1. Field of the Invention
The present invention relates generally to a wavelength division multiplexing (WDM) optical communication system having optical add drop multiplexing (OADM) capability. More particularly, the invention relates to a wavelength division multiplexing optical communication system featured by its dispersion compensation method.
2. Description of the Related Arts
As a WDM optical communication system, a linear repeater transmission system using an optical amplifier is an effective means for lowering the cost of lines. Such a system has an OADM (Optical Add Drop Multiplexing) capability not only to carry out point to point transmission between terminals, but also to carry out insertion (ADD)/branching (DROP) of some of signals as unchanged light at an intermediary node.
Such an OADM capability is necessary to makeup of a low-cost and flexible optical network. Accordingly, in the WDM linear repeater transmission system, an electrical/optical (E/O) converter is placed at a transmitting-end terminal node, and an optical/electrical (O/E) converter is placed at a receiving-end terminal node. This allows transmission between the receiving-end and transmitting-end terminal nodes to be carried out.
Further, at an intermediary node, an optical signal insert (ADD)/branch (DROP) circuit is placed to add/drop a signal. A passing channel (“through” ch) is allowed to pass through in the form of an intact optical signal, whereas some channels may be inserted (ADD)/branched (DROP)as unchanged optical signals. Such a node is referred to as an OADM node.
A typical WDM optical communication system suffers a waveform distortion due to wave dispersion (time delay per unit duration corresponding to wavelength), which may occur in the optical transmission line. To suppress waveform distortion caused by this waveform dispersion, a dispersion compensator is placed at each Term ILA (Terminal In Line AMP) and OADM node.
Further, for the setting of the amount of compensation in the dispersion compensator, it is necessary to set a target value for the difference (hereinafter referred to as resilient dispersion) between the total amount of dispersion of the transmission line and the total amount of compensation of the dispersion compensator so as to fall within a tolerance range around an optimal value.
On the other hand, in the linear repeater transmission system having an optical amplifier repeater, chirp will occur in the transmission line, due to nonlinear effectiveness (SPM: Self Phase Modulation, where the refractive index of fiber depends on light intensity, or XPM: Cross Phase Modulation, where the refractive index changes as a function of signal intensity of other wavelengths) which may appear in the transmission line. Because of this the target value for residual dispersion will differ in response to the number of spans and span length.
OADM nodes #1 and #2 are placed at 5-span intervals, and a signal is inserted (ADD)/branched (DROP) at the OADM nodes #1 and #2.
Accordingly, as shown in
In such a configuration, as can be understood from
On the contrary, as a method of setting the residual dispersion value, one method hitherto supposed by inventors of the present invention is shown in
However, in
Therefore, with the method shown in
On the other hand, with the method in
It is therefore the object of the present invention to provide a method of setting an allowable residual dispersion value, which enables transmission for any path group, as well as to provide a wavelength division multiplexing (WDM) optical communication system using this method.
In order to achieve the above object, according to a first aspect of the present invention there is provided a wavelength division multiplexing optical communication system comprising a transmitting-end terminal node and a receiving-end terminal node; a wavelength division multiplexing optical communication transmission line including a plurality of spans each having an optical fiber, the plurality of spans joining the transmitting-end terminal node and the receiving-end terminal node; and a plurality of add drop multiplexing (OADM) nodes disposed on the wavelength division multiplexing optical communication transmission line; wherein when taking as the reference a residual dispersion target value of between the transmitting-end terminal node and the receiving-end terminal node, a residual dispersion target value for a node segment between one of the terminal nodes and one of the add drop multiplexing (OADM) nodes and a residual dispersion target value for a node-to-node segment between two of the add drop multiplexing (OADM) nodes are set so as to be proportional to ratios of the span counts in the node segment and in the node-to-node segment, respectively, to the total span count between the transmitting-end and receiving-end terminal nodes.
When a channel added or dropped at an add drop multiplexing (OADM) node falls outside of a tolerance range having an allowable maximum dispersion value and an allowable minimum dispersion value for the residual dispersion target value, the added or dropped channel may be provided with an additional dispersion compensator.
When a channel added or dropped at an add drop multiplexing (OADM) node falls outside of a tolerance range having an allowable maximum dispersion value and an allowable minimum dispersion value for the residual dispersion target value, the added or dropped channel may be provided with a control unit which controls the setting of chirp of a transmitter.
Preferably, the add drop multiplexing (OADM) node has dispersion compensators disposed at its transmitting-end and receiving end, respectively, and the amount of compensation of the transmitting-end dispersion compensator is determined from an average span distance of spans following an associated add drop multiplexing (OADM) node or from an average transmission line dispersion value.
Preferably, the add drop multiplexing (OADM) node has dispersion compensators disposed at its transmitting-end and receiving end, respectively, and the amount of compensation of the transmitting-end dispersion compensator is determined from a span distance of a span immediately posterior to an associated add drop multiplexing (OADM) node or from a transmission line dispersion value.
Preferably, the add drop multiplexing (OADM) node has dispersion compensators disposed at its transmitting-end and receiving end, respectively, and the amount of dispersion compensation of the dispersion compensator at the receiving end of the add drop multiplexing (OADM) node is determined so as to coincide with a residual dispersion target value for the span count from the transmitting-end terminal node to the add drop multiplexing (OADM) node.
In order to attain the above object, according to a second aspect of the present invention there is provided a method of setting the amount of dispersion compensation in a wavelength division multiplexing optical communication system, the system comprising a transmitting-end terminal node and a receiving-end terminal node; a wavelength division multiplexing optical communication transmission line including a plurality of spans each having an optical fiber, the plurality of spans joining the transmitting-end terminal node and the receiving-end terminal node; and a plurality of add drop multiplexing (OADM) nodes disposed on the wavelength division multiplexing optical communication transmission line; the method comprising the steps of taking as the reference a residual dispersion target value of between the transmitting-end terminal node and the receiving-end terminal node; figuring out ratios of the span counts in a node segment between one of the terminal nodes and one of the add drop multiplexing (OADM) nodes and in a node-to-node segment between two of the add drop multiplexing (OADM) nodes, to the total span count between the transmitting-end and receiving-end terminal nodes; and setting residual dispersion target values for the node segment between one of the terminal nodes and one of the add drop multiplexing (OADM) nodes and a residual dispersion target value for the node-to-node segment between two of the add drop multiplexing (OADM) nodes, so as to be proportional to the ratios, using the residual dispersion target value obtained as the reference in the taking step.
The method may further comprise the step of setting additional dispersion compensation values when a channel added or dropped at the add drop multiplexing (OADM) node falls outside of a tolerance range having an allowable maximum dispersion value and an allowable minimum dispersion value for the residual dispersion target value.
The method may further comprise the step of controlling the setting of chirp of a transmitter, for a channel added or dropped at the add drop multiplexing (OADM) node, when the added or dropped channel falls outside of a tolerance range having an allowable maximum dispersion value and an allowable minimum dispersion value for the residual dispersion target value.
The method may further comprise the step of, at the transmitting end of the add drop multiplexing (OADM) node, setting the amount of compensation which is determined from an average span distance of spans following an associated add drop multiplexing (OADM) node or from an average transmission line dispersion.
The method may further comprise the step of, at the transmitting end of the add drop multiplexing (OADM) node, setting the amount of compensation which is determined from a span distance of a span immediately posterior to an associated add drop multiplexing (OADM) node or from a transmission line dispersion.
Preferably, the amount of dispersion compensation of a dispersion compensator at the receiving end of the add drop multiplexing (OADM) node is determined so as to coincide with a residual dispersion target value for the span count from the transmitting-end terminal node to the add drop multiplexing (OADM) node.
The above and other objects, aspects, features and advantages of the present invention will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings, in which:
Embodiments of the present invention will now be described with reference to the drawings. It is to be noted however that application of the present invention is not limited to the examples illustrated in the diagrams.
The fundamental concept behind the present invention is to equally distribute the residual dispersion (RD) target value of a 3R span between a terminal node #A and a terminal node #B to path groups {circle around (4)}, {circle around (5)}, and {circle around (6)} which correspond to a span between the terminal node #A and an OADM node #1, a span between the OADM node #1 and an OADM node #2, and a span between the OADM node #2 and a terminal node #B, respectively.
Thus, as shown in
This target value is equally distributed to path groups {circle around (4)}, {circle around (5)}, and {circle around (6)} corresponding to every 5 spans of between the terminal node #A and the OADM node #1, between the OADM node #1 and the OADM node #2, and between the OADM node #2 and the terminal node #B.
By this distribution, following a characteristic curve B of
Because of this, by the flow shown in
RD target value of OADM span=target value of 3R span/total span count×span count of associated OADM spans
With the example shown in
Next, the amount of dispersion compensation of the receiving-end dispersion compensators (DCRCN) 12, 13 of each of the OADM spans #1 and #2 is adjusted to become +70 [ps/nm], so as to be the RD target value of the OADM spans figured out in the process step P1 (process step P2).
As for the final OADM span #3, the amount of dispersion compensation of the receiving-end compensator (DCRCN) 14 is adjusted so that the residual dispersion of the 3R span is the target value (+200 [ps/nm] with the example in FIG. 1B)(process step P3).
In this way, an optimal desired residual dispersion value for a path group (the path group {circle around (1)} in the example in
Further, as another embodiment, it is also possible to set the amount of compensation of the transmitting-end dispersion compensator 10 at the OADM nodes #1 and #2, as well as of the receiving-end dispersion compensators 12 and 13, in the following manner.
It would thus be possible to determine the amount of compensation for the dispersion compensator 10 of the transmitting end from the span distance of the latter part of the associated OADM nodes #1 and #2, and to set the amount of dispersion compensation for the dispersion compensator 12 of the receiving end at the OADM node #1 so as to become a residual dispersion target value of span count from the transmitting-end terminal node #A to the OADM node #1.
As a characteristic of the WDM optical communication system, when using the dispersion compensation fiber for the dispersion compensator, variability of the residual dispersion value due to a slope compensation factor is known.
However, if the slope compensation factor exceeds 100%, there is a tendency for the residual dispersion of short wavelength-end channels to be bigger than for central wavelength channels (40 ch, supposing total channel number to be 80 ch). Oppositely, if the slope compensation factor is equal to or less than 100%, there is a tendency for the residual dispersion of long wavelength channels to be bigger than for central wavelength channels.
For this reason, due to the slope compensation factor, individual channels may possibly exist that exceed the maximum and minimum residual dispersion values.
In
Accordingly, as an embodiment of the present invention, a dispersion compensator is individually added for the specific channels ch and compensates to let it fall within the tolerance range in such instances.
In
Then, for the individual channel ch where the residual dispersion value exceeds the tolerance range, the compensation fibers 21 and 31 make adjustment so that the residual dispersion value falls within the dispersion tolerance range.
In
Continuing from the process steps P3, for the path groups {circle around (4)} and {circle around (5)} which are added and dropped, it is judged whether the residual dispersion value falls within the dispersion tolerance range for the span count {circle around (2)} concerned (process step P4). Where any individual channel ch does not fall within the dispersion tolerance range (process step P4, No), dispersion compensators 21 and 31 are individually added (process step P5).
Then, in the added individual dispersion compensators 21 and 31, the amount of dispersion compensation of the added individual dispersion compensators 21 and 31 is set by way of the following formula for associated channels ch so that the residual dispersion value falls within the tolerance range.
dispersion tolerance minimum value (Min)<(residual dispersion value of individual compensator)+(residual dispersion value of add/drop node)<dispersion tolerance maximum (Max)
Referring to the flow of
By selecting a dispersion compensator to set the amount of dispersion compensation (process step P10), the number of add/drop-possible channels ch at a node with the dispersion compensator concerned is figured out (process step P11).
Through the calculation process of the number of add/drop-possible channels ch, the residual dispersion of each path is figured out (process step P110). With the calculated residual dispersion, the slope compensation factor is changed to min and max, and the number of transmittable channels and channel codes are calculated for each slope compensation factor (process step P111). This calculation of the number of transmittable channels and channel codes for each slope compensation factor is feasible based on the principle illustrated in
As a result of this, add/drop-possible channels of each path are determined (process step P112). Determined add/drop-possible channels for each path are added, and it is judged whether add/drop-possible channels meet system requirements (process step P113).
If affirmative, where the system requirements are being met (Step S113, Yes), there is no additional dispersion compensator, and if negative, where the system requirements are not being met (Step S113, No), an additional dispersion compensator is provided (process steps P12 and P13).
In contrast with the embodiment where the dispersion compensators are additionally provided for individual channels ch which fall out of the tolerance range, a third embodiment of the present invention will then be described by way of example where the transmission chirp setting is controlled.
Now, assume that by way of example, if the dispersion value of an individual channel ch A exceeds the maximum dispersion value of +100 when the maximum dispersion value is +100 and minimum dispersion value is −700 and when the alpha parameter=+1, then it does not fall within the dispersion tolerance range.
On the contrary, if the alpha parameter is changed to equal −1, then the maximum dispersion value moves to +700 and the minimum dispersion value to −100. Accordingly, the residual dispersion value of the individual channel A falls within the tolerance range where the alpha parameter=−1.
Accordingly, the median of this settable alpha parameter range is set in a transmitter as the optimal alpha parameter.
A centralized control unit 15 is provided in addition to the configuration of
Next, the centralized control unit 15 figures out the amount of dispersion compensation of the dispersion compensators 12 and 13 at the terminal nodes #A and #B, intermediary amplifier stages ILA#1, #2, and #3, as well as the OADM nodes #1 and #2, and the residual dispersion value of total path groups including the add/drop paths {circle around (4)}, {circle around (5)}, and {circle around (6)} based on the amount of dispersion compensation of the transmission line between the terminal nodes #A and #B (process step P10).
Further, similarly to the process step P4 of
Based on the relational diagram of
In
On the contrary, in
Further, in
In
On the contrary, in
Further, in
As set forth hereinabove by way of the embodiments in conjunction with the drawings, the present invention enables the dispersion compensation values to be set so as to be transmittable to any path groups in the WDM optical communication system having the OADM nodes.
In the above embodiments, the above explanation is directed only to span count, but the present invention is not restricted to use in terms of the span count, and “total dispersion” or “total length” can be also applied for the present invention in stead of the total span count between the transmitting-end and receiving-end terminal nodes.
While illustrative and presently preferred embodiments of the present invention have been described in detail herein, it is to be understood that the inventive concepts may be otherwise variously embodied and employed and that the appended claims are intended to be construed to include such variations except insofar as limited by the prior art.
Number | Date | Country | Kind |
---|---|---|---|
2002-117422 | Apr 2002 | JP | national |
This application is a continuation of U.S. application Ser. No. 10/404,045, filed Apr. 2, 2003 now U.S. Pat. No. 7,274,878, and now allowed. This application is based upon and claims the priority of Japanese application no. 2002-117422, filed Apr. 19, 2002, and U.S. patent application Ser. No. 10/404,045, filed Apr. 2, 2003, the contents being incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5877881 | Miyauchi et al. | Mar 1999 | A |
5943151 | Grasso et al. | Aug 1999 | A |
6229631 | Sato et al. | May 2001 | B1 |
6229935 | Jones et al. | May 2001 | B1 |
6330381 | Lu et al. | Dec 2001 | B1 |
6580861 | Bickham et al. | Jun 2003 | B2 |
6621621 | Jones et al. | Sep 2003 | B1 |
7274878 | Sekiya et al. | Sep 2007 | B2 |
20010024307 | Franco et al. | Sep 2001 | A1 |
20020036812 | Bai | Mar 2002 | A1 |
20030118347 | Papaparaskeva et al. | Jun 2003 | A1 |
20040208605 | Bakhshi et al. | Oct 2004 | A1 |
20040208648 | Fishman et al. | Oct 2004 | A1 |
Number | Date | Country |
---|---|---|
2 385 356 | Mar 2001 | CA |
9-153859 | Jun 1997 | JP |
9-284218 | Oct 1997 | JP |
11-8590 | Jan 1999 | JP |
2000-502848 | Mar 2000 | JP |
Number | Date | Country | |
---|---|---|---|
20080002979 A1 | Jan 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10404045 | Apr 2003 | US |
Child | 11892302 | US |