The present invention relates in general to composite materials, and in particular, to composite materials that include carbon nanotubes.
Nanocomposites are composite materials that contain particles in the size range of 1-100 nm. These materials bring into play the submicron structural properties of molecules. These particles such as clay and carbon nanotubes (CNTs) generally have excellent properties, a high aspect ratio and a layered structure that maximizes bonding between the polymer and particles. Adding a small quantity of these additives (0.5-5%) can increase many of the properties of polymer materials, including higher strength, greater rigidity, high heat resistance, higher UV resistance, lower water absorption rate, lower gas permeation rate, and other improved properties (See, T. D. Fornes, D. L. Hunter, and D. Dr. Paul, “Nylon-6 nanocomposites from Alkylammonium-modified clay: The role of Alkyl tails on exfoliation”, Macromolecules 37, 1793-1798(2004)).
However, dispersion of the nanoparticles is very important to reinforce polymer matrix nanocomposites. Up to now, dispersion of those nanoparticles in a polymer matrix has been a problem. Conventional dispersion methods such as ball milling, ultrasonication, and monogenization are not effective ways to disperse the particles. For example, a ball milling process takes a very long time to disperse the particles. Moreover, the particles are broken rather than dispersed. The energy of the ultrasonication process is not enough to disperse carbon nanotube ropes or layered clay particles. That is why those nanoparticle-reinforced nanocomposites do not achieve excellent properties as expected (See, Shamal K. Mhetre, Yong, K. Kim, Steven, B. Warner, Prabir, Phaneshwar, Katangur, and Autumn Dhanote, “Nanocomposites with functionalized carbon nanotubes,” Mat. Res. Soc. Symp. Proc. Vol. 788, L11.17.1-6 (2004); Chun-ki Lam, Kin-tak Lau, Hoi-yan Cheung, Hang-yin Ling, “Effect of ultrasound sonication in nanoclay clusters of nanoclay/epoxy composites,” Materials Letters 59, 1369-1372(2005)).
A combination of clay and another type of particle may significantly improve the mechanical properties of polymer nanocomposites. The introduction of the particles in the clay/polymer matrix may prevent the agglomeration of the platelets. Small amounts of clay (<2 wt. %) and the other type of the particles (>1 wt. %) may significantly improve flexural strength and modulus of polymer matrix nanocomposites because of the well dispersion (or so-called exfoliation) of the clay platelets in the polymer matrix.
Improved mechanical properties of both clay and carbon nanotube (CNT)-reinforced polymer matrix nanocomposites are obtained by dispersing those nanoparticles using a microfluidic process. Well-dispersed particles are obtained that sufficiently improve mechanical properties of the nanocomposites, such as flexural strength and modulus.
Some advantages of the microfluidic dispersion process of the present invention over conventional dispersion methods are much higher energy applied to the solvent (up to 20,000 psi sustained), better control of the amount of energy applied, uniform and stable dispersions, and much smaller particles and droplet size.
Except for the clay and CNTs, other fillers such as graphite particles, carbon fibers, fullerenes, carbon nanotubes, and ceramic particles may also be utilized.
Epoxy resin (bisphenol-A) may be obtained from Arisawa Inc., Japan. The hardener (dicyandiamide) may be obtained from the same company. Both DWNTs and MWNTs may be obtained from Nanocyl, Inc., Belgium. Those CNTs may be functionalized with amino (—NH2) functional groups. Amino-functionalized CNTs may help to improve the bonding between the CNTs and epoxy molecular chairs which may further improve the mechanical properties of the nanocomposites. Alternatively, pristine CNTs or functionalized by other ways (such as carboxylic functional groups) may also be utilized. Clay may be obtained from Nanocore, Inc. (product name: L30E). It is a natural montmorillonite modified with a ternary ammonium salt. Hereinafter, where the description discusses clay and carbon nanotube particles, it should be understood that the present invention is applicable to the use of clay particles by themselves, carbon nanotubes by themselves, or a combination of the two to mix with the epoxy.
The microfluidic machine may be purchased from Microfluidics Corp. Newton, Mass., US (Microfluidizer® Model 110Y, serial 2005006E). A microfluidic machine uses high-pressure streams that collide at ultra-high velocities in precisely defined micron-sized channels. Its combined forces of shear and impact act upon products to create uniform dispersions.
Alternatively, the mixture of CNT/solvent/epoxy solution may go through the microfluidic machine to achieve uniform suspension with well dispersed CNTs in it.
Table 1 shows mechanical properties (flexural strength and flexural modulus) of nanocomposites manufactured in accordance with embodiments of the present invention. Flexural strength of epoxy/MWNTs (0.5 wt. %) has an increase of 18% of the flexural strength and 16% of the flexural modulus over the neat epoxy. Epoxy (DWNTs(0.5 wt. %)/MWNTs(0.5 wt. %) has an increase of 33% of the flexural strength and 18% of the flexural modulus over the neat epoxy. The best results so far from previous composites were 9-10% increase of the flexural strength of the epoxy/DWNTs(1 wt. %) over that of the neat epoxy (See, F. H. Gojny, M. H. G. Wichmann, U. Kopke, B. Fiedler, K. Schulte, “Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content”, Composites Science and Technology 64, 2363-2371(2004)). Both the flexural strength modulus of the epoxy/clay and epoxy/DWNT are improved compared with the neat epoxy.
This application for patent claims priority to U.S. Provisional Patent Application Ser. Nos. 60/819,319 and 60/810,394, which are hereby incorporated by reference herein. This application is a continuation-in-part of U.S. patent application Ser. No. 11/693,454, which claims priority to U.S. Provisional Application Ser. Nos. 60/788,234 and 60/810,394. This application is a continuation-in-part of U.S. patent application Ser. No. 11/695,877, which claims priority to U.S. Provisional Applications Ser. Nos. 60/789,300 and 60/810,394.
Number | Date | Country | |
---|---|---|---|
60819319 | Jul 2006 | US | |
60810394 | Jun 2006 | US | |
60788234 | Mar 2006 | US | |
60810394 | Jun 2006 | US | |
60789300 | Apr 2006 | US | |
60810394 | Jun 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11693454 | Mar 2007 | US |
Child | 11757272 | Jun 2007 | US |
Parent | 11695877 | Apr 2007 | US |
Child | 11757272 | Jun 2007 | US |