The general inventive concepts relate generally to carbon nanostructures (CNSs) and carbon enhanced reinforcement (CER) fibers, and more particularly, to the controlled dispersion of CNSs or CER fibers within aqueous or non-aqueous media. The general inventive concepts particularly relate to the controlled dispersion of CNSs or CER fibers within aqueous or non-aqueous media for forming a nonwoven CNS or chopped CER fiber mat. A method for dispersing the CNSs or CER fibers in aqueous or non-aqueous media is also provided.
Carbon nanostructures (CNSs) include carbon nanomaterials, such as carbon nanotubes, for example, that have unique properties that position them for a wide scope of possible applications. CNSs are fullerene-related structures of graphite cylinders with unique atomic structures that provide high mechanical properties, namely tensile strength and elastic modulus, excellent thermal and electrical conductivities, and high aspect ratios. One group of CNSs are carbon nanotubes (“CNTs”), which are generally un-branched and may comprise single walled carbon nanotubes (SWCNTs), double walled carbon nanotubes (DWCNTs), and multi-walled carbon nanotubes (MWCNTs).
The unique structure and properties of CNSs causes them to be useful in a variety of applications, including electrically conductive polymeric composites finding use in automotive applications, aerospace applications, battery applications, thermal management applications, electromagnetic interference (EMI) shielding applications, and many other applications.
CNSs exhibit strong van der Waals forces that attract individual CNSs to one another, causing the CNSs to aggregate into bundles, aggregates, or groupings, making dispersion of the CNSs difficult. Accordingly, there exists a need in the art for a method for improving and controlling the dispersion of CNSs and CER fibers in a medium. For example, it is desirable to control the dispersion of CER fibers to provide nonwoven chopped CER fiber mats with maximized structural, thermal, and electrical properties.
The general inventive concepts include a method for controlling the dispersion of CNSs or carbon enhanced reinforcement (“CER”) fibers in aqueous or non-aqueous media. The method includes incorporating CNSs or chopped CER fibers into a whitewater solution that may include one or more of a viscosity modifier, dispersion medium, binder, a biocide, and a defoaming agent.
In some exemplary embodiments, the CER fibers consist of a plurality of carbon nanostructures grown in situ on a fiber. CNSs exhibit strong van der Waals forces that attract individual CNSs to one another, causing the CNSs to aggregate into bundles, aggregates, or groupings, making dispersion of the CNSs difficult. Carbon enhanced reinforcement (“CER”) fibers help improve the dispersibility of CNSs. CER fibers comprise CNSs grown in situ on fiber substrates, or otherwise affixed, adhered, bonded, or attached to fiber substrates.
Various methods have been developed for growing CNSs on fiber substrates, or otherwise affixing, adhering, bonding or otherwise attaching CNSs to fiber substrates to form carbon enhanced reinforcement (CER) fiber. The CNSs grow radially outward from the fiber substrates in a random and structurally entangled manner, forming a percolated network as they grow. Percolation is the formation of well connected pathways of conductive media. The CNSs may remain directly bonded to the individual fiber substrates throughout processing, such that the fibers act as a scaffold to assist in dispersing CNSs throughout a dispersion media. By grafting or otherwise bonding or adhering individual CNSs to the fibers, the CNSs are pre-dispersed over the surface of the fiber substrate. If the CNSs are not adhered to a substrate, the attractive forces of the CNSs tend to cause the CNSs to agglomerate. It is believed that growing the CNSs on the substrate, or otherwise tethering, grafting, bonding the CNSs to the substrate, aids in the dispersion of the CER in a media and thereby the overall formation of a percolated network. It is believed that including the CNS directly on a fiber substrate tends to reduce the tendency of the CNSs to aggregate and clump together. Nevertheless, it is desirable to further improve and control the dispersability of CER fiber.
In some exemplary embodiments, the method further includes agitating the whitewater solution and CNSs or CER fibers, to form a thoroughly dispersed CNS or CER slurry.
In some exemplary embodiments, the whitewater solution includes a dispersion medium comprising water, mineral oil, and/or hexane. In some exemplary embodiments, the whitewater solution includes a surfactant package, which, may include one or more nonionic or ionic surfactants.
In some exemplary embodiments, the method further includes aerating the whitewater solution. In other exemplary embodiments, the free CNSs or the CNSs on the CER fibers are functionalized.
In some exemplary embodiments, a nonwoven CNS or chopped CER mat is formed by the exemplary methods described above.
The general inventive concepts include a method for forming a nonwoven chopped CER mat. In some exemplary embodiments, the method includes adding chopped CER fibers into a whitewater solution contained in a mixing tank. The CER fibers are then agitated in the whitewater solution, creating a slurry of thoroughly dispersed CER fibers. The slurry may be passed into a second mixing tank, where the slurry is again agitated. The slurry is then passed onto a porous conveyor belt system, forming a CER fiber web. A binder is applied to the web and the web is dried, forming a nonwoven chopped CER mat.
In some exemplary embodiments, the whitewater solution includes a dispersion medium comprising water, mineral oil, and/or hexane. In some embodiments, the whitewater solution further includes a surfactant package, which may include one or more nonionic or ionic surfactants.
In some exemplary embodiments, dispersing the CER fibers is accomplished by aerating the whitewater solution. In some exemplary embodiments, dispersion of the CER fibers is accomplished by functionalizing the free CNSs or the CNSs on the CER fibers.
The general inventive concepts further include a method for forming a CNS nonwoven mat that includes forming one or more CER fibers comprising a plurality of CNSs disposed on a fiber substrate, passing one or more CER fibers through a whitewater solution contained in a mixing tank, coating the CER fiber with said whitewater solution, and passing the whitewater solution coated CER fiber through a narrow aperture, shearing off one or more of the CNSs into the whitewater solution. The CNSs are then deposited onto a screen by removing the whitewater solution, forming a CNS web and curing said CNS web, forming a nonwoven CNS mat.
The general inventive concepts further include a method for forming a CNS nonwoven mat that includes forming one or more CER fibers comprising a plurality of CNSs disposed on a fiber substrate, passing the CER fiber through a narrow aperture, shearing off one or more of the CNSs into a whitewater solution contained in a mixing tank. The whitewater solution is then removed from the CNS slurry to form a CNS web and the CNS web is cured to form a nonwoven CNS mat.
The foregoing and other objects, features, and advantages of the general inventive concepts will become more readily apparent from a consideration of the detailed description that follows.
While various exemplary methods and materials are described herein, other methods and materials similar or equivalent to those described herein are encompassed by the general inventive concepts.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the invention belongs. In this connection, unless otherwise indicated, concentrations of ingredients given in this document refer to the concentrations of these ingredients in the master batch or concentrate, in keeping with customary practice.
As used herein, the terms “sizing agent,” “fiber sizing agent,” or just “sizing,” refer collectively to compositions used in the manufacture of fibers as a coating to protect the integrity of fibers, provide enhanced interfacial interactions between a fiber and a matrix material in a composite, and/or alter and/or enhance particular properties of the fibers.
As used herein, the terms “CER,” “CER fiber,” and “CER fiber structures” refer collectively to fibers that include carbon nanostructure (CNS) grown in situ on a fiber substrate, or otherwise affixed, adhered, bonded, or attached to the fiber substrate.
In accordance with customary practice, the term “fiber” or “fiber material” refers to any material which has a fibrous structure as its elemental structural component. The term encompasses fibers, filaments, yarns, tows, tapes, woven and non-woven fabrics, plies, mats, and the like.
Additionally, the term “whitewater solution” refers to any aqueous or non-aqueous solution in which fibers are dispersed. The term “whitewater solution” may include a solution that contains any of numerous dispersion mediums, viscosity modifiers, de-foamers, binders, surfactants, biocides, and the like.
The general inventive concepts relate to the controlled dispersion of carbon enhanced reinforcement (CER) fibers in a whitewater solution. The controlled dispersion facilitates stable, homogenous dispersion of CER fibers, measured by the uniformity of the distribution of the CER fibers in a whitewater solution, as well as the ability of the CER fibers to remain dispersed over time. Incomplete dispersion can lead to undesirable alteration in certain fundamental properties of the CER fibers or other detrimental effects. The inventive concepts further relate to the controlled dispersion of CER fibers in a whitewater solution for the formation of a nonwoven chopped CER fiber mat. The thoroughly dispersed, nonwoven chopped CER fiber mat may then be used in connection with a variety of applications, such as 3-D perform, veil applications, etc.
In some exemplary embodiments, the reinforcing fiber making up the substrate of the CER fibers may comprise any conventional material, such as glass fibers, carbon fibers, and the like. In some exemplary embodiments, the fibers may include a hybrid of two or more different types of substrate fibers, such as a mixture of both glass and carbon fibers. When more than one type of fiber is used, each type of fiber may include CNSs, or only one type of fiber may include the CNS, while the remaining types of fibers are free of CNS. Although the reinforcing fibers will be described herein as glass fibers, it is to be appreciated that any conventional reinforcing fiber may be used. The term “reinforcing” means the substrate imparts some beneficial or otherwise desirable property (e.g., increased strength) to another substrate or material. Other reinforcing substrates are also contemplated herein such as woven and nonwoven fabrics, glass spheres, and the like.
The glass may include any type of glass suitable for a particular application and/or desired product specifications, including conventional glasses. Non-exclusive examples of glass compositions include A-type glass fibers, C-type glass fibers, G-glass fiber, E-type glass fibers, S-type glass fibers, E-CR-type glass fibers (e.g., Advantex® glass fibers commercially available from Owens Corning), R-type glass fibers, wool glass fibers, or combinations thereof, which may be used as the reinforcing fiber. In some exemplary embodiments, the glass has both a high Young's Modulus and high tensile strength, and maintains these properties even in the presence of CNS growth and/or related processing. In some exemplary embodiments, the input glass is Advantex® glass, which serves as a low cost, boron free E-glass and E-CR glass reinforcement.
Alternatively, in some exemplary embodiments, the reinforcing fiber may be fibers of one or more synthetic polymers such as polyester, polyamide, aramid, and mixtures thereof. The polymer strands may be used alone as the reinforcing fiber material, or they can be used in combination with glass fibers such as those described herein.
The reinforcing fibers have lengths that vary depending on the particular application desired. In some exemplary embodiments, the chopped fibers have length of approximately 0.1-2 inches, and particularly about 0.25 inch. The chopped fibers may have uniform lengths, or may include varying lengths within a nonwoven CER fiber mat.
In some exemplary embodiments, the CNS loading on the fiber may be between about 2-45%. In some exemplary embodiments, the CNS loading may be between about 10-30% loading on the fiber, and preferably about 20%. The CNS loading levels may be adjusted to “tune” the properties of the resulting CER fiber and the product produced therefrom. For example, when the resulting CER fibers are utilized in making nonwoven chopped CER fiber mats, the loading levels of the CNS on the fiber may be tuned to impact the properties of the fiber mats. For example, the amount of total CNS in the resulting nonwoven mat will typically affect the mechanical, thermal, electrical, and physical properties of the mat.
As is to be appreciated, homogenous dispersion of CER fibers in a whitewater solution generally requires that the CER fibers be spread (with generally uniform number density) throughout the whitewater solution. Since the CNSs generally remain adhered to the individual fibers, the fibers act as a scaffold to help disperse the CNSs throughout the whitewater solution. However, due to the strong van der Waals forces, or other interactions between the CNS, the CNSs on chopped CER fibers have an affinity to agglomerate and form bundles often with highly entangled networks. Typically, the higher the CNS loading on the CER fibers, the stronger the attraction among neighboring CER fibers.
Referring to
The type of viscosity modifier used is application driven, and may be anionic or cationic. Commonly, the viscosity modifier is anionic. In some embodiments, the viscosity modifier is a polymer, such as, but not limited to a water soluble polymer, such as an acrylic polymer. Such acrylic polymers may include a polyacrylamide, such as Drewfloc 270.
Exemplary film formers may include, but are not limited to waxes, polyethylene glycols, polypropylene glycols, polycaprolactones, glycidyl ethers, epoxy resins, urethanes, polyester alkyds, amic acid, propylene glycol fumarate, propoxylated bisphenol-A-maleate, propoxylated allyl alcohol-maleate, polyvinyl acetates, olefins, surfactants, maleated polypropylene, low molecular weight polyesters and mixtures thereof. Particularly, in some exemplary embodiments, the film former includes one or more of a polyurethane, such as Hydrosize® U6-01 and/or Baybond® PU 401; polypropylene; polyethylene glycol ester, such as PEG 400 MO; polyvinylpyrrolidone (PVP), such as PVP K-15, PVP K-30, PVP K-90, PVP K-60, and PVP K-120; and epoxy resin, such as EPI-REZ™ 3511. Additionally, the film former may include one or more surfactant, such as a nonionic surfactant (i.e., Triton X-100), for example. The coupling agent may comprise any coupling agent desired for a particular application. In some exemplary embodiment, the coupling agent may include one or more of alcohols, amines, esters, ethers, hydrocarbons, siloxanes, silazanes, silanes, lactams, lactones, anhydrides, carbenes, nitrenes, orthoesters, imides, enamines, amines, amides, imides, functionalized olefins and mixtures thereof. Particularly, in some exemplary embodiments, the coupling agent is a silane selected from one or more of KBM-602 (N-(-aminoethyl)--aminopropylmethyldimethoxysilane), (gamma-2-aminoethylamino)propyl methol dimethoxysilane, aminopropyldiethoxysilane, gamma-aminopropyltriethoxysilane (A1100), gamma-glycidoxypropyltrimethoxysilane (A-187) and 3-methacryloxypropyltrimethoxysilane (A-174).
As stated above, the whitewater solution 340 may include additional various additives. In some exemplary embodiments, the whitewater solution 340 includes a curing agent. The curing agent may comprise dicyandimide (DICY), which is a known curing agent for epoxy resins. In some exemplary embodiments, the whitewater solution 340 may further include adhesives, such as, for example, an ethylene-vinyl acetate copolymer emulsion (i.e., Airflex® 410). The whitewater solution 340 may further include polyvinylfonnaldyde/polyvinylamine or copolymers, which may be obtained from various sources, including Lupamin® 9095, 9050, 9000, 5095, and 1500, for example.
The whitewater solution 340 may further include surfactants, such as, for example, non ionic surfactants. Exemplary nonionic surfactants may include long chain alcohols, polyoxyethylene glycol alkyl ethers, polyoxypropylene glycol alkyl ethers, glucoside, alkyl ethers, polyoxyethylene glycol alkylphenol ethers, glycerol alkyl esters, polyoxyethylene glycol sorbitan alkyl esters, sorbitan alkyl esters, polyethoxylated tallow amine, cocamide DEA, cocamide MEA, dodecyldimethylamine oxide, poloxamers, polyethyl eneamine polyimide salts, ethoxylated acetylenic diols, and octylphenoxypolyethoxyethanol.
In some exemplary embodiments, the whitewater solution 340 comprises one or more of a film former, a coupling agent, and optional additives. In some exemplary embodiments, the whitewater solution 340 comprises from about 70 to about 99 weight percent film former, about 1 to about 30 weight percent coupling agent and about 0 to about 20 weight percent of optional additives. In other exemplary embodiments, the whitewater solution 340 includes about 80 to about 90 weight percent film former, about 10 to about 20 weight percent coupling agent, and about 0 to about 10 weight percent additive.
Additionally, in some exemplary embodiments, a binder is included in the whitewater solution 340. The binder may include, for example, an acrylic or acrylate binder, a styrene acrylonitrile binder, a styrene butadiene rubber binder, a urea formaldehyde binder, or mixtures thereof.
In some exemplary embodiments, the CER fibers are mixed with agitation, such as by mechanical agitation, to form a chopped CER fiber slurry. Referring again to
In some exemplary embodiments, the whitewater solution 340 may comprise an aqueous or non-aqueous dispersion medium, which may include, for example, water, hexane, or oil, such as mineral oil and other lower molecular weight type oils. If the dispersion medium comprises mineral oil or hexane, dispersion of the CER fibers may occur upon agitation with no or minimal help from an additional dispersion means. This is because oil and hexane are both non-polar substances and therefore generally compatible with the non-polar CNSs on the CER fibers. This is because generally, two materials that have similar intermolecular forces will be soluble in each other. For example, non-polar materials will generally mix and dissolve in non-polar materials. Additionally, mineral oil has a high viscosity which facilitates the dispersion of the CER fibers and also helps lower the surface tension of the whitewater solution, contributing to the dispersion of CER fibers.
Typically, when CER fibers are dispersed in water and mechanically/physically agitated, the CER fibers float on the top of the water, since the non-polar CER fibers are not soluble in highly polar water. The non-polar, hydrophobic surfaces of the CNSs make dispersion of the CER fibers in traditional whitewater solutions difficult. Accordingly, the CER fibers are generally unable to realize complete dispersion without the inclusion of additional materials to improve the fiber's solubility in polar and/or water-based solutions.
In certain exemplary embodiments, particularly when the dispersion medium is aqueous, the whitewater solution 340 will additionally include a surfactant package, to help disperse and stabilize the CER fibers. As is well understood, surfactants are usually amphiphilic molecules, meaning that they possess both polar and non-polar portions. The polar portion exhibits a strong affinity to polar solvents, particularly water, and the non-polar portion exhibits a strong affinity to the non-polar CNSs of the CER fibers. Due to this dual affinity, surfactants tend to migrate to the interface of immiscible solutions and orient themselves in such a way that the polar groups interact with water and the non-polar groups interact with the non-polar portion of a solution.
The amount of surfactant needed to effectively disperse CER fibers within a dispersion medium will vary depending on a variety of factors, such as the surfactant's composition, the dispersion medium, the chemical make-up of the CNSs on the CER fibers, the total surface area of the CER fibers to be dispersed, and the desired degree of dispersion. The amount of surfactant added will affect the stability of the dispersion. The term “stability” refers to the ability of the dispersed CER fibers to remain dispersed in solution over time without aggregation or clumping. Additionally, the surfactant to CER ratio may determine the degree of dispersion. Often, a certain degree of clumping is desired for some applications. Therefore, by changing this surfactant to CER ratio, the degree of dispersion may be controlled.
The surfactant package may include one or more surfactants. In some exemplary embodiments, the surfactants included within the package comprise nonionic surfactants; however, a mixture of nonionics and ionics may be used in various embodiments. The surfactants selected should be soluble or dispersible in the particular dispersion medium used in the whitewater solution. In some exemplary embodiments, the surfactants included comprise those of the ethylene oxide family, such as alkyl phenoxy polyethylene oxide alcohol, and acetylenic alcohols. Examples of surfactants that may be included in the surfactant package, include:
Surfynol® 465 is a nonionic surfactant that comprises two hydrophilic heads connected by a molecular segment and two hydro-phobic tails. Surfynol® surfactants are formed by reacting various amounts of ethylene oxide with acetylenic diol. Triton® X-100 is a nonionic surfactant that has a hydrophilic polyethylene oxide group and a hydrocarbon lipophilic or hydrophobic group. Triton® X-100 is formed from octylphenol polymerized with ethylene oxide and includes an average of 9.5 ethylene oxide units per molecule, with an average molecular weight of 625 g mol−1. Tetronic® 90R4 is a tetrafunctional block copolymer surfactant with a terminal secondary hydroxyl group. Pluronic® 10R5 is a di-functional block copolymer surfactant with terminal secondary hydroxyl groups. Nanosperse AQ is a commercially available surfactant package that is a blend of anionic/nonionic dispersions. Polyvinyl alcohol is a water-soluble polymer
Although not to be bound by theory, the surfactants function by adsorbing onto the surface of the CNSs. The surfactants contain a hydrophobic portion that surrounds the CNS on the CER fibers providing a means for isolating and dispersing the fibers. The hydrophobic portion of the surfactant interacts with the CER/CNS interface, creating a layering effect by incorporating hydrophobic layers of CER fibers within the whitewater solution. The layering effect allows for controlled, thorough dispersion of the CER fibers throughout the whitewater. The surfactants also lower the surface tension of the liquid and the interfacial tension between different phases of liquids within the whitewater solution.
The dispersion ability of a particular surfactant package is determined by its hydrophyllic-lipophilic balance (HLB), which measures the degree to which it is hydrophilic or lipophilic. If a surfactant package has a low HLB number, it is more lipophilic and there is less contribution from the hydrophilic portion, which provides for more wetting of the CNS. If the HLB is high, the surfactant package experiences a higher contribution from hydrophilic portion and less wetting of the CNS. Accordingly, if increased wetting is desired, the concentration of a low HLB surfactant package will need to be increased. For example, Surfynol 465 has an HLB of 13.0 and Triton X-100 has an HLB of 13.4. HLB, which means that these surfactants will effectuate more thorough dispersion than the same amount of Tetronic 90R4, with an HLB value of (1.0 to 7.0).
Controlled dispersion of the CER fibers in the whitewater solution may additionally or alternatively be accomplished by aeration of the whitewater solution. In some exemplary embodiments, aeration of a whitewater solution is achieved by foaming the whitewater solution (such as by mechanical agitation or the injection of air into the whitewater solution) either as the CER fibers are being added to the mixing tank or after the CER fibers have been added. The foam may comprise a regular air make-up, including nitrogen and oxygen. The oxygen in the foam is hydrophobic, which will interact strongly with the CNS on the CER fibers, such that the CER fibers will adhere to the bubbles in the foam, thus dispersing the CER fibers throughout the whitewater solution. Aeration of the whitewater solution may occur independently as a dispersion means, or in conjunction with a surfactant system.
Additionally, or in the alternative, the surface of CNSs may be chemically or physically functionalized to overcome the insolubility of the CNS in polar solutions. Functionalization includes the attachment of certain molecules or functional groups to the surface of the CNSs. Functionalization of the CNS surfaces may be perpetuated by interacting various additives with the CNS prior to the addition of the CER fibers into the whitewater solution, or the additives may be introduced directly into the whitewater solution. Functionalization enhances the solubility of the CER fibers in solvents and protects against agglomeration by adding functional groups onto the surface of the CNS. If a CNS surface is modified through functionalization, the interaction between the nanostructure and the surroundings is affected and specific types of functional groups may influence the interaction in different ways.
In some exemplary embodiments, functionalizing the surface of the CNSs occurs by grafting a surfactant to the surface of the CNSs. The surfactant and CNSs become a single structure, rather than separate parts. In some exemplary embodiments, functionalization occurs by incorporating oxidizing agents, such as potassium persulfate, potassium permanganate, peroxides, ozone, peroxides, corona discharge, hydrogen, organic peroxides, and MCPD (3-monochloropropane-1,2-diol). The oxidation agents react with the CNS and oxidize different atoms on the surface of the CNS, creating polar areas that will more easily disperse in non-polar medium. This partial oxidation of the CNS modifies the structures from being hydrophobic to being a more compatible hydrophilic, thereby dispersing more easily.
Additionally, in some exemplary embodiment, the CNSs may be acid treated by introducing carboxylic acid groups on the surface of the CNSs, which leads to stabilization in polar solvents. The acids may include piranha solutions (mixture of sulfuric acid and hydrogen peroxide) and other strong acids.
As described above, although one or more of the reinforcing fibers described herein may be used in producing the CER fibers, it is to be noted that the exemplary methods described herein include reinforcement fibers that are a single type of glass fiber. As is known in the art, glass fiber may be formed by attenuating streams of a molten glass material through a heated bushing to form substantially continuous glass fibers. The continuous fibers are bundled together according to known bundling or packaging methods to form a fiberglass roving or other package, which can in turn be used in the inventive method.
At any time during the fiber forming process, the fibers may be coated with a chemical (i.e., size) composition. Alternatively, the fibers may be coated with a catalytic composition that includes a catalyst. In some exemplary embodiments, a size/catalyst composition may be applied to the fibers that includes one or more of the size ingredients described above, as well as a catalyst. The catalyst may take on any form, including a solid, liquid, gas, and the like. The size/catalytic composition may be applied to the fibers by any method suitable for the desired CER growth, including kiss roll, dip-coat, slide, or spray application to achieve the desired amount of catalytic composition on the fibers.
In one exemplary method, a fiberglass roving coated with the size/catalytic composition enters the CER growth processing stage, such that CNSs are grown directly (i.e., in situ) on the surface of the input fiberglass strand, or otherwise affixed, adhered, bonded, or attached to fiber substrates. The CER growth processing stage is carried out in a growth chamber and includes various steps that may occur in various sections of the growth chamber. The growth chamber may comprise a single continuous chamber, or it may comprise multiple, connected sub-chambers.
In the exemplary method, the glass fibers emerge from the growth chamber with a coating of CNS, thus forming a CER fiber. The CER fibers may then be chopped, forming chopped, CER fibers for further processing into a nonwoven CER fiberglass mat using the exemplary methods described herein. Alternatively, the CNSs may be harvested from the CER fiber for use in forming a CNS nonwoven mat using the exemplary methods described herein.
Referring again to
Once the whitewater solution is mixed, a plurality of chopped CER fibers 320 are added into the whitewater and agitated until the CER fibers are thoroughly dispersed, forming a chopped CER fiber slurry. At anytime during the formation of the chopped CER fiber slurry, the dispersion may be optionally aerated by the introduction of natural air bubbles or foam. The CER fibers adhere to the air bubbles, causing the CER fibers to further disperse within the slurry.
In some exemplary embodiments, the chopped CER fiber slurry is passed into a second mixing tank, known as a constant level chest, and agitated to further disperse the fibers within the whitewater. The constant level chest works similarly to a water tower, in which the elevation of the water creates pressure for delivering the slurry to a conveyor system for forming a nonwoven. Optionally, the slurry may undergo aeration in the constant level chest. The aeration of the slurry may be done in addition to the aeration in the first mixing tank, or may be the only occurrence of aeration in the system.
Referring again to
The general inventive concepts also relate to the controlled dispersion of CNSs in a whitewater solution. In various additional exemplary embodiments, rather than dispersing chopped CER fibers as a whole, the CNSs may be harvested from the surface of the CER fibers and dispersed directly into a whitewater solution. The process of harvesting CNSs may include various harvesting techniques. Referring to
As the CER fiber 300 passes through the stripper die 430, CNSs 410 may be sheared off or otherwise removed from the CER fiber 300 and collected back into the whitewater solution 340 in the mixing tank 330. The stripper die 430 may be located either inside or outside of the whitewater solution 340 in the mixing tank 330. In some exemplary embodiments, the whitewater solution includes an aqueous or non-aqueous dispersion medium and one or more of film formers, coupling agents, viscosity modifiers, and additives, such as, for example, lubricants, surfactants, anti-oxidants, and plasticizers. Additionally, in some exemplary embodiments, a binder is included in the whitewater solution. The binder may include, for example, an acrylic or acrylate binder, a styrene acrylonitrile binder, a styrene butadiene rubber binder, a urea formaldehyde binder, or mixtures thereof. It should be understood that the entirety of the previous discussion regarding the whitewater solution and various dispersion techniques and methods in connection with the dispersion of CER fibers is also applicable to the dispersion of CNSs harvested from CER fibers.
As the CNSs 310 drop into the whitewater solution 340, the CNSs may substantially remain in the interconnected, branched form. Such interconnectedness assists the CNSs in dispersing within the whitewater solution 340, creating a CNS slurry. The CNSs 410 within the slurry may be further dispersed by any of the methods described above, such as, for example, mechanical agitation. In the exemplary process illustrated in
In the exemplary process illustrated in
In various additional embodiments, the CNSs may be removed from the CER fiber without first passing the CER fiber through the whitewater solution. For example, in the exemplary process illustrated in
In some exemplary embodiments, the CNS nonwoven mats are electrically conductive and useful in applications benefiting from such conductivity, resulting in improved EMI shielding effectiveness (SE) and/or electrostatic dissipation (ESD). In some embodiments, the EMI SE is between about 20 and 100 dBs over a frequency range between about 10 kHz and 40,000 MHz and thicknesses between 0.005 and 1 inch.
In some exemplary embodiments, the composite material has an EMI SE between about 40 and 100 dBs over a frequency range between 30 and 2000 MHz at thicknesses between 0.005 and 1 inch.
Having generally described various exemplary embodiments of the general inventive concepts, a further understanding thereof can be obtained by reference to certain specific examples illustrated below which are provided for purposes of illustration only and are not intended to be inclusive or limiting unless otherwise specified.
In a small beaker, approximately 20 pieces of 0.25 inch chopped CER fibers, including about 17.5% CNS loading, were added to about 30 ml of a solution. Five different solutions were tested: water, mineral oil, hexane, water+Surfynol® 465, and water+Triton® X-100. The beaker was shaken to disperse the CER fibers throughout the solution.
The results of the remaining solutions are illustrated in
Nonwoven CER fiber mats were prepared by adding about 20 pieces of 0.25 inch chopped CER fibers, including about 17.5% CNS loading, into 30 ml of a whitewater solution contained in a mixing tank. The CER/whitewater solution was mechanically agitated to disperse the CER fibers within the whitewater, forming a slurry. The slurry was then poured into a beaker-in-beaker apparatus, consisting of a large beaker with a small beaker turned upside down on the inside base of the beaker, such that the base of the small beaker extended vertically inside the large beaker.
A medium size beaker, having a hole cut into the bottom of the beaker and a screen disposed over the hole-cut bottom, was then positioned on the base of the second beaker and the slurry was poured over the screen in the third beaker. After the slurry was poured into the beaker-in-beaker formation, the third beaker was pushed down over the base of the second beaker, such that the screen remains resting on the base of the second beaker. The screen was then pulled out with CER fibers disposed thereon, forming a CER fiber web on the screen. The screen and CER fiber web were partially dried using a paper wipe and/or vacuum to remove excess solution. The nonwoven mat was removed from the screen and analyzed for dispersion. The specifics of each trial are listed below.
The above-described process was repeated using various surfactants in a whitewater solution. In a first trial, 5 ml of Surfynol® 465 was mixed with 750 ml deionized water. To this mixture, 3 grams of 0.25 inch chopped CER fibers having about 17.5% CNS loading were added. The dispersion results are illustrated in
The process was then repeated using Pluronic® 10R5 as a surfactant. Specifically, 10 ml Pluronic® 10R5 was added to 750 ml of deionized water. To this solution, about 1 gram of CER fiber with about 17.5% CNS loading was added. The results are illustrated in
The process was repeated again, this time by adding 10 ml Tetronic® 90R4A to about 700-750 ml deionized water. This solution was used in two trials; one incorporated 5.6 grams of CER fiber with about 17.5% CNS loading and one incorporated 3.5 grams of CER fiber with about 17.5% CNS loading. The results of each trial are illustrated in
The above process was once again repeated, including a solution of about 10 ml Triton® X-100 and about 700-750 ml water deionized. To this solution, about 3.5 grams of CER fibers having about 17.5% CNS loading were added. The dispersion results are illustrated in
Generally, the solutions incorporating Surfynol® 465, Pluronic® 10R5, and Tetronic® 90R4 each demonstrated thorough dispersion of the CER fibers. The solution that included Triton® X-100 also demonstrated good dispersion; however, the solution became foamy.
The use of hexane as a dispersion medium was compared to dispersion in water by incorporating about ¼ inch chopped CER fibers, having about 17.5% CNS loading into two mixing tanks. The first mixing tank consisted of water and the second mixing tank included hexane. When the CER fibers were mixed with the water, the fibers floated to the top and would not disperse even when pushed down with a plastic eyedropper. Although when worked with the eyedropper the CER fibers separated into smaller bundles, the fibers would nonetheless float to the top of the mixing tank. In contrast, when the CER fibers were added to the hexane solution, the fibers sank to the bottom of the mixing tank and dispersed when agitated with the eye dropper. The hexane easily wets the CNSs since hexane is very hydrophobic and thus compatible with the CNS on the CER fibers. 5 ml of Surfynol® 465 was then added to both the water and hexane mixing tanks. When added the water tank, the CER fibers sank and could be worked into smaller bundles and dispersed when agitated with a plastic eyedropper. The use of Surfynol° lowers the surface tension of the water, making it “wetter” and more compatible with the CER fibers. Wetting is the ability of a liquid to maintain contact with a solid surface, resulting from intermolecular interactions when the two are brought together. The degree of wetting (wettability) is determined by a force balance between adhesion and cohesive forces. Additionally, when the Surfynol® 465 was added into the hexane tank, the CER fibers dispersed more thoroughly. However, the triple bond portion of the Surfynol® 465 structure is compatible with hexane, and will tend to fall out of the solution, causing the solution to became cloudy. As more hexane is added, the solution becomes continuously more cloudy, which is caused by an incompatibility which indicates that the Surfynol® may not be compatible with the hexane.
Nonwoven CNS mats were prepared by passing a series of individual CER fibers through a whitewater solution bath comprising an aqueous dispersion medium, a binder, and a viscosity modifier. As previously described herein, the CER fibers were then passed through a stripper die. As the CER fibers passed through the die, CNSs were sheared off and collected back into the whitewater solution bath. The CNS/whitewater solution was then introduced into a secondary mixing tank, which included a screen positioned at the bottom of the tank. The whitewater solution was drained from the tank, causing the CNSs to be deposited on the screen, forming a CNS web. The CNS web was then cured, forming a CNS nonwoven mat, as illustrated in
The exemplary CNS nonwoven mat formed was 0.0065 inches thick. The mat was tested for EMI conductivity and resistivity. As illustrated in
The general inventive concepts have been described above both generically and with regard to various exemplary embodiments. Although the general inventive concepts have been set forth in what is believed to be exemplary illustrative embodiments, a wide variety of alternatives known to those of skill in the art can be selected within the generic disclosure.
It will be understood that various changes may be made without departing from the scope of the invention, which is not to be considered limited to what is described in the description. While the present invention has been illustrated by the description of embodiments thereof, and while the embodiments have been described in considerable detail, it is not the intention of the applicants to restrict or in any way limit the scope of the invention to such details. Additional advantages and modifications will readily appear to those skilled in the art. Therefore, the inventive concept, in its broader aspects, is not limited to the specific details, the representative apparatus , and illustrative examples described. Accordingly, departures may be made from such details without departing from the spirit or scope of the applicant's general inventive concept.
While various inventive aspects, concepts and features of the inventions may be described and illustrated herein as embodied in combination in the exemplary embodiments, these various aspects, concepts and features may be used in many alternative embodiments, either individually or in various combinations and sub-combinations thereof. Unless expressly excluded herein all such combinations and sub-combinations are intended to be within the scope of the present inventions. Still further, while various alternative embodiments as to the various aspects, concepts and features of the inventions--such as alternative materials, configurations, methods, devices and components, alternatives as to form, fit and function, and so on--may be described herein, such descriptions are not intended to be a complete or exhaustive list of available alternative embodiments, whether presently known or later developed. Those skilled in the art may readily adopt one or more of the inventive aspects, concepts or features into additional embodiments and uses within the scope of the present inventions even if such embodiments are not expressly disclosed herein. Additionally, even though some features, concepts or aspects of the inventions may be described herein as being a preferred arrangement or method, such description is not intended to suggest that such feature is required or necessary unless expressly so stated. Still further, exemplary or representative values and ranges may be included to assist in understanding the present disclosure, however, such values and ranges are not to be construed in a limiting sense and are intended to be critical values or ranges only if so expressly stated. Moreover, while various aspects, features and concepts may be expressly identified herein as being inventive or forming part of an invention, such identification is not intended to be exclusive, but rather there may be inventive aspects, concepts and features that are fully described herein without being expressly identified as such or as part of a specific invention, the inventions instead being set forth in the appended claims. Descriptions of exemplary methods or processes are not limited to inclusion of all steps as being required in all cases, nor is the order that the steps are presented to be construed as required or necessary unless expressly so stated. The general inventive concepts are not otherwise limited, except for the recitation of the claims set forth below.
This application is 371 of PCT/US2013/057985 filed 4 Sep. 2013 The present application claims priority to U.S. Provisional Application No. 61/696,500 filed Sep. 4, 2012 and U.S. Provisional Application No. 61/733,672 filed Dec. 5, 2012, which are hereby incorporated by reference in their entireties.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2013/057985 | 9/4/2013 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/039509 | 3/13/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5643502 | Nahass et al. | Jul 1997 | A |
6187426 | Jonschker et al. | Feb 2001 | B1 |
6265466 | Glatkowski et al. | Jul 2001 | B1 |
6308509 | Scardino et al. | Oct 2001 | B1 |
6346189 | Dai et al. | Feb 2002 | B1 |
6422450 | Zhou et al. | Jul 2002 | B1 |
6495258 | Chen et al. | Dec 2002 | B1 |
6533882 | Woodside | Mar 2003 | B1 |
6607994 | Soane et al. | Aug 2003 | B2 |
6726989 | Dugan | Apr 2004 | B2 |
6759025 | Hong et al. | Jul 2004 | B2 |
6852410 | Veedu et al. | Feb 2005 | B2 |
6855603 | Choi et al. | Feb 2005 | B2 |
6913075 | Knowles et al. | Jul 2005 | B1 |
6934600 | Jang et al. | Aug 2005 | B2 |
6939492 | Jackson et al. | Sep 2005 | B2 |
6960334 | Matsui et al. | Nov 2005 | B1 |
6986877 | Takikawa et al. | Jan 2006 | B2 |
7033650 | Mauthner et al. | Apr 2006 | B2 |
7048771 | Sun et al. | May 2006 | B2 |
7078098 | Woodside et al. | Jul 2006 | B1 |
7094386 | Resasco et al. | Aug 2006 | B2 |
7115306 | Jeong et al. | Oct 2006 | B2 |
7132161 | Knowles et al. | Nov 2006 | B2 |
7153452 | Ogale et al. | Dec 2006 | B2 |
7163736 | Takahashi | Jan 2007 | B2 |
7169250 | Kim et al. | Jan 2007 | B2 |
7195701 | Byrd et al. | Mar 2007 | B2 |
7229944 | Shao-horn et al. | Jun 2007 | B2 |
7261779 | Gardner | Aug 2007 | B2 |
7268269 | Axtell et al. | Sep 2007 | B2 |
7270795 | Kawakami et al. | Sep 2007 | B2 |
7306828 | Barrera et al. | Dec 2007 | B2 |
7335528 | Rueckes et al. | Feb 2008 | B2 |
7338684 | Curliss et al. | Mar 2008 | B1 |
7384663 | Olry et al. | Jun 2008 | B2 |
7390573 | Korevaar et al. | Jun 2008 | B2 |
7413474 | Liu et al. | Aug 2008 | B2 |
7413723 | Niu et al. | Aug 2008 | B2 |
7468332 | Avloni | Dec 2008 | B2 |
7473153 | Kang et al. | Jan 2009 | B2 |
7501085 | Bodaghi | Mar 2009 | B2 |
7517428 | Nun et al. | Apr 2009 | B2 |
7528538 | Kitamura et al. | May 2009 | B2 |
7553371 | Dubrow et al. | Jun 2009 | B2 |
7553781 | Smith et al. | Jun 2009 | B2 |
7569161 | Nagao et al. | Aug 2009 | B2 |
7579077 | Dubrow et al. | Aug 2009 | B2 |
7585484 | Liu et al. | Sep 2009 | B2 |
7585584 | Choi et al. | Sep 2009 | B2 |
7591915 | Noguchi et al. | Sep 2009 | B2 |
7601421 | Khabashesku et al. | Oct 2009 | B2 |
7601650 | Stevens | Oct 2009 | B2 |
7618599 | Kim et al. | Nov 2009 | B2 |
7619029 | Noguchi et al. | Nov 2009 | B1 |
7628947 | Caldoro et al. | Dec 2009 | B2 |
7635503 | Dominguez et al. | Dec 2009 | B2 |
7638195 | Lichtenhan et al. | Dec 2009 | B2 |
7709087 | Majidi et al. | May 2010 | B2 |
7713589 | Jiang et al. | May 2010 | B2 |
7718220 | D'Silva et al. | May 2010 | B2 |
7731930 | Taki et al. | Jun 2010 | B2 |
7754182 | Jiang et al. | Jul 2010 | B2 |
7763353 | Geohegan et al. | Jul 2010 | B2 |
7776777 | Kim et al. | Aug 2010 | B2 |
7780888 | Van Der et al. | Aug 2010 | B2 |
7785558 | Hikata | Aug 2010 | B2 |
7799246 | Bordere et al. | Sep 2010 | B2 |
7799726 | Pham-Huu et al. | Sep 2010 | B2 |
7811632 | Eres | Oct 2010 | B2 |
7838459 | Nagy et al. | Nov 2010 | B2 |
7838587 | El Bounia et al. | Nov 2010 | B2 |
7897209 | Shibuya et al. | Mar 2011 | B2 |
7897248 | Barrera et al. | Mar 2011 | B2 |
7927701 | Curliss et al. | Apr 2011 | B2 |
7939167 | Kim et al. | May 2011 | B2 |
7977423 | Koning et al. | Jul 2011 | B2 |
7988861 | Pham-Huu et al. | Aug 2011 | B2 |
7988896 | Zhang et al. | Aug 2011 | B2 |
8038908 | Hirai et al. | Oct 2011 | B2 |
8048485 | Shatwell | Nov 2011 | B2 |
8052951 | Menchhofer et al. | Nov 2011 | B2 |
8057778 | Feng et al. | Nov 2011 | B2 |
8080487 | Gardner et al. | Dec 2011 | B2 |
8093176 | Buchholz et al. | Jan 2012 | B2 |
8101150 | Grill et al. | Jan 2012 | B2 |
8158217 | Shah et al. | Apr 2012 | B2 |
8168291 | Shah et al. | May 2012 | B2 |
8248305 | Curran et al. | Aug 2012 | B2 |
8318308 | Hata et al. | Nov 2012 | B2 |
8398949 | Meyer et al. | Mar 2013 | B2 |
8399553 | Koning et al. | Mar 2013 | B2 |
8414964 | Ota et al. | Apr 2013 | B2 |
8518363 | Noda et al. | Aug 2013 | B2 |
8545963 | Alberding et al. | Oct 2013 | B2 |
8580342 | Malecki et al. | Nov 2013 | B2 |
8597587 | Pirard et al. | Dec 2013 | B2 |
8601965 | Shah et al. | Dec 2013 | B2 |
8662449 | Shah et al. | Mar 2014 | B2 |
8665581 | Fleischer et al. | Mar 2014 | B2 |
8753602 | Shanov et al. | Jun 2014 | B2 |
8780526 | Fleischer et al. | Jul 2014 | B2 |
8784937 | Malet et al. | Jul 2014 | B2 |
8787001 | Fleischer et al. | Jul 2014 | B2 |
8845995 | Kauppinen et al. | Sep 2014 | B2 |
8920971 | Stromme et al. | Dec 2014 | B2 |
8945434 | Krause et al. | Feb 2015 | B2 |
9095639 | Ajayan et al. | Aug 2015 | B2 |
20030051458 | Kim | Mar 2003 | A1 |
20050005367 | Xu et al. | Jan 2005 | A1 |
20050025695 | Pradhan | Feb 2005 | A1 |
20050026778 | Axtell et al. | Feb 2005 | A1 |
20050184643 | Cho et al. | Aug 2005 | A1 |
20050287064 | Mayne et al. | Dec 2005 | A1 |
20060008584 | Park et al. | Jan 2006 | A1 |
20060058443 | Ohashi et al. | Mar 2006 | A1 |
20060062944 | Gardner et al. | Mar 2006 | A1 |
20060102462 | Bourdelais et al. | May 2006 | A1 |
20060121275 | Poulin et al. | Jun 2006 | A1 |
20060148349 | Naor et al. | Jul 2006 | A1 |
20060198956 | Eres | Sep 2006 | A1 |
20060238096 | Han et al. | Oct 2006 | A1 |
20060266485 | Knox et al. | Nov 2006 | A1 |
20060280938 | Atkinson | Dec 2006 | A1 |
20070082197 | Ko et al. | Apr 2007 | A1 |
20070128960 | Ghasemi et al. | Jun 2007 | A1 |
20070148365 | Knox et al. | Jun 2007 | A1 |
20070189953 | Bai | Aug 2007 | A1 |
20070218280 | Yabuki et al. | Sep 2007 | A1 |
20070286877 | Axtell et al. | Dec 2007 | A1 |
20080053831 | Byrd et al. | Mar 2008 | A1 |
20080075651 | Higashi et al. | Mar 2008 | A1 |
20080075954 | Wardle et al. | Mar 2008 | A1 |
20080160286 | Asrar et al. | Jul 2008 | A1 |
20080160302 | Asrar et al. | Jul 2008 | A1 |
20080170982 | Zhang et al. | Jul 2008 | A1 |
20080176470 | Filip et al. | Jul 2008 | A1 |
20080182108 | Curliss et al. | Jul 2008 | A1 |
20080213498 | Drzal et al. | Sep 2008 | A1 |
20080214075 | Marte et al. | Sep 2008 | A1 |
20080233298 | Xu et al. | Sep 2008 | A1 |
20080244840 | Raccurt et al. | Oct 2008 | A1 |
20080247938 | Tsai et al. | Oct 2008 | A1 |
20080248230 | Dewitte et al. | Oct 2008 | A1 |
20080251971 | Kim et al. | Oct 2008 | A1 |
20080280202 | Yen et al. | Nov 2008 | A1 |
20080286564 | Tsotsis | Nov 2008 | A1 |
20090004552 | Sun et al. | Jan 2009 | A1 |
20090017301 | Moireau | Jan 2009 | A1 |
20090035473 | Jaworowski et al. | Feb 2009 | A1 |
20090045195 | Djerf et al. | Feb 2009 | A1 |
20090047453 | Folaron et al. | Feb 2009 | A1 |
20090047502 | Folaron et al. | Feb 2009 | A1 |
20090068461 | Reneker et al. | Mar 2009 | A1 |
20090076195 | Nodera et al. | Mar 2009 | A1 |
20090081383 | Alberding et al. | Mar 2009 | A1 |
20090081441 | Shah et al. | Mar 2009 | A1 |
20090084600 | Severance | Apr 2009 | A1 |
20090092832 | Moireau | Apr 2009 | A1 |
20090121196 | El Bounia | May 2009 | A1 |
20090121613 | Taki et al. | May 2009 | A1 |
20090136707 | Ueno | May 2009 | A1 |
20090148637 | Zhang et al. | Jun 2009 | A1 |
20090148760 | Justice | Jun 2009 | A1 |
20090159228 | Law | Jun 2009 | A1 |
20090176100 | Higashi et al. | Jul 2009 | A1 |
20090186214 | Lafdi et al. | Jul 2009 | A1 |
20090217812 | Whitaker et al. | Sep 2009 | A1 |
20090220409 | Curliss et al. | Sep 2009 | A1 |
20090221201 | Carter et al. | Sep 2009 | A1 |
20090229760 | Hamlyn et al. | Sep 2009 | A1 |
20090272935 | Hata et al. | Nov 2009 | A1 |
20090311166 | Hart et al. | Dec 2009 | A1 |
20090321687 | Kim et al. | Dec 2009 | A1 |
20100009160 | Noguchi et al. | Jan 2010 | A1 |
20100009204 | Noguchi et al. | Jan 2010 | A1 |
20100010186 | Taniguchi et al. | Jan 2010 | A1 |
20100021682 | Liang et al. | Jan 2010 | A1 |
20100024975 | Hecht | Feb 2010 | A1 |
20100029475 | Pradhan | Feb 2010 | A1 |
20100032629 | Brule et al. | Feb 2010 | A1 |
20100038602 | Plee | Feb 2010 | A1 |
20100040887 | Han et al. | Feb 2010 | A1 |
20100074834 | Kim | Mar 2010 | A1 |
20100077823 | Champion et al. | Apr 2010 | A1 |
20100080978 | Jerome et al. | Apr 2010 | A1 |
20100081351 | Hong et al. | Apr 2010 | A1 |
20100084616 | Brule et al. | Apr 2010 | A1 |
20100098113 | Nicholson | Apr 2010 | A1 |
20100098931 | Daniel et al. | Apr 2010 | A1 |
20100104868 | Lee et al. | Apr 2010 | A1 |
20100120969 | Tsotsis | May 2010 | A1 |
20100126134 | Atkinson et al. | May 2010 | A1 |
20100143701 | Zhu et al. | Jun 2010 | A1 |
20100159240 | Shah et al. | Jun 2010 | A1 |
20100178825 | Shah et al. | Jul 2010 | A1 |
20100188833 | Liang et al. | Jul 2010 | A1 |
20100192851 | Shah | Aug 2010 | A1 |
20100196250 | Derre et al. | Aug 2010 | A1 |
20100196697 | D'Silva et al. | Aug 2010 | A1 |
20100200800 | Fujimura et al. | Aug 2010 | A1 |
20100206504 | Akiyama et al. | Aug 2010 | A1 |
20100210159 | Zhu | Aug 2010 | A1 |
20100210781 | McAndrew et al. | Aug 2010 | A1 |
20100221424 | Malecki et al. | Sep 2010 | A1 |
20100224129 | Malecki et al. | Sep 2010 | A1 |
20100226848 | Nakayama et al. | Sep 2010 | A1 |
20100227058 | Zhang et al. | Sep 2010 | A1 |
20100227134 | Shah et al. | Sep 2010 | A1 |
20100227153 | Okoli et al. | Sep 2010 | A1 |
20100233366 | Fukushima et al. | Sep 2010 | A1 |
20100254885 | Menchhofer et al. | Oct 2010 | A1 |
20100258111 | Shah et al. | Oct 2010 | A1 |
20100259752 | Shah et al. | Oct 2010 | A1 |
20100260931 | Malecki et al. | Oct 2010 | A1 |
20100260933 | Malecki et al. | Oct 2010 | A1 |
20100260998 | Waicukauski et al. | Oct 2010 | A1 |
20100270069 | Shar | Oct 2010 | A1 |
20100271253 | Shah et al. | Oct 2010 | A1 |
20100272891 | Malecki et al. | Oct 2010 | A1 |
20100276072 | Shah et al. | Nov 2010 | A1 |
20100279010 | Malecki et al. | Nov 2010 | A1 |
20100279569 | Shah et al. | Nov 2010 | A1 |
20100282668 | Cooper et al. | Nov 2010 | A1 |
20100285972 | Dubrow et al. | Nov 2010 | A1 |
20100291297 | Nagasaka et al. | Nov 2010 | A1 |
20100296996 | Ohta et al. | Nov 2010 | A1 |
20100297441 | Zhu | Nov 2010 | A1 |
20100305298 | Kim et al. | Dec 2010 | A1 |
20100310851 | Lai et al. | Dec 2010 | A1 |
20110024409 | Shah et al. | Feb 2011 | A1 |
20110024694 | Shah | Feb 2011 | A1 |
20110028308 | Shah | Feb 2011 | A1 |
20110089365 | Oriji et al. | Apr 2011 | A1 |
20110089958 | Malecki et al. | Apr 2011 | A1 |
20110123735 | Shah et al. | May 2011 | A1 |
20110124253 | Shah et al. | May 2011 | A1 |
20110132245 | Shah et al. | Jun 2011 | A1 |
20110133031 | Shah et al. | Jun 2011 | A1 |
20110135491 | Shah et al. | Jun 2011 | A1 |
20110143087 | Alberding et al. | Jun 2011 | A1 |
20110151254 | Fugetsu et al. | Jun 2011 | A1 |
20110168083 | Shah et al. | Jul 2011 | A1 |
20110168089 | Shah et al. | Jul 2011 | A1 |
20110168957 | Lonjon et al. | Jul 2011 | A1 |
20110171469 | Shah et al. | Jul 2011 | A1 |
20110174519 | Shah et al. | Jul 2011 | A1 |
20110180478 | Shah et al. | Jul 2011 | A1 |
20110186775 | Shah et al. | Aug 2011 | A1 |
20110204296 | Conzen et al. | Aug 2011 | A1 |
20110216476 | Fleischer et al. | Sep 2011 | A1 |
20110217618 | Liu et al. | Sep 2011 | A1 |
20110242731 | Fleischer et al. | Oct 2011 | A1 |
20110297892 | Shah et al. | Dec 2011 | A1 |
20110304964 | Fleischer et al. | Dec 2011 | A1 |
20110311724 | Jensen et al. | Dec 2011 | A1 |
20110311811 | Collette et al. | Dec 2011 | A1 |
20120000691 | Shah et al. | Jan 2012 | A1 |
20120052363 | Fleischer | Mar 2012 | A1 |
20120058296 | Shah et al. | Mar 2012 | A1 |
20120058352 | Shah et al. | Mar 2012 | A1 |
20120058889 | Nishino et al. | Mar 2012 | A1 |
20120064332 | Malet et al. | Mar 2012 | A1 |
20120065300 | Shah et al. | Mar 2012 | A1 |
20120070667 | Malet et al. | Mar 2012 | A1 |
20120073568 | Kapelanczyk et al. | Mar 2012 | A1 |
20120107221 | Bai | May 2012 | A1 |
20120112133 | Bahnmuller et al. | May 2012 | A1 |
20120112134 | Jung et al. | May 2012 | A1 |
20120141880 | Burgess et al. | Jun 2012 | A1 |
20120149824 | Hocke et al. | Jun 2012 | A1 |
20120160966 | Shah et al. | Jun 2012 | A1 |
20120164429 | Shah et al. | Jun 2012 | A1 |
20120189846 | Shah et al. | Jul 2012 | A1 |
20120237680 | Brahim et al. | Sep 2012 | A1 |
20120247800 | Shah et al. | Oct 2012 | A1 |
20120263935 | Ledford et al. | Oct 2012 | A1 |
20130071565 | Malecki et al. | Mar 2013 | A1 |
20130101495 | Peterson et al. | Apr 2013 | A1 |
20130143087 | Liu et al. | Jun 2013 | A1 |
20130236631 | Malecki et al. | Sep 2013 | A1 |
20140009599 | Ledford et al. | Jan 2014 | A1 |
20140065447 | Liu et al. | Mar 2014 | A1 |
20140093728 | Shah et al. | Apr 2014 | A1 |
20140094541 | Shah et al. | Apr 2014 | A1 |
20140097917 | Shah et al. | Apr 2014 | A1 |
20140099493 | Liu et al. | Apr 2014 | A1 |
20140151111 | Shah et al. | Jun 2014 | A1 |
20140154412 | Malecki et al. | Jun 2014 | A1 |
20140295098 | Shanov et al. | Oct 2014 | A1 |
Number | Date | Country |
---|---|---|
1448335 | Oct 2003 | CN |
1618733 | May 2005 | CN |
1631829 | Jun 2005 | CN |
1723171 | Jan 2006 | CN |
1724343 | Jan 2006 | CN |
1868867 | Nov 2006 | CN |
1877774 | Dec 2006 | CN |
11070250 | Nov 2007 | CN |
101270470 | Sep 2008 | CN |
101283027 | Oct 2008 | CN |
101289329 | Oct 2008 | CN |
101304650 | Nov 2008 | CN |
11314649 | Dec 2008 | CN |
11350412 | Jan 2009 | CN |
101381080 | Mar 2009 | CN |
11412592 | Apr 2009 | CN |
101407587 | Apr 2009 | CN |
101409999 | Apr 2009 | CN |
21304296 | Sep 2009 | CN |
101608066 | Dec 2009 | CN |
11698975 | Apr 2010 | CN |
101723349 | Jun 2010 | CN |
101853727 | Oct 2010 | CN |
101856614 | Oct 2010 | CN |
101955648 | Jan 2011 | CN |
101974179 | Feb 2011 | CN |
102110489 | Jun 2011 | CN |
102115580 | Jul 2011 | CN |
102333645 | Jan 2012 | CN |
102461361 | May 2012 | CN |
102470546 | May 2012 | CN |
102005023764 | Nov 2006 | DE |
102008045742 | Mar 2010 | DE |
1331202 | Jul 2003 | EP |
1930364 | Jun 2008 | EP |
2000495 | Dec 2008 | EP |
2469728 | Aug 2010 | GB |
05018131 | Mar 2007 | IN |
05030631 | Aug 2007 | IN |
404DEL2007 | Sep 2008 | IN |
08019001 | Mar 2010 | IN |
3325MUM2010 | Mar 2011 | IN |
262323 | Aug 2014 | IN |
267207 | Jul 2015 | IN |
2005256221 | Sep 2005 | JP |
2005256222 | Sep 2005 | JP |
2005264400 | Sep 2005 | JP |
2008112163 | May 2008 | JP |
2009067663 | Apr 2009 | JP |
2010059561 | Mar 2010 | JP |
20007014484 | Aug 2001 | KR |
20020005325 | Jan 2002 | KR |
20017011150 | Mar 2002 | KR |
100372332 | Feb 2003 | KR |
20030019527 | Mar 2003 | KR |
100385867 | Jun 2003 | KR |
20030013041 | Sep 2004 | KR |
100490472 | May 2005 | KR |
1020050002864 | Oct 2005 | KR |
20040056953 | Jan 2006 | KR |
100665676 | Jan 2007 | KR |
100744517 | Apr 2007 | KR |
20070096299 | Oct 2007 | KR |
100792782 | Jan 2008 | KR |
0829001 | May 2008 | KR |
20080047015 | May 2008 | KR |
1020080039227 | May 2008 | KR |
9104210 | Oct 2009 | KR |
20090124277 | Dec 2009 | KR |
20100019821 | Feb 2010 | KR |
20100034238 | Apr 2010 | KR |
100973053 | Jul 2010 | KR |
20100133075 | Dec 2010 | KR |
20110035402 | Apr 2011 | KR |
20110016725 | Oct 2011 | KR |
20110115954 | Oct 2011 | KR |
20100059133 | Dec 2011 | KR |
200711995 | Apr 2007 | TW |
200730245 | Aug 2007 | TW |
200808651 | Feb 2008 | TW |
200828344 | Jul 2008 | TW |
0833409 | Aug 2008 | TW |
0833861 | Aug 2008 | TW |
200833409 | Aug 2008 | TW |
200846287 | Dec 2008 | TW |
200911920 | Mar 2009 | TW |
200927690 | Jul 2009 | TW |
200938373 | Sep 2009 | TW |
200947466 | Nov 2009 | TW |
201011379 | Mar 2010 | TW |
201012171 | Mar 2010 | TW |
9811299 | Mar 1998 | WO |
2006115486 | Nov 2006 | WO |
2008065121 | Jun 2008 | WO |
2008070482 | Jun 2008 | WO |
2008070926 | Jun 2008 | WO |
2009110885 | Sep 2009 | WO |
2010007163 | Jan 2010 | WO |
2010106152 | Sep 2010 | WO |
Entry |
---|
Carbon Enhanced Reinforcements for Multifunctional Composites; Shah et al; Lockheed Martin-Owens Corning presentation; Nov. 10, 2010 (16 pages). |
Carbon Enhanced Reinforcements (CER) for EMI Shielding Applications; Owens Corning; Oct. 2011 (16 pages). |
Carbon Enhanced Reinforcements Electrical, Thermal and Mechanical Composite Performance; Hartman et al; Applied Nanostructured Solutions LLC—Owens Corning presentation; Feb. 2012 (32 pages). |
Composite Solutions—Multifunctional Composites—Electrical, Thermal and Mechanical Behavior; JEC 2012 Conference; Mar. 2012 (21 pages). |
Composite Solutions—Carbon Enhanced Reinforcements (CER); Owens Corning Customer Presentation; Mar. 16, 2012 (10 pages). |
Composite Solutions—Carbon Enhanced Reinforcements (CER); Owens Corning Customer Presentation; Mar. 23, 2012 (12 pages). |
Composite Solutions—Multifunctional Compounds Using Carbon Nanostructure Enhanced Glass Reinforcements in Electromagnetic Compatibility Applications; VanHouten et al.; ANTEC presentation; Apr. 2, 2012 (18 pages). |
Carbon Nanostructure Enhanced Reinforcements in Electromagnetic Compatibility Applications; Hartman et al; Aug. 2012 (6 pages). |
Nanotechnology: Into the realm of real; Case study from High-Performance Composites May 2011, Sara Black; Posted May 2, 2011 (3 pages). |
Effect of the Growth Tamperature on the Diameter Distribution and Chirality of Single-Wall Carbon Nanotubes; Bandow et al; Physical Review Letters; 1998 The American Physical Society (4 pages). |
Alignment of carbon nanotubes in a polymer matrix by mechanical stretching; Jin et al; Applied Physics Letters, vol. 73, No. 9; Aug. 31, 1998; 1998 American Institute of Physics (3 pages). |
Diameter control and emission properties of carbon nanotubes grown using chemical vapor deposition; Kaatz et al; Materials Science & Engineering C23 (2008) (4 pages). |
Growth mechanisms and diameter evolution of single wall carbon nanotubes; Alverez et al; Chemical Physics Letters 342 (2001) 7-14 (8 pages). |
Large-Scale Synthesis of Aligned Carbon Nanotubes; Li et al; Science, vol. 274, Dec. 6, 1996 (3 pages). |
A novel method of varying the diameter of carbon nanotubes formed on an Fe-supported Y zeolite catalyst; Zhang et al; Microporous and Mesoporous Materials 29 (1999) 383-388 (6 pages). |
Carbon Enhanced Reinforcements for Multifunctional Composites; Owens Corning/Lockheed Martin presentation; 2010 (15 pages). |
Diameter control of single-walled carbon nanotubes; Kataura et al; Carbon 38 (2000) 1691-1697) (7 pages). |
Diameter-controlled synthesis of carbon nanotubes; Cheung et al; J. Phys. Chem B 2002 (5 pages). |
Raman spectroscopy and imaging of ultralong carbon nanotubes; Doom et al; J. Phys. Chem. B 2005 (8 pages). |
Theoretical study of the stabiity of defects in single-walled carbon nanotubes as a function of their distance from the nanotube end; Ding; Physical Review B 72. 245409 (2005); published Dec. 7, 2005 (7 pages). |
Nanoscale electronic devices on carbon nanotubes; Collins et al; Nanotechnology 9 (1998) (11 pages). |
A review of vapor grown carbon nanofiber/polymer conductive composites; Al-Saleh et al; Science Direct; (21 pages). |
Carbon nanofiber; Wikipedia (4 pages). |
Office action from Chinese Application No. 201380053995.1 dated Aug. 10, 2016. |
Number | Date | Country | |
---|---|---|---|
20150299956 A1 | Oct 2015 | US |
Number | Date | Country | |
---|---|---|---|
61696500 | Sep 2012 | US | |
61733672 | Dec 2012 | US |