feature with cartridge recognition of the sanitizer may have mechanical and electrical safety redundancy.


Additionally, in some embodiments, the beverage dispenser 300 may include fast fill systems, such as a fast fill system that allows for fast fill from the bottom of a cup.


The beverage dispenser 300 can be configured to perform various functions related to the dispensing of beverages. For example, the beverage dispenser 300 may be configured to receive money from a user, recognize the value paid for a beverage, and return any remainder from the value paid from the price of the dispensed beverage. Additionally, the beverage dispenser 300 may be configured to provide variable pricing based on drink brands, drink choice, and cup size. In some embodiments, the beverage dispenser 300 may be configured to issue a cup to a user with a code corresponding to the size and the type of beverage ordered.


To facilitate a user's selection, a dispenser may include a user interface implemented using software, hardware, firmware, or combinations thereof. Information that represents the drinks or beverages available to a user can be provided by display screens that are provided on a touch screen (e.g., touch screen 303 of FIG. 3), an LCD flat panel, or the like. In general, an interface for display on a touch screen may use various icons, buttons, screen locations, graphics and/or text to provide one or more display screens and, using the touch screen, buttons or other user interface widgets of each display screen may be actuated by a user to cause changes in the displayed interface. Additional or alternative methods of input could be used to cause changes in the displayed user interface, such as, for example, a keyboard, keypad, mouse, electric push buttons, and/or levers. When a button or widget is pressed, the user interface may show highlighting or some other visual indicator with respect to the actuated button/widget.



FIGS. 4A-4E illustrate example user interface displays that can be used as part of an interface. In particular, FIGS. 4A-4E show different display screens for an example embodiment of an interface for a beverage dispensing system. As will be more fully discussed below, a user may progress down a display screen, such as display screen 400-a of FIG. 4A, to make desired selections, such as selections of a desired brand of beverage and one or more flavorings that can be used as ingredients to the custom beverage. A display screen, such as display screen 400-a of FIG. 4A, may present all information required to select and dispense a custom beverage to a user simultaneously. As illustrated in FIG. 4A, icons for each type or brand of beverage that is available at the dispenser may be displayed at screen region 405. The icons may be arranged such that each icon is placed in a rotating carousel or other rotating pattern. For example, as illustrated by display screen 400-a, an icon for Pepsi Max® may be placed at screen location 410-a, an icon for Diet Mountain Dew® may be placed at screen location 410-b, an icon for Mountain Dew® may be placed at screen location 410-c, an icon for Mug® Root Beer may be placed at screen location 410-d, an icon for Mirinda® may be placed at screen location 410-e, an icon for Lipton Brisk® Iced Tea may be placed at screen location 410-f, an icon for Pepsi-Cola® may be placed at screen location 410-g, and an icon for Diet Pepsi-Cola® may be placed at screen location 410-h.


In one or more embodiments, the icons that form a part of the carousel may be displayed with sizes based on the icons' screen locations. Accordingly, some icons may be displayed with different sizes. For example, as illustrated by display screen 400-a, the icon at screen location 410-e (e.g., the icon for Mirinda®) may be displayed smaller than the icon at screen location 410-a (the icon for Pepsi Max®), etc. Additionally, some icons may be displayed with similar or equal sizes. For example, as illustrated by display screen 400-a, the icon at screen location 410-d (e.g., the icon for Mug® Root Beer) may be equal to the icon at screen location 410-f (e.g., the icon for Brisk® iced Tea), etc.


In some arrangements, the icons that form a part of the carousel may overlap one or more adjacent icons. For example, the icon at screen location 410-b (e.g., the icon for Diet Mountain Dew®, as shown in FIG. 4A) may be displayed as being overlapped by the icon at screen location 410-a (e.g., the icon for Pepsi Max®, as shown in FIG. 4A) and displayed as overlapping the icon at screen location 410-c (e.g., the icon for Mountain Dew®, as shown in FIG. 4A).


The icons that form a part of the carousel may be simultaneously moved to different screen locations to provide an appearance that the carousel has rotated. For example, the icons of screen region 405 may be moved counter clock-wise and clockwise. For example, turning to FIG. 4B, screen region 405 shows the icons that form a part of the carousel as having been moved one location clockwise with respect to the screen locations illustrated by FIG. 4A. The icon for Diet Pepsi-Cola® that is shown in screen region 405 of FIG. 4B is now displayed as being at the front of the carousel and it may be displayed as the largest icon and it may be displayed unobstructed by other icons.


In some arrangements, there may be an animation that shows each icon moving to its new screen location, such that the icons appear to slide across the screen. In others, each icon may simply disappear (or fade out) from the old screen locations and appear (or fade in) at the new screen locations.


A user may interact with the user interface to initiate the movement of the carousel in various ways. In some arrangements, a user may actuate a scroll button (e.g., via arrows 420) to cause the carousel to rotate in a particular direction.


The icons for the types or brands of beverages available in the dispenser (e.g., the icons shown at region 405 of FIGS. 4A-4E) may be displayed such that, when selected, the selected icon is moved to the front of the carousel. For example, with respect to display screens 400-a through 400-e of FIGS. 4A-4E, a user may actuate one of the icons of region 405 to cause the carousel to rotate until the actuated icon is at the front of the carousel. In one example, a user could actuate the icon for Mountain Dew® to cause the carousel shown at region 405 of FIG. 4A to change to the carousel shown at region 405 of FIG. 4C. In some arrangements, the direction the carousel rotates may be dependent on the distance to the front of the carousel. In one example, with respect to FIG. 4A, pressing the icon for Mountain Dew® at screen location 410-c may cause the carousel to rotate counter-clockwise until the icon for Mountain Dew® is at the front of the carousel (e.g., at screen location 410-a). Pressing the icon for Lipton Brisk® Iced Tea at screen location 410-f may cause the carousel to rotate clockwise until the icon for Lipton Brisk® Iced Tea is at the front of the carousel (e.g., at screen location 410-a). In other arrangements, the carousel may always rotate in a single direction upon actuation of an icon of region 405 (e.g., always rotate clockwise).


In some arrangements, a user may actuate one or more buttons that describe a desired property for the visible brands of beverages. For example, as shown in FIG. 4D, region 450 may include a button 455-a that, when actuated, causes the carousel to display only brands of beverages that have bubbles; a button 455-b that, when actuated, causes the carousel to display only icons for beverages that have no bubbles; a button 455-c that, when actuated, causes the carousel to display only brands of beverages that are diet; and a button 455-d that, when actuated, causes the carousel to display only brands of beverages that include iced tea. In FIG. 4D, button 455-c has been selected and the carousel of region 405 may include only diet beverages. In some arrangements buttons 455-a, 455-b, 455-c and 455-d can be implemented as toggle buttons. When a toggle button is not highlighted (e.g., button 455-a of FIG. 4A) the toggle button would not affect what icons are displayed at the carousel of region 405 (e.g., all available brands are displayed in region 405 of FIG. 4A). When a toggle button is highlighted (e.g., button 455-c of FIG. 4D) the toggle button may affect what icons are displayed in the carousel of region 405.


In some embodiments, the dispenser may receive user preference information to change the visibility of the icons. For example, the user may insert or swipe a memory card or RFID card at the dispenser. The dispenser could read preference information, such as a past purchase history for the user or user-preferred types or brands of beverages, and the visibility of the icons could be changed based on the preference information. For example, the types or brands of available beverages could be compared to the user preference information, and if a match is found (e.g., the user preference information includes an identification of Pepsi Max®), the icon for the matching beverage may be shown prominently in the carousel. Any type or brand of available beverages that does not have a match in the user preference information could be made invisible.


Other methods of transmitting user preference information to the dispenser could be used. For example, the user could transmit user preference information via Bluetooth® from a mobile device to the dispenser to customize the displayed user interface. Additionally, a cup bearing an RFID identifier may be prepared and made available to the user. The RFID identifier may include information identifying a particular brand of beverage, and the interface could be changed to display only that particular brand of beverage in the carousel.


As shown in FIG. 4A, the selected type or brand of beverage may be shown at location 425. The selected type or brand may be changed by the user. For example, as shown in FIG. 4A, location 425 shows that Pepsi Max® has been selected.


In some arrangements, the interface may automatically choose the selected brand based on user interactions with the interface. For example, as shown in FIG. 4A, the user can select the icon for Mountain Dew® and the interface can cause that brand to be the selected brand of beverage, among other changes (e.g., rotating the carousel such that the icon for Mountain Dew® is at the front of the carousel and displaying Mountain Dew® as the brand in location 425, as shown in FIG. 4C).


In one or more embodiments, the interface may change the selected brand only upon a designated user input. For example, a brand may be selected only when it is at the front of the carousel. In FIG. 4A, for example, Pepsi Max® could be made the selected brand upon a user selecting the icon for Pepsi Max®, because it is at the front of the carousel. Selecting another icon of region 405 of FIG. 4A may only cause the carousel to change such that the actuated icon is moved to the front of the carousel. Thus, in some instances, the brand of beverage at the front of the carousel could be different than the brand displayed in location 425.


In some embodiments, the user may be able to select one or more modifiers that can be dispensed with the selected type or brand of beverage. Modifiers may include additives or flavorings for a beverage. For example, as shown in FIGS, 4A-4E, region 430 may include a modifier button 435-a that, when selected, causes the dispenser to select cherry flavoring; a modifier button 435-b that, when selected, causes the dispenser to select lemon flavoring; a modifier button 435-c that, when selected, causes the dispenser to select lime flavoring; a modifier button 435-d that, when selected, causes the dispenser to select raspberry flavoring; a modifier button 435-e that, when selected, causes the dispenser to select strawberry flavoring; and a modifier button 435-f that, when selected, causes the dispenser to select vanilla flavoring. Multiple flavorings may be simultaneously selected in some variations.


In some embodiments, the visibility of the icons in region 430 may change based on various states of the user interface. For example, the visibility of the icons of region 430 may change based on user preference information read from a memory card supplied by a user (e.g., a card inserted or swiped into the dispenser that includes information identifying one or more flavorings to display to the user), information transmitted by a user to the dispenser (e.g., transmitted information identifying one or more flavorings to display via a Bluetooth connection from a mobile phone), information transmitted via an RFID tag (e.g., a RFID tag that includes information identifying one or more flavorings to display to the user), or the like.


In one or more arrangements, the user may interact with the interface to choose whether to dispense ice. As shown in FIGS. 4A-4E, the user may select an ice button 440 that, when actuated, causes the dispenser to dispense ice. When the machine is dispensing ice and/or when the ice button 440 is actuated, the ice button 440 may be highlighted (e.g., as shown in FIG. 4B).


In some arrangements, the interface may include other icons, buttons, graphics, widgets or text, such as, for example, for selecting an amount of flavoring or additive to add to the custom beverage; for selecting an amount of the selected brand to add to the custom beverage; for selecting a total amount of the custom beverage (e.g., via a selected cup size and/or number of ounces); or advertisements.


In some embodiments, the user may choose whether to dispense a beverage according to the dispenser's current settings. For example, a user may select pour button 445 that, when selected, causes the dispenser to dispense a beverage or a combination of a selected brand of beverage and one or more selected additives or flavorings. As an example, pour button 445 may be actuated and Mountain Dew® could be dispensed because Mountain Dew® is the selected brand (as shown by location 425 of FIG. 4C). As another example, as shown in FIG. 4E, pour button 445 may be actuated and Pepsi Max® could be dispensed in combination with lime flavoring because Pepsi Max® is the selected brand and lime flavoring is selected. In some arrangements, the dispenser may dispense a beverage for as long as the pour button 445 remains actuated.


In some variations, a user may be able to select multiple types or brands of beverages. For example, a user may select the icon for Pepsi Max® and the icon for Mountain Dew® and then may select pour button 445. As a response, the dispenser may dispense a mixture of Pepsi Max® and Mountain Dew®.


The manner in which a user interacts with the interface of the dispenser to select and/or dispense a beverage can vary. FIG. 5A illustrates an example method for dispensing an available product according to one or more variation.


At step 501, a user interface may be displayed on a display device of the dispenser. This may include displaying an initial display screen (e.g., display screen 400-a of FIG. 4A) on the display device (e.g., touch screen 303 of FIG. 3).


At step 503, a selection of a type or brand of beverage may be received via input from the user. For example, a user may select Mountain Dew® by selecting the icon having the Mountain Dew® logo. The user may scroll through the different brands that are available (e.g., via display buttons 420 of FIGS. 4A-4E) until Mountain Dew® is selected.


At step 505, a selection of one or more modifiers to a beverage may be received via input from the user. For example, a user may select lime flavoring by pressing a button having a lime graphic (e.g., button 435-c of FIG. 4A). In response, the interface may highlight the button to indicate that lime flavoring is selected and can be added when creating the custom beverage (e.g., as seen in display screen 400-e of FIG. 4E). If desired, additional selections of other modifiers can be made by the user (e.g., the additives/flavorings represented by modifier buttons 435-a, 435-b, 435-d, 435-e and/or 435-f of FIGS. 4A-4E).


At step 507, a command to dispense the custom beverage may be received via input from the user. For example, a user may have selected Pepsi Max® and lime flavoring (e.g., as shown by location 425 of FIG. 4E and modifier button 435-c of FIG. 4E), and the user may press pour button 445.


At step 509, the interface can cause the dispenser to dispense the custom beverage as a mixture of the type or brand of beverage selected at step 503 and the one or more modifiers selected at step 505. For example, as a response to the actuation of the pour button 445 of step 507, the interface may highlight pour button 445 (e.g., as shown in display screen 400-e of FIG. 4E) and cause the dispenser to dispense a mixture of Pepsi Max® and lime flavoring.


Although the example method of FIG. 5 shows a particular order of steps, the exact order of the above steps could change (e.g., step 505 could occur prior to step 503), and the dispenser could receive additional input from the user before, after, and in between particular steps of the above example method (e.g., receive an actuation of one of scroll buttons 420, receive an actuation of the ice button 440, receive an actuation of one or more of buttons 455-a through 455-d, receive an actuation of a button allowing a user to select a desired amount of carbonation). The order of the steps and/or what input is received during the course of a user's interaction with a dispenser may be dependent on the organization of the user interface.


In some arrangements, the user interface may be organized to facilitate the manner in which a user makes selections for a desired beverage. The user interface may be generally organized in a top down manner so that the user can start at the top of a display screen (e.g., display screen 400-a of FIG. 4A) and make selections by moving down the interface (e.g., selecting a desired property for a desired brand of beverage at region 450 of FIG. 4A, traverse down the display screen to region 405, selecting a brand of beverage at region 405 of FIG. 4A, traverse down the display screen to region 430, and selecting one or more modifiers for adding to the selected brand at region 430). For example, the carousel region 405 may be located above region 430, which includes the modifiers for the beverage. Such a placement may be implemented because a user could be more likely to select the brand of beverage prior to any additive or flavoring to be added to the beverage. Pour button 445 may be located near the bottom because a user may be more likely to begin dispensing the custom beverage after selecting the additives/flavorings. Similarly, buttons in region 450 may be located above the carousel because a user may be more likely to actuate such buttons prior to making a selection of a desired brand of beverage. Ice button 440 may be placed near pour button 445 because a user may be more likely to put ice in their cup just prior to dispensing the custom beverage.



FIG. 5B illustrates an example of the progression of a user when using an interface to select and dispense a desired product. At step 511, a user may begin at the top of display screen 550 to view the available brands and may select a desired brand of beverage (e.g., via an interaction with the carousel of region 405 and/or an interaction with scroll buttons 420, etc.). In some instances, a user may begin at region 450 and may select a desired property for the desired brand of beverage (e.g., via an interaction with the buttons of region 450) and then proceed down to region 405. The user's selection of a brand of beverage at step 511 can be used as the input for step 503 of FIG. 5A. As the user progresses down the user interface's display screen, the user may confirm the desired beverage is selected by viewing location 425. Continuing the user's progression down the interface display, at step 513 of FIG. 5B, the user can view the available modifiers by viewing modifier buttons 435-a through 435-f and may make a selection of one or more desired modifiers. The user's selection at step 513 can be used as the input for step 505 of FIG. 5A. The user may confirm that the desired modifiers are selected by confirming whether each of the desired modifiers is highlighted in the display screen 550 (e.g., button 435-c for lime flavoring is highlighted in display screen 550). Continuing the user's progression down the interface display, at step 515, the user may press the pour button 445. The user's actuation of pour button 445 may be used as the input for step 507 of FIG. 5A. Finally, below the display screen 550 and upon actuation of pour button 445, at step 517 of FIG. 5B, the dispenser may dispense the custom beverage (e.g., a mixture of Pepsi Max® and lime flavoring), which a user can receive in cup 560.


Further, in some embodiments, the user interface could present all information required to select and dispense a custom beverage to a user simultaneously. For example, with respect to display screens 400-a through 400-e of FIGS. 4A-4E, the user may be simultaneously presented with the available beverages via the carousel of region 405, which brand of beverage is currently selected via location 425, and which flavoring or additives can be added to create the custom beverage via the buttons 435-a through 435-f of region 430. In other words, the carousel of region 405, the buttons of region 430, and other items (e.g., buttons of region 450, scroll buttons 420, selected brand widget 425, ice button 440, and/or pour button 445) may always be displayed to a user on a single display screen while the user is interacting with the user interface to select and dispense a custom beverage.


The icons of the carousel may be ordered in the carousel according to various criteria. For example, an operator or supplier of the dispenser may choose the order of the icons in the carousel (e.g., the icon for Pepsi-Cola® is adjacent to Diet Pepsi-Cola®, etc.). Additionally, the icons of the carousel may be selected or ordered based on time of day (or day of the week, etc.). For example, the interface may be coded such that certain brands are located next to each other on the carousel at particular times of the day.


Icons of the carousel may also be ordered based on usage of the dispenser. For example, more popular brands of beverages could be located adjacent to each other, while less popular brands of beverages are located adjacent to each other. In one example, with respect to display screens 400-a through 400-e of FIGS. 4A-4E, Pepsi Max® may be the brand that is most commonly dispensed from the dispenser, while Diet Mountain Dew® and Diet Pepsi-Cola® are less commonly dispensed than Pepsi Max® but more commonly dispensed than the remaining available brands (e.g., Mountain Dew®, Mug® Root Beer, Mirinda® Lipton Brisk® Iced Tea, and Pepsi-Cola®). Popularity of brands may vary from dispensing machine to another in some variations (e.g., based on a dispenser's historical usage history). Similar criteria-based ordering may be implemented for other regions of the interface, such as the ordering of modifier buttons 435-a through 435-f of region 430 and/or buttons 455-a through 455-e of region 450.


The interface may have a default state that provides an initial presentation of information to a user, such as a display screen where the carousel always has a particular brand at the front of the carousel. For example, an operator or supplier of the dispenser may desire to promote a particular brand of beverage (e.g., Pepsi Max®) and, therefore, may arrange the interface such that the particular brand is moved to the front of the carousel when the interface returns to its default state (e.g., when returning to the default state, the interface presents display screen 400-a of FIG. 4A). Additionally, the interface may be arranged such that the brand that is moved to the front of the carousel depends on various criteria, such as the criteria mentioned above with respect to the ordering of icons in the carousel (e.g., time of day, usage of the dispenser, etc.). The interface may return to the default state after dispensing of a custom beverage and/or after a threshold amount of idle time.


After the dispenser is in service, an operator or supplier of the dispenser may wish to update or change various components of the dispenser. For example, an operator or supplier of the dispenser may change which brands of beverages or flavorings are available at the dispenser. In some arrangements, the operator or supplier may update the dispenser via a server in communication with the dispenser (e.g., server 100 of FIG. 1).



FIG. 6 illustrates an example method for updating a dispensing system according to one or more aspects of the disclosure. At step 601, a computing system of the dispenser may be initialized from an off state to provide a display screen on a display device of the dispenser (e.g., display screen 400-a of FIG. 4A onto touch screen 303 of FIG. 3).


At step 603, the computing system of the dispenser may establish a connection with a server (e.g., server 100 of FIG. 1). At step 605, upon establishing a connection with the server, the computing system may wait for an instruction from the server to perform an update. Waiting for an instruction from the server can include periodically determining whether an instruction to update has been received at the computing device. In some arrangements, an instruction to update can include an identification of which update to perform (e.g., a version number for the updated software package, etc.).


At step 607, upon receiving an instruction to update, the computing system of the dispenser may transmit a request to the server that directs the server to being providing the update to the dispenser. In some embodiments, the request may be an acknowledgement of the instruction that was received at step 605. The request could also include an identification of which update the server is to send to the dispenser (e.g., the version number received as part of the instruction to update received at step 605).


At step 609, the computing device of the dispenser may receive the update from the server. The update could be an update to various components of the dispenser. For example, it may be an update to software, firmware or drivers used by the dispenser's computing device. As one example, the update may be an update to recipes used when creating the custom beverage. For example, the update may change the amounts of ingredients (e.g., flavorings, additives, water, syrups, etc.) used when creating the custom beverage. The update may also update the user interface of the dispenser. For example, it could change what types or brands of beverages are available at the dispenser and/or the types of additives or flavorings that are available. The update may also change the appearance of the user interface such as, for example, by modifying the amount of overlap between adjacent icons of the carousel; modifying where icons that form a part of carousel are placed in the display screen; modifying the order in which icons are displayed; updating graphics and/or text used by the user interface, and the like.


At step 611, the computing device may install the update received at step 609. Upon installation, the computing device may perform a reset or otherwise proceed back to step 601 for re-initialization.


Although the above discussion describes various embodiments of a user interface that are suitable for allowing a user to select and dispense a beverage from a dispenser, other embodiments may be used that share one or more variations. For example, FIGS. 7A-7E illustrate example interface displays for other embodiments including an alternative to the carousel display of FIGS. 4A-4E. In some arrangements, FIG. 7A shows a display screen 700-a initially displayed to a user. The other display screens (e.g., 700-b, 700-c, 700-d, and 700-e) of FIGS. 7B-7E may be displayed to a user based on various inputs received from the user while the user interacts with the dispenser.


As illustrated in FIG. 7A, icons for the types or brands of available beverages may be displayed in a matrix format at region 705. The matrix format of region 705 can be defined by the placement, size and/or order of the icons forming the matrix. For example, icons for the different types or brands of available beverages may be placed at screen locations 710-a, 710-b, 710-c, 710d, 710-e, 710-f and 710-g. The placement, size and order of the icons of the matrix format may be determined similarly to the methods described above with respect to the icons of the carousel of FIGS. 4A-4E. For example, a user could actuate button 755-a, 755-b, 755-c, 755-d of region 750 to change the icons that are visible in region 705. A user may actuate button 755-c and only diet beverages may be displayed in region 705, as shown by display screen 700-c of FIG. 4C.


The icons of region 705 may be implemented as selectable icons that, when actuated, cause a new display screen to be presented. For example, if the user actuates the icon for Pepsi-Cola®, a display screen such as 700-b of FIG. 7B may be displayed. Display screen 700-b may include region 760 that includes a display icon 725 for the currently selected brand of beverage; various buttons representing the modifiers (e.g., additives or flavorings) that are available, such as modifier buttons 735-a, 735-b, 735-c, 735-d, 735-e and 735-f; an ice dispenser button 740; and a pour button 745.


As illustrated in FIGS. 7A-7E, the organization of the matrix format may change dependent on whether there is a current brand selected. For example, the layout of the matrix format at region 705 may change such that icons are placed at screen locations 710-h, 710-i, 710-j, 710-k, 710-m and 710-n when a brand of beverage is selected by the user. Buttons 755-a, 755-b, 755-c and 755-d of region 750 may be actuated to change what is visible in the matrix format of region 705 when a brand of beverage is selected, such as illustrated by FIG. 7D.


The invention herein has been described and illustrated with reference to the embodiments of the figures, but it should be understood that the features of the invention are susceptible to modification, alteration, changes or substitution without departing significantly from the spirit of the invention. For example, the dimensions, number, size and shape of the various components may be altered to fit specific applications. For example, each of the features of the aforementioned illustrative examples may be utilized alone or in combination or subcombination with elements of the other examples. For example, any of the above described systems and methods or parts thereof may be combined with the other methods and systems or parts thereof described above. For example, the steps illustrated in the illustrative figures may be performed in other than the recited order, and that one or more steps illustrated may be optional in accordance with aspects of the disclosure. Accordingly, the specific embodiments illustrated and described herein are for illustrative purposes only and the invention is not limited except by the following claims and their equivalents. Aspects of the disclosure have been described in terms of illustrative embodiments thereof. The description is thus to be regarded as illustrative instead of restrictive on the present disclosure.

Claims
  • 1. A dispenser comprising: one or more processors;one or more computer readable media storing computer-executable instructions configured to, with the one or more processors, cause the dispenser to: provide a display screen that is arranged to allow a user to select and cause dispensing of a custom beverage using a progression starting from a top region of the display screen and ending at a bottom region of the display screen, wherein the display screen includes: a first region comprising a plurality of icons that represent brands of beverages available for dispensing from the dispenser as part of the custom beverage;a second region comprising a plurality of modifier buttons that represent flavorings or additives available for dispensing from the dispenser as part of the custom beverage; anda third region comprising a pour button that causes the dispenser to dispense the custom beverage.
  • 2. The dispenser of claim 1, wherein the first region is located above the second region and the third region in the display screen, and the second region is located above the third region in the display screen.
  • 3. The dispenser of claim 1, wherein the display screen comprises a touch screen.
  • 4. The dispenser of claim 1, wherein the first region, the second region, and the third region are simultaneously displayed.
  • 5. The dispenser of claim 1, wherein the one or more computer readable media further stores computer-executable instructions configured to, with the one or more processors, cause the dispenser to: receive a selection of a first icon of the plurality of icons, the first icon representing a brand of beverage;receive an actuation of a first modifier button of the plurality of modifier buttons, the first modifier button representing a flavoring;receive an actuation of the pour button;as a response to actuation of the pour button, cause a user-selected beverage to be dispensed by the dispenser, the user-selected beverage including the brand of beverage and the flavoring.
  • 6. The dispenser of claim 5, wherein icons appearing in front of the carousel represent historically most popular selections for that dispenser.
  • 7. The dispenser of claim 1, wherein the plurality of icons form a part of a rotating carousel in the first region, and the plurality of icons represent all of the brands of beverages available for dispensing from the dispenser.
  • 8. The dispenser of claim 1, wherein the plurality of icons includes a first icon that overlaps a second icon while simultaneously displaying all brands of beverages available for dispensing from the dispenser.
  • 9. The dispenser of claim 1, wherein the display screen includes a fourth region, the fourth region comprising a plurality of buttons, each of the plurality of buttons describing a desired property for brands of beverages that are visible in the first region.
  • 10. The dispenser of claim 1, wherein the dispenser further comprises one or more mixing chambers, an ingredient system and a doser unit.
  • 11. An apparatus comprising: one or more processors;one or more computer readable media storing computer-executable instructions configured to, with the one or more processors, cause the apparatus to: display, on a display screen, one or more types of products for dispensing from the apparatus and one or more modifiers to the one or more types of products, wherein each of the modifiers represents an item that can be added to a product when the product is being dispensed by the apparatus;while displaying the one or more types of products and the one or more modifiers, receive input selecting a first type of the one or more types of products; andwhile displaying the one or more types of products and the one or more modifiers, receive input selecting a first modifier of the one or more modifiers to the one or more types.
  • 12. The apparatus of claim 11, wherein the one or more computer readable media further stores computer-executable instructions configured to, with the one or more processors, cause the apparatus to: while displaying the one or more types of products and the one or more modifiers, receive input directing the apparatus to dispense a combination of the first type of product and the first modifier.
  • 13. The apparatus of claim 12, wherein the apparatus is configured to dispense the combination of the first type of product and the first modifier.
  • 14. The apparatus of claim 13, wherein the combination of the first type of product and the first modifier is a custom beverage.
  • 15. The apparatus of claim 11, wherein the one or more types of products are displayed at a first region of the display screen, and the one or more modifiers to the one or more types are displayed at a second region of the display screen, wherein the first region is located above the second region.
  • 16. The apparatus of claim 11, wherein each of the one or more types of products represents a beverage type or brand, and each of the one or more modifiers represents a flavoring or additive.
  • 17. The apparatus of claim 11, wherein the one or more types of products are displayed in a carousel arrangement.
  • 18. The apparatus of claim 11, wherein the one or more types of products are displayed in a matrix arrangement.
  • 19. The apparatus of claim 11 further comprising one or more mixing chambers, an ingredient system and a doser unit.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 13/664,848, filed Oct. 31, 2012, which claims the benefit of U.S. provisional application No. 61/554,184, filed Nov. 1, 2011, and entitled “DISPENSING SYSTEM AND USER INTERFACE.” The above identified applications are incorporated herein by reference in their entirety.

US Referenced Citations (444)
Number Name Date Kind
2949993 Adler Aug 1960 A
3184714 Brown, Jr. May 1965 A
3242929 Adams Mar 1966 A
3254749 Scherer Jun 1966 A
3318428 Klein May 1967 A
3357530 Yamamoto Dec 1967 A
3379295 Varley Apr 1968 A
3397763 Wahlberg Aug 1968 A
3445633 Ratner May 1969 A
3448895 Mesh Jun 1969 A
3653480 Yamamoto et al. Apr 1972 A
3786421 Wostl et al. Jan 1974 A
3790957 Dukes et al. Feb 1974 A
3896915 Hayashi et al. Jul 1975 A
3935933 Tanaka et al. Feb 1976 A
3984660 Oka et al. Oct 1976 A
4124109 Bissell et al. Nov 1978 A
4171737 McLaughlin Oct 1979 A
4185730 Roes et al. Jan 1980 A
4199100 Wostl et al. Apr 1980 A
4271351 Bloodworth Jun 1981 A
4276999 Reichenberger Jul 1981 A
4377049 Simon et al. Mar 1983 A
4411351 Lowder et al. Oct 1983 A
4412292 Sedam et al. Oct 1983 A
4450535 de Pommery et al. May 1984 A
4469150 Grimaldi Sep 1984 A
4487333 Pounder et al. Dec 1984 A
4499982 Sugimoto et al. Feb 1985 A
4499985 Schuller Feb 1985 A
4529968 Hilsum et al. Jul 1985 A
4549675 Austin Oct 1985 A
4554419 King et al. Nov 1985 A
4568785 Jaecker Feb 1986 A
4658988 Hassell Apr 1987 A
4674041 Lemon et al. Jun 1987 A
4747516 Baker May 1988 A
4766548 Cedrone et al. Aug 1988 A
4777354 Thomas Oct 1988 A
4809837 Hayashi Mar 1989 A
4812629 O'Neil et al. Mar 1989 A
4817689 Stembridge et al. Apr 1989 A
4821925 Wiley et al. Apr 1989 A
4827426 Patton et al. May 1989 A
4866190 Tordeux et al. Sep 1989 A
4866661 de Prins Sep 1989 A
4882675 Nichtberger et al. Nov 1989 A
4900906 Punic Feb 1990 A
4947028 Gorog Aug 1990 A
4961447 Credle, Jr. et al. Oct 1990 A
4967808 Credle, Jr. et al. Nov 1990 A
4971120 Credle, Jr. et al. Nov 1990 A
4977300 Schroeder Dec 1990 A
4979639 Hoover et al. Dec 1990 A
4979641 Turner Dec 1990 A
5047613 Swegen et al. Sep 1991 A
5062555 Whigham et al. Nov 1991 A
5074341 Credle, Jr. et al. Dec 1991 A
5091713 Horne et al. Feb 1992 A
5095710 Black et al. Mar 1992 A
5102011 Whigham et al. Apr 1992 A
5103649 Kieffer Apr 1992 A
5113974 Vayda May 1992 A
5147021 Maruyama et al. Sep 1992 A
5201395 Takizawa et al. Apr 1993 A
5206488 Teicher Apr 1993 A
5212954 Black et al. May 1993 A
5235509 Mueller et al. Aug 1993 A
5243174 Veeneman et al. Sep 1993 A
5290033 Bittner et al. Mar 1994 A
5367452 Gallery et al. Nov 1994 A
5409092 Itako et al. Apr 1995 A
5420406 Izawa et al. May 1995 A
5442567 Small Aug 1995 A
5450938 Rademacher Sep 1995 A
5454406 Rejret et al. Oct 1995 A
5491326 Marceau et al. Feb 1996 A
5499330 Lucas et al. Mar 1996 A
5500514 Veeneman et al. Mar 1996 A
5513117 Small Apr 1996 A
5520275 Foglino May 1996 A
5546303 Helbing Aug 1996 A
5555497 Helbling Sep 1996 A
5567926 Asher et al. Oct 1996 A
5588557 Topar Dec 1996 A
5621874 Lucas et al. Apr 1997 A
5625562 Veeneman et al. Apr 1997 A
5652421 Veeneman et al. Jul 1997 A
5657388 Weiss Aug 1997 A
5685435 Picioccio et al. Nov 1997 A
5731981 Simard Mar 1998 A
5748908 Yu May 1998 A
5754981 Veeneman et al. May 1998 A
D395297 Cheng et al. Jun 1998 S
5774874 Veeneman et al. Jun 1998 A
D398299 Ballay et al. Sep 1998 S
5803320 Cutting et al. Sep 1998 A
5816443 Bustos Oct 1998 A
5836481 Strohmeyer et al. Nov 1998 A
5880733 Horvitz et al. Mar 1999 A
5898435 Nagahara et al. Apr 1999 A
5905992 Lucas et al. May 1999 A
5907141 Deaville et al. May 1999 A
5912668 Sciammarella et al. Jun 1999 A
5923413 Laskowski Jul 1999 A
5947334 Rudick et al. Sep 1999 A
5959869 Miller et al. Sep 1999 A
5960997 Forsythe Oct 1999 A
5963203 Goldberg et al. Oct 1999 A
5967367 Orsborn Oct 1999 A
5984180 Albrecht Nov 1999 A
5997236 Picioccio et al. Dec 1999 A
6006227 Freeman et al. Dec 1999 A
6021362 Maggard et al. Feb 2000 A
6021626 Goodman Feb 2000 A
6023275 Horvitz et al. Feb 2000 A
6044952 Haggerty et al. Apr 2000 A
6047807 Molbak Apr 2000 A
6053359 Goulet et al. Apr 2000 A
6054989 Robertson et al. Apr 2000 A
6056194 Kolls May 2000 A
6073840 Marion Jun 2000 A
6078888 Johnson, Jr. Jun 2000 A
6098879 Terranova Aug 2000 A
6101266 Laskowski et al. Aug 2000 A
6119135 Helfman Sep 2000 A
6138106 Walker et al. Oct 2000 A
6144366 Numazaki Nov 2000 A
6158655 DeVries, Jr. et al. Dec 2000 A
6160899 Lee et al. Dec 2000 A
6176782 Lyons et al. Jan 2001 B1
6182895 Albrecht Feb 2001 B1
6193154 Phillips et al. Feb 2001 B1
6198483 Launais Mar 2001 B1
6230150 Walker et al. May 2001 B1
6236736 Crabtree et al. May 2001 B1
6240397 Sachs May 2001 B1
6256046 Waters et al. Jul 2001 B1
6293469 Masson et al. Sep 2001 B1
6315197 Beardsley Nov 2001 B1
6321802 Weeks et al. Nov 2001 B1
D459361 Inagaki Jun 2002 S
6419161 Haddad et al. Jul 2002 B1
6439454 Masson et al. Aug 2002 B1
6457038 Defosse Sep 2002 B1
6466237 Miyao et al. Oct 2002 B1
6478192 Heyes Nov 2002 B2
6484863 Molbak Nov 2002 B1
6493970 McCarthy et al. Dec 2002 B1
6494776 Molbak Dec 2002 B1
6570582 Sciammarella et al. May 2003 B1
6573983 Laskowski Jun 2003 B1
6584309 Whigham Jun 2003 B1
6602125 Martin Aug 2003 B2
6633849 Dodd Oct 2003 B1
6638313 Freeman et al. Oct 2003 B1
6658323 Tedesco et al. Dec 2003 B2
6681031 Cohen et al. Jan 2004 B2
6694058 Burchart et al. Feb 2004 B1
6722573 Haddad et al. Apr 2004 B2
6725427 Freeman et al. Apr 2004 B2
6729957 Burns et al. May 2004 B2
6729958 Burns et al. May 2004 B2
6736251 Molhak May 2004 B2
6736725 Burns et al. May 2004 B2
6746330 Cannon Jun 2004 B2
6758316 Molbak Jul 2004 B2
6768999 Prager et al. Jul 2004 B2
6774986 Laskowski Aug 2004 B2
6784874 Shimizu Aug 2004 B1
6793130 Veeneman Sep 2004 B2
6801637 Voronka et al. Oct 2004 B2
6834452 Martin et al. Dec 2004 B2
6854581 Molhak Feb 2005 B2
6950534 Cohen et al. Sep 2005 B2
6954732 DeLapa et al. Oct 2005 B1
6957125 Rifkin Oct 2005 B1
6976570 Moihak Dec 2005 B2
7006993 Cheong et al. Feb 2006 B1
7010594 Defosse Mar 2006 B2
7013337 Defosse et al. Mar 2006 B2
7020680 Defosse Mar 2006 B2
7028827 Molbak et al. Apr 2006 B1
7031804 Brooke, Jr. et al. Apr 2006 B2
7036094 Cohen et al. Apr 2006 B1
7051291 Sciammarella et al. May 2006 B2
7065710 Hayashi et al. Jun 2006 B2
7131580 Molbak Nov 2006 B2
7139006 Wittenburg et al. Nov 2006 B2
7164884 Defosse et al. Jan 2007 B2
7167892 Defosse et al. Jan 2007 B2
7171451 Defosse Jan 2007 B2
7181501 Defosse Feb 2007 B2
7194422 St. John Mar 2007 B1
7231372 Prange et al. Jun 2007 B1
7268692 Lieberman et al. Sep 2007 B1
7275991 Burns et al. Oct 2007 B2
D555663 Nagata et al. Nov 2007 S
7302156 Lieberman et al. Nov 2007 B1
D556770 O'Donnell et al. Dec 2007 S
7303119 Molbak Dec 2007 B2
7315828 McCarthy et al. Jan 2008 B1
7330035 Van Berkel Feb 2008 B2
7333095 Lieberman et al. Feb 2008 B1
7333602 Habu Feb 2008 B2
7350158 Yamaguchi et al. Mar 2008 B2
D571821 Amacker Jun 2008 S
D573605 Amacker Jul 2008 S
7419425 Crowder, Jr. et al. Sep 2008 B1
7434177 Ording et al. Oct 2008 B1
7437005 Drucker et al. Oct 2008 B2
7445133 Ludovissie et al. Nov 2008 B2
7446784 Crew et al. Nov 2008 B2
7454363 Rowe Nov 2008 B1
7460690 Cohen et al. Dec 2008 B2
7464802 Gerrity et al. Dec 2008 B2
7468785 Lieberman Dec 2008 B2
7477241 Lieberman et al. Jan 2009 B2
7503014 Tojo et al. Mar 2009 B2
7513417 Burns et al. Apr 2009 B2
7520374 Martin et al. Apr 2009 B2
D591765 Amacker May 2009 S
7527193 Molbak May 2009 B2
7536654 Anthony et al. May 2009 B2
D594026 Ball et al. Jun 2009 S
7559460 Burns et al. Jul 2009 B2
7564469 Cohen Jul 2009 B2
D598466 Hirsch et al. Aug 2009 S
7573465 Lieberman et al. Aug 2009 B2
7577496 Walker et al. Aug 2009 B2
7581186 Dowdy et al. Aug 2009 B2
D599367 Mays et al. Sep 2009 S
D599368 Kanga et al. Sep 2009 S
D599370 Murchie et al. Sep 2009 S
D599806 Brown et al. Sep 2009 S
7584883 Meek et al. Sep 2009 B2
7593867 Deakin et al. Sep 2009 B2
7603321 Gurvey Oct 2009 B2
D603415 Lin et al. Nov 2009 S
D605200 Sakai Dec 2009 S
7624895 Haskayne Dec 2009 B2
7636679 Song et al. Dec 2009 B2
D608365 Walsh et al. Jan 2010 S
7653599 Doran et al. Jan 2010 B2
D609243 Song Feb 2010 S
D609715 Chaudhri Feb 2010 S
7654452 Gravelle Feb 2010 B2
7668340 Cohen et al. Feb 2010 B2
D611053 Kanga et al. Mar 2010 S
D611484 Mays et al. Mar 2010 S
D611485 Marashi Mar 2010 S
7684592 Paul et al. Mar 2010 B2
7685163 Chaudhri Mar 2010 B2
D613300 Chaudhri Apr 2010 S
D614640 Viegers et al. Apr 2010 S
D615098 Winjum May 2010 S
D615989 Chaudhri May 2010 S
D616458 Pearson et al. May 2010 S
D616459 Pearson et al. May 2010 S
D616460 Pearson et al. May 2010 S
7720709 Langer et al. May 2010 B1
7747522 Walker et al. Jun 2010 B1
7781722 Lieberman et al. Aug 2010 B2
7783532 Hsu et al. Aug 2010 B2
7797641 Karukka et al. Sep 2010 B2
D624927 Allen et al. Oct 2010 S
D624932 Chaudhri Oct 2010 S
7806294 Gatipon et al. Oct 2010 B2
7810676 Romanyszyn et al. Oct 2010 B2
7813834 Sudolcan et al. Oct 2010 B2
D628210 Luke et al. Nov 2010 S
7865432 Doran et al. Jan 2011 B2
7874478 Molbak Jan 2011 B2
7885726 Walker et al. Feb 2011 B2
7889182 Romanvszyn et al. Feb 2011 B2
7895120 Walker et al. Feb 2011 B2
D633920 Luke et al. Mar 2011 S
D634750 Loretan et al. Mar 2011 S
D634753 Loretan et al. Mar 2011 S
7912580 Walker et al. Mar 2011 B2
D636785 Brinda Apr 2011 S
D637198 Furuya et al. May 2011 S
D637606 Luke et al. May 2011 S
D638432 Flik et al. May 2011 S
7941758 Tremblay May 2011 B2
7966577 Chaudbri et al. Jun 2011 B2
7979809 Sunday Jul 2011 B2
D696264 D'Amore et al. Dec 2013 S
D696265 D'Amore et al. Dec 2013 S
D696266 D'Amore et al. Dec 2013 S
8739840 Mattos et al. Jun 2014 B2
8744618 Peters et al. Jun 2014 B2
8757222 Rudick et al. Jun 2014 B2
20010011365 Helfman Aug 2001 A1
20010018808 Bar-Yona Sep 2001 A1
20010021920 Ikeda Sep 2001 A1
20010024512 Yoronka et al. Sep 2001 A1
20010042121 Defosse et al. Nov 2001 A1
20010047410 Defosse Nov 2001 A1
20010054083 Defosse Dec 2001 A1
20020016829 Defosse Feb 2002 A1
20020023027 Simonds Feb 2002 A1
20020054164 Uemura May 2002 A1
20020091569 Kitaura et al. Jul 2002 A1
20020107610 Kaehler et al. Aug 2002 A1
20020161476 Panofsky et al. Oct 2002 A1
20020194387 Defosse Dec 2002 A1
20030003865 Defosse et al. Jan 2003 A1
20030028284 Chirnomas Feb 2003 A1
20030055735 Cameron et al. Mar 2003 A1
20030097474 Defosse et al. May 2003 A1
20030138130 Cohen et al. Jul 2003 A1
20030146905 Pihlaja Aug 2003 A1
20030150146 Martin et al. Aug 2003 A1
20030164856 Prager et al. Sep 2003 A1
20030195816 Dziaba et al. Oct 2003 A1
20040078332 Ferguson et al. Apr 2004 A1
20040100479 Nakano et al. May 2004 A1
20040128257 Okamoto et al. Jul 2004 A1
20040133653 Defosse et al. Jul 2004 A1
20040155907 Yamaguchi et al. Aug 2004 A1
20040161132 Cohen et al. Aug 2004 A1
20040211210 Crisp Oct 2004 A1
20040217124 Crisp Nov 2004 A1
20040237048 Tojo et al. Nov 2004 A1
20040250217 Tojo et al. Dec 2004 A1
20040255254 Weingart et al. Dec 2004 A1
20050044485 Mondry et al. Feb 2005 A1
20050105772 Voronka et al. May 2005 A1
20050107912 Martin et al. May 2005 A1
20050108158 Prisant May 2005 A1
20050154675 Johnson Jul 2005 A1
20050182678 Walker et al. Aug 2005 A1
20050251287 Thornton et al. Nov 2005 A1
20060013440 Cohen et al. Jan 2006 A1
20060059426 Ogikubo Mar 2006 A1
20060069997 Hsieh et al. Mar 2006 A1
20060095338 Seidel May 2006 A1
20060109283 Shipman et al. May 2006 A1
20060116167 Raviv et al. Jun 2006 A1
20060161473 Defosse Jul 2006 A1
20060167967 Defosse Jul 2006 A1
20060183422 Defosse et al. Aug 2006 A1
20060210112 Cohen et al. Sep 2006 A1
20060214953 Crew et al. Sep 2006 A1
20070050083 Signorelli et al. Mar 2007 A1
20070067738 Flynt et al. Mar 2007 A1
20070083287 Defosse et al. Apr 2007 A1
20070083911 Madden et al. Apr 2007 A1
20070097234 Katayama May 2007 A1
20070112907 Defosse May 2007 A1
20070114244 Gatipon et al. May 2007 A1
20070210153 Walker et al. Sep 2007 A1
20070211031 Marc Sep 2007 A1
20070240079 Flynt et al. Oct 2007 A1
20070237541 George et al. Dec 2007 A1
20080013913 Lieberman et al. Jan 2008 A1
20080033824 Packes et al. Feb 2008 A1
20080047762 Lieberman et al. Feb 2008 A1
20080052090 Heinemann et al. Feb 2008 A1
20080062141 Chandhri Mar 2008 A1
20080066016 Dowdy et al. Mar 2008 A1
20080068353 Lieberman et al. Mar 2008 A1
20080093542 Lieberman et al. Apr 2008 A1
20080122870 Brodersen et al. May 2008 A1
20080126261 Lovett May 2008 A1
20080153567 Juds et al. Jun 2008 A1
20080172306 Schorr et al. Jul 2008 A1
20080173707 Walker et al. Jul 2008 A1
20080192015 Lieberman Aug 2008 A1
20080256494 Greenfield Oct 2008 A1
20080262648 Kriston et al. Oct 2008 A1
20080263452 Tomkins Oct 2008 A1
20080282202 Sunday Nov 2008 A1
20090002335 Chaudhri Jan 2009 A1
20090021665 Shiao et al. Jan 2009 A1
20090024530 Porter et al. Jan 2009 A1
20090069931 Peters et al. Mar 2009 A1
20090069934 Newman et al. Mar 2009 A1
20090070234 Peters et al. Mar 2009 A1
20090074248 Cohen et al. Mar 2009 A1
20090084269 Pozzari et al. Apr 2009 A1
20090100383 Sunday et al. Apr 2009 A1
20090120958 Landers et al. May 2009 A1
20090141614 Tanaka et al. Jun 2009 A1
20090160791 Lieberman Jun 2009 A1
20090166375 Butler et al. Jul 2009 A1
20090171804 Lee et al. Jul 2009 A1
20090189873 Peterson et al. Jul 2009 A1
20090198592 Emerson Aug 2009 A1
20090200453 Lieberman et al. Aug 2009 A1
20090204473 Sommerfeld Aug 2009 A1
20090216575 Antao et al. Aug 2009 A1
20090216665 Merwarth et al. Aug 2009 A1
20090216675 Antao et al. Aug 2009 A1
20090222300 Guith et al. Sep 2009 A1
20090222301 Phillips et al. Sep 2009 A1
20090222339 Antao et al. Sep 2009 A1
20090274339 Cohen et al. Nov 2009 A9
20090313139 Nam et al. Dec 2009 A1
20090315740 Hildreth et al. Dec 2009 A1
20090322678 Lashina et al. Dec 2009 A1
20100004781 Walker et al. Jan 2010 A1
20100005427 Zhang et al. Jan 2010 A1
20100007601 Lashina et al. Jan 2010 A1
20100030355 Insolia et al. Feb 2010 A1
20100036528 Minard et al. Feb 2010 A1
20100082448 Lin et al. Apr 2010 A1
20100084426 Devers et al. Apr 2010 A1
20100100236 Segal et al. Apr 2010 A1
20100103131 Segal et al. Apr 2010 A1
20100114991 Chaudhary et al. May 2010 A1
20100116842 Hecht et al. May 2010 A1
20100155415 Ashrafzadeh et al. Jun 2010 A1
20100191369 Kim Jul 2010 A1
20100217685 Melcher et al. Aug 2010 A1
20100226531 Goto Sep 2010 A1
20100234986 Clopton et al. Sep 2010 A1
20100241494 Kumar et al. Sep 2010 A1
20100241999 Russ et al. Sep 2010 A1
20100250372 Smith et al. Sep 2010 A1
20100253637 Lieberman et al. Oct 2010 A1
20100262282 Segal et al. Oct 2010 A1
20100268792 Butler et al. Oct 2010 A1
20100275267 Walker et al. Oct 2010 A1
20100280921 Stone et al. Nov 2010 A1
20100295772 Alameh et al. Nov 2010 A1
20100295773 Alameh et al. Nov 2010 A1
20100295781 Alameh et al. Nov 2010 A1
20100299642 Merrell et al. Nov 2010 A1
20100309169 Lieberman et al. Dec 2010 A1
20100318225 Claesson et al. Dec 2010 A1
20110022225 Rothschild Jan 2011 A1
20110055718 Tanaka et al. Mar 2011 A1
20110121032 Deo et al. May 2011 A1
20110123688 Deo et al. May 2011 A1
20110144801 Selker et al. Jun 2011 A1
20110168290 Breitenbach et al. Jul 2011 A1
20110172004 Breitenbach et al. Jul 2011 A1
20110172814 Breitenbach et al. Jul 2011 A1
20110172848 Breitenbach et al. Jul 2011 A1
20110173041 Breitenbach et al. Jul 2011 A1
20110173082 Breitenbach et al. Jul 2011 A1
20120258216 Wessels Oct 2012 A1
Foreign Referenced Citations (38)
Number Date Country
202009015375 Apr 2010 DE
202010001631 May 2010 DE
0 546 782 May 1993 EP
0 989 091 Mar 2000 EP
2117122 Nov 2009 EP
2624844 Jun 1989 FR
2847357 May 2004 FR
2853423 Oct 2004 FR
2887659 Dec 2006 FR
2887660 Dec 2006 FR
2077063 Dec 1981 GB
2101088 Jan 1983 GB
2451646 Feb 2009 GB
2010063793 Mar 1920 JP
2000172916 Jun 2000 JP
2000276649 Oct 2000 JP
2006264733 Oct 2006 JP
07285597 May 2009 JP
2010067185 Mar 2010 JP
WO 2010032887 Mar 1920 WO
WO 9117949 Nov 1991 WO
WO 9212489 Jul 1992 WO
WO 9215968 Sep 1992 WO
WO 9218954 Oct 1992 WO
WO 9307085 Apr 1993 WO
WO 9412953 Jun 1994 WO
WO 9427226 Nov 1994 WO
WO 9803945 Jan 1998 WO
WO 9902449 Jan 1999 WO
WO 0049556 Aug 2000 WO
WO 0072178 Nov 2000 WO
WO 01120 Feb 2001 WO
WO 02057178 Jul 2002 WO
WO 03066511 Aug 2003 WO
WO 2006136696 Dec 2006 WO
WO 2007003062 Jan 2007 WO
WO 2007011241 Jan 2007 WO
WO 2011067157 Jun 2011 WO
Non-Patent Literature Citations (5)
Entry
International Application No PCT/US2012/062814—International Search Report dated Mar. 7, 2013.
U.S. Appl. No. 13/116,247—Application as filed May 26, 2011.
U.S. Appl. No. 13/116,266—Application as filed May 26, 2011.
U.S. Appl. No. 13/451,948—Application as filed Apr. 20, 2012.
Zachary Wilson, “Coca-Cola's 100-Flavor Interactive Freestyle Soda Fountain in Action [video]”, Jul. 21, 2009, available online at “www.fastcompany.com/1313153/coca-colas-100-flavor-interactive-freestyle-- soda-fountain-action-video”, retrieved Oct. 31, 2012.
Related Publications (1)
Number Date Country
20160101972 A1 Apr 2016 US
Provisional Applications (1)
Number Date Country
61554184 Nov 2011 US
Continuations (1)
Number Date Country
Parent 13664848 Oct 2012 US
Child 14976344 US