During completion of a wellbore, casing is cemented in a borehole using cement. The bottom hole assembly (BHA) of the casing typically has a shoe track, which includes a float collar, a length of tubing, and a float shoe on the casing's toe. Once a cementing operation is done, the shoe track is drilled out using a drill string run down the casing to drill out the float shoe, the cement plugs, and residual cement in the shoe track.
For example,
Eventually as shown in
Behind the cement slurry C, a top wiper plug 50 is pumped down the casing string 12 with a displacement fluid D. The wiper plug 50 keeps the displacement fluid D from mixing with the cement slurry C, and the plug 50 wipes the interior of the casing string 12. As shown in
In some installations, operators can determine that the toe of the assembly 10 and the shoe track T have been properly cemented by detecting a bump indication when the wiper plug 50 engages the bottom plug 40. For example, a calculated volume of displacement fluid D is pumped behind the wiper plug 50 and the cement C during operation. Assuming the cementing operation is successful, the wiper plug 50 reaches the bottom plug 40 when the calculated volume of the displacement fluid D has been pumped. In response, operators can determine that the cementing job is done and that the shoe track T is full of cement. At this point, operators can achieve a positive casing test (performed on the wet cement).
As can be seen in the standard operating procedure outlined above, the shoe track T having the length of tubing 14 between the float collar 30 and float shoe 20 is filled with cement. This is typically desired as part of the standard procedures so operators can ensure that the cement in the annulus of the borehole 15 toward the toe of the casing 12 is well cemented. In many installations, the shoe track T can encompass a length L of about 120 ft of tubing 14 filled with cement. The plugs 40, 50 used during the cementing operation are cemented in place.
In the end, operators want the toe to be competently cemented so a wash-out zone can be minimized and so a competent formation integrity test (FIT) can be performed against a newly drilled formation below the cemented casing 12. For this reason, the standard operating procedure discussed above fills the shoe track T with cement to reduce the chance of having a wet shoe form after cementing. Additionally, filling the shoe track T with cement allows operators to obtain reliable results from a casing integrity test after the cementation is done.
Finally, as shown in
As will be appreciated, rig time presents one of the highest costs for a drilling operation so reducing rig time brings significant value to the operators. The conventional shoe track T full of cement currently produced in the standard procedures requires an extending period of rig time and can lead to excess bit wear inside the casing string 12. What is needed is a way to reduce the rig time required once a cementing operation is completed.
The subject matter of the present disclosure is directed to overcoming, or at least reducing the effects of, one or more of the problems set forth above.
A method disclosed herein is used for cementing casing in a borehole with cement. The method comprises: pumping at least one plug down the casing behind the cement, the casing having a shoe track between a float valve and a shoe of the casing; landing the at least one plug at the float valve; releasing an internal component of the float valve by building-up pressure in the casing behind the internal component up to a release threshold; and displacing at least some of the cement in the shoe track out of the shoe to the borehole by pumping the at least one plug and the internal component toward the shoe.
An assembly disclosed herein is used for cementing casing in a borehole with cement. The assembly comprises a float collar, a shoe, at least one plug, and a temporary retainer. The float collar is configured to install on the casing, and the shoe is configured to install downhole of the float collar on a shoe track of the casing. The float collar has an internal component with a one-way valve, which is configured to permit downhole fluid communication and to prevent uphole fluid communication. The at least one plug is configured to land at the float collar and is configured to close the downhole fluid communication through the one-way valve. Meanwhile, the temporary retainer is configured to temporarily retain the internal component in the float collar. In response to a release threshold, the temporary retainer is configured to release the internal component from the float collar. The internal component is configured to displace at least a portion of the cement from the shoe track out of the shoe.
The foregoing summary is not intended to summarize each potential embodiment or every aspect of the present disclosure.
In many installations, multiple plugs are used during the cementing operations, including a bottom plug 40 used ahead of cement slurry pumped down the casing string 12, and a top plug 50 used behind the cement slurry. This type of installation using two plugs 40, 50 is described here. Different installations can more generally use one or more plugs. Accordingly, the teachings of the present disclosure can be applied to installations that use at least one plug for the cementing operation.
During the cementing operation as shown in
Eventually as shown in
The top wiper plug 50 is pumped behind the cement slurry C with a displacement fluid D. The wiper plug 50 keeps the displacement fluid D from mixing with the cement slurry C and wipes the interior of the casing string 12. As shown in
When the wiper plug 50 bumps on the float collar 110, a bump indication assures the operator that the shoe track T and the toe of the casing string 12 have been cemented. For example, during proper operations, the wiper plug 50 is pumped to the float collar 110 using a calculated volume of displacement fluid D. When the wiper plug 50 has been pumped with an acceptable value of this calculated volume, a pressure response is detected at surface, which can indicate to the operators that the wiper plug 50 has bumped/located on the bottom plug 40. This in turn indicates that the shoe track T is full of cement. At this point, operators can then achieve a positive casing test performed on the wet cement.
Should operators not see a bump indication from the wiper plug 50 engaging the float collar 110, the operators can pump a calculated displacement volume equal to half of the shoe track T in capacity. If a bump indication still does not occur, then there is likely no pressure containment point to perform a pressure test of the casing against. Remedial actions would be necessary because some form of a leak is present.
In the present assembly 100, the float collar 110 includes an internal component 120 having the check valve 122 and other features. The internal component 120 can be released from the float collar 110 by releasing a temporary support or retainer 124 between the internal component 120 and the external housing of the float collar 110. Releasing the temporary retainer 124 can involve shifting collets; releasing dogs; breaking detent rings; shearing screws, pins, or other elements; or shearing a shouldered material.
Continuing with the operations as shown in
A second bump/location indication can then be obtained at surface when the float collar's internal component 120 engages the float shoe 20. Ultimately, the internal component 120 can latch in the locator 25 in the float shoe 20 to provide a secondary barrier. For example, the internal component 120 can include a latch ring, a locator dog, or other locking feature that engages in a profile, slot, or the like in the float shoe 20. In response to the second bump indication, operators can determine that the cementing job is done. As a result of the procedures performed with this assembly 100, a considerably shorter shoe track T of about 2 to 4 ft. is left to be drilled out, instead of the conventional shoe track of 45 to 130 ft that needs to be drilled out when standard procedures are used.
Once landed, the float collar's internal component 120 and the plugs 40, 50 can once again hold back pressure. Once the cement sets, operators can then achieve another positive casing test on the competent cement by using a drilling BHA in the hole. Finally, as shown in
As noted in the background, the standard procedure leaves the conventional shoe track full of cement to reduce the chances of having a wet shoe. In contrast, the assembly 100 of the present disclosure reduces the length of the shoe track T that needs to be drilled out while giving operators bump/location indications to assess proper cementing of the toe of the casing string 12. The assembly 100 still includes both the float collar 110 and the float shoe 20, but the assembly 100 transitions the shoe track T from the conventional length of about 130 ft. down to about 3 to 5 ft.
In this arrangement, the top and bottom plugs 40, 50 are part of a sub-surface release system (not shown) having a landing string disposed further uphole in the casing string 12. Top and bottom darts 46, 56 are used to activate and launch the respective top and bottom plugs 40, 50 from the release system. To do this, the darts 46, 56 separate fluids in the landing string of the release system (not shown) and activate a releasing mechanism in the respective plugs 40, 50 to launch them in the casing string 12.
Initially, the bottom dart 46 is pumped from the surface through the system's landing string in front of the cement slurry. The dart 46 latches into the bottom plug 40 in the sub-surface release system (not shown), and the bottom plug 40 is released to pass through the casing string 12 to land on the float collar 110, as shown in
Eventually, the top dart 56 is pumped through the system's landing string behind the cement slurry. The dart 56 latches into the top plug 50 in the sub-surface release system (not shown) to release the top plug 50. After release, the top plug 50 wipes the casing string 12 before landing/bumping on top of the bottom plug 40, as shown in
As best shown in
In other configurations, the internal component 120 may not have a separate shell 126 and filler 128 of different materials. Instead, the internal component 120 can be composed of a suitable material that can support the check valve 122, can be displaced from the housing of the float valve 120, and can be drilled out at the end of operations.
Continuing with the operations as shown in
A second bump/location indication can then be obtained at surface when the internal component 120 and plugs 40, 50 engage the float shoe 20. Ultimately, a latch 125, such as a latch ring, a locator dog, or other locking feature, on the shell 126 can latch in a locator profile 25 or the like in the housing of the float shoe 20.
Once the cement sets, the shell 126, the filler 128, the check valve 122, and the plugs 40, 50 can once again hold back pressure so operators can achieve a positive casing test on competent cement by using a drilling BHA DB in the casing string 12. The entire bottom hole assembly can then be drilled out to remove the plugs 40, 50, the shell 126, the filler 128, the check valve 122, and the float shoe's valve 22 from the shoe track T.
The foregoing description of preferred and other embodiments is not intended to limit or restrict the scope or applicability of the inventive concepts conceived of by the Applicants. It will be appreciated with the benefit of the present disclosure that features described above in accordance with any embodiment or aspect of the disclosed subject matter can be utilized, either alone or in combination, with any other described feature, in any other embodiment or aspect of the disclosed subject matter.
In exchange for disclosing the inventive concepts contained herein, the Applicants desire all patent rights afforded by the appended claims. Therefore, it is intended that the appended claims include all modifications and alterations to the full extent that they come within the scope of the following claims or the equivalents thereof.