This application relates generally to thermodynamic air engines. More specifically, this application relates to controlled motion of a displacer within a thermodynamic air engine.
The use of thermodynamic techniques for converting heat energy into mechanical, electrical, or some other type of energy has a long history. The basic principle by which such techniques function is to provide a large temperature differential across a thermodynamic engine and to convert the heat represented by that temperature differential into a different form of energy. Typically, the heat differential is provided by hydrocarbon combustion, although the use of other techniques is known. Using such systems, power is typically generated with an efficiency of about 30%, although some internal-combustion engines have efficiencies as high as 50% by running at very high temperatures.
Thermodynamic air engines are one class of thermodynamic engine in which a displacer acts to circulate a displacer fluid within a working chamber comprised by the air engine. A specific type of air engine that meets this criterion is a “Stirling engine,” but other types of air engines also share this characteristic.
Throughout industrial history, Stirling engines and other types of air engines have been used for applications, such as pumping water and powering machinery. Recent uses of the Stirling engine have been in electrical power generation. Stirling-engine-powered generators have been installed on submarines as well as on satellites. Portable, external-combustion power-generation units have been produced in quantity. Large-scale solar-heated Stirling cycle power generation units have been shown to produce power reliably on a commercial scale.
While various power-generation techniques exist in the art, there is still a general need for the development of alternative techniques for generating power. For example, while the history of thermodynamic air engines is long, there remain a variety of inefficiencies associated with their operation. There is accordingly still a need in the art for improved methods of operating thermodynamic air engines.
Embodiments of the invention accordingly provide methods and apparatus for generating power. A thermodynamic air engine is configured to convert heat provided in the form of a temperature differential to mechanical energy. The thermodynamic air engine comprises a working fluid and a displacer adapted to move through the working fluid. The temperature differential is established across the thermodynamic air engine between a first side of the engine and a second side of the engine. The displacer is directly actuated to move the displacer cyclically through the working fluid in accordance with a defined motion pattern.
The motion pattern may comprise a first half cycle effected over a first time. The first half cycle comprises motion of the displacer from a first position proximate the first side to a second position proximate the second side effected over a first motion time small in comparison to the first time. It also comprises maintenance of the displacer substantially at the second position for a remainder of the first time. The motion pattern may also comprise a second half cycle effected over a second time. The second half cycle comprises motion of the displacer from the second position to the first position over a second motion time small in comparison to the second time. It also comprises maintenance of the displacer substantially at the first position for a remainder of the second time. In some embodiments, the first time is substantially equal to the second time.
The mechanical energy generated with the thermodynamic air engine may be converted to electrical energy in some embodiments. In addition, the motion pattern may be designed to optimize an operational efficiency of the thermodynamic air engine. In certain embodiments, the displacer comprises a thermally insulating material.
There are a variety of ways in which the direct actuation may be achieved in specific embodiments. For instance, in one embodiment, the thermodynamic air engine further comprises an electronic solenoid interfaced with the displacer so that the displacer may be directly actuated by operating the electronic solenoid to move the displacer. In another embodiment, the thermodynamic engine further comprises a linear stepper motor interfaced with the displacer so that the displacer may be directly actuated by operating the linear stepper motor to move the displacer. In a further embodiment, the thermodynamic engine further comprises a rotary motor interfaced with the displacer so that the displacer may be directly actuated by operating the rotary motor to move the displacer. Examples of rotary motors that may be used include a rotary dc motor, a rotary ac motor, and a rotary stepper motor, among others. In some instances, the displacer may be directly actuated by compressing a fluid and directing the compressed fluid to move the displacer. A suitable fluid is air.
A further understanding of the nature and advantages of the present invention may be realized by reference to the remaining portions of the specification and the drawings wherein like reference numerals are used throughout the several drawings to refer to similar components. In some instances, a sublabel is associated with a reference numeral and follows a hyphen to denote one of multiple similar components. When reference is made to a reference numeral without specification to an existing sublabel, it is intended to refer to all such multiple similar components.
Embodiments of the invention provide for real-time external programmable control of the motion of a displacer within a thermodynamic air engine. A Stirling engine is sometimes referred to in the art as an “external combustion engine” and typically operates by burning a fuel source to generate heat that increases the temperature of a working fluid, which in turn performs work. The operation of one type of conventional Stirling engine is illustrated in
The mechanical energy produced by the Stirling engine 100 is indicated by positions of pistons 112 and 116. To use or retain the energy, the pistons 112 and 116 may be connected to a common shaft that rotates or otherwise moves in accordance with the changes in piston positions that result from operation of the engine 100. A confined space between the two pistons 112 and 116 is filled with a compressible fluid 104, usually a compressible gas. The temperature difference is effected by keeping one portion of the fluid 104, in this instance the portion on the left, in thermal contact with a heat source and by keeping the other portion, in this instance the portion on the right, in thermal contact with a heat sink. With such a configuration, piston 112 is sometimes referred to in the art as an “expansion piston” and piston 116 is sometimes referred to as a “compression piston.” The portions of the fluid are separated by a regenerator 108, which permits appreciable heat transfer to take place to and from the fluid 104 during different portions of the cycle described below. This heat transfer either preheats or precools the fluid 104 as it transitions from one chamber to the other.
When the engine is in the position shown in
The transition to the configuration shown in
The portion of the cycle to
Finally, a return is made to the configuration of
The net result of the cycle is a correspondence between (1) the mechanical movement of the pistons 112 and 116 and (2) the absorption of heat Qh at temperature Th and the rejection of heat Qc at temperature Tc. The work performed by the pistons 112 and 116 is accordingly W=|Qh−Qc|.
The type of Stirling engine illustrated in
One alternative configuration that is sometimes referred to as having a “beta” type of configuration provides two pistons within a common cylinder and connected with a common crankshaft. Such a configuration is illustrated schematically in
During the power stroke illustrated in
Another alternative configuration for a Stirling engine uses a displacer-type of engine, an example of which is illustrated schematically in
With the displacer-type of Stirling engine 300, fluid 324 that expands with a heat-energy increase is held within an enclosure that also includes a displacer 328. To simplify the illustration, a regenerator is not shown explicitly in the drawings, but may be included to improve the efficiency of the engine. The fluid 324 is typically a gas. One or both sides of the engine 300 are maintained in thermal contact with respective thermal reservoirs to maintain the temperature differential across the engine. In the illustration, the top of the engine 300 corresponds to the cold side and the bottom of the engine 300 corresponds to the hot side. A displacer piston 304 is provided in mechanical communication with the displacer 328 and a power piston 308 is provided in mechanical communication with the fluid 324. Mechanical energy represented by the motion of the power piston 308 may be extracted with any of a variety of mechanical arrangements, with the drawing explicitly showing a crankshaft 316 in mechanical communication with both the displacer and power pistons 304 and 308. The crankshaft is illustrated as mechanically coupled with a flywheel 320, a common configuration. This particular mechanical configuration is indicated merely for illustrative purposes since numerous other mechanical arrangements will be evident to those of skill in the art that may be coupled with the power piston 308 in extracting mechanical energy. In these types of embodiments, the displacer 328 may also have a regenerator function to permit heat transfer to take place to and from the fluid 324 during different portions of the cycle. Another arrangement common in these types of embodiments comprises a displacer that forms a seal with the walls of the expansion chamber, and whose motion forces the fluid through guides that lead into the other half of the chamber past a regenerator.
When the displacer Stirling engine 300 is in the configuration shown in
In
This basic cycle is repeated in converting thermal energy to mechanical energy. In each cycle, the pressure increases when the displacer 328 is in the top portion of the enclosure 302 and decreases when the displacer 328 is in the bottom portion of the enclosure 302. Mechanical energy is extracted from the motion of the power piston 308, which is out of phase with the displacer piston 304, the preferred phase difference depending in many respects on specific engine parameters.
Embodiments of the invention are described below with specific reference to displacer-type Stirling engines. This is intended to be exemplary rather than limiting since the invention may be more generally adapted to any type of air engine. For example, while the embodiments below describe affecting the motion of a single displacer, the same principles may be applied in which multiple mechanical components are to be moved. For instance, the invention may be applied to the two-piston alpha-type Stirling engine described in connection with
There are a number of different methods that are known in the art for displacer actuation, and embodiments of the invention may be applied to the the different methods. For example, a first category of methods for displacer actuation uses a mechanical linkage to drive the displacer. Such methods typically use a spinning crankshaft coupled with the mechanical linkage. Examples of suitable mechanical linkage include a connecting rod link; a connecting rod link with a bellcrank; a yoke, examples of which include Scotch or Ross yokes; rhombic drives; and the like.
This category of methods is characterized by a number of disadvantages. First, there are usually a relatively large number of sliding and rolling interfaces within the mechanical linkage. Each sliding or rolling interface adds to the overall frictional loss. Second, most mechanical linkages result in a sinusoidal motion of the displacer. This general shape is shown in
The second category of methods for displacer actuation may be described as using a “free-piston” design family, which is sometimes described in the art as using “Ringbom” control. Such methods use a low-friction piston that is actuated by the pressure of the working gas within the thermodynamic air engine. These methods are generally characterized by less friction than mechanical linkages because the only interface relative to the displacer is provided by a single low-friction sliding piston. In addition, the Ringbom methods produce more favorable displacer motion that more closely resembles the trapezoidal motion shown in
Both the mechanical linkage and Ringbom methods lack real-time control of the displacer motion. In both of these methods, the displacer moves in unison with the motion of the crankshaft according to the natural speed of the engine. As the engine is running, there is no way to alter the motion of the displacer to better control the engine speed or performance.
This disadvantage is overcome in embodiments of the invention, which provide methods of real-time displacer control in thermodynamic air engines. A first embodiment is illustrated schematically in
An electrically controlled solenoid 512 is provided to move the displacer 508 to alternate sides of the engine 500 in accordance with a desired motion profile. For example, in one particular implementation, the solenoid 512 is used to move the displacer 508 quickly, with the transition occurring over a time period that is small relative to the time of one half of one cycle of the engine. For the remainder of the time of the time, the displacer 508 is held substantially stationary at one end of the engine 500. This allows the thermodynamic processes within the engine to follow the ideal Carnot cycle more closely. In specific embodiments, the displacer comprises a thermally insulating material. This may further enhance the performance of the engine as the displacer is held substantially stationary against the thermal places defining part of the chamber 504. This may further increase the overall power output of the engine. In various alternative embodiments, a linear stepper motor, a pneumatic piston, or a hydraulic piston may be substituted for the solenoid.
The ability provided by such embodiments to control the displacer motion externally and arbitrarily while the engine is running may be manifested by an ability to modify the motion of the displacer during operation of the engine to achieve the best performance of the engine given specific conditions of the driven load. For example, as the load on the engine changes, the temporal motion trajectory of the displacer, and thus of the power piston, could be altered to achieve improved, even optimal, performance. In addition, the ability to control the speed of the displacer electronically allows the ability to control the speed of the engine itself by acting as a pacing mechanism for the thermodynamic cycle.
Other embodiments of the invention are illustrated schematically in
In certain instances, electromagnetic mechanisms may be used to drive the displacer. For instance, magnets or electrically charged components may be provided in addition to electromagnetic components comprised by the motors. Furthermore, control mechanisms beyond electronic control may be used in some embodiments, examples of which include the use of hydraulic fluids or compressed air. These mechanisms can effect control over the location of the displacer in a similar manner. A small portion of the power output of the engine could be diverted to compress the fluid, whether it be a liquid or a gas. Electronically controlled valves may then be actuated to achieve the desired motion as shown in
At block 612, the displacer is actuated directly to move from a first side of the thermodynamic engine to a second side of the engine over a short time. The displacer is then held in a substantially fixed position at the second side for a period of time at block 616. The total time over which steps 612 and 616 occur is a half-cycle time for operation of the engine. The time over which the displacer is moved from the first side to the second side is considered to be “short” when that time is small in comparison to the half-cycle time. For example, this time might be less than 20%, less than 10%, less than 5%, less than 2%, less than 1%, less than 0.5%, less than 0.2%, or less than 0.1% of the half-cycle time in different embodiments.
The cycle is completed by directly actuating the displacer to move from the second side of the engine back to the first side at block 620 and then holding the displacer at the first side for a period of time at block 624. Again, the displacer is moved at block 620 over a short time, meaning that the time is small in comparison to the total time over which steps 620 and 624 occur. Generally, the total time over which steps 620 and 624 occur will be substantially the same as the half-cycle time over which steps 612 and 616 occur, but embodiments of the invention are sufficiently flexible that the times for these different portions of the total cycle may sometimes be different. In specific embodiments, the time over which the displacer is moved from the second side to the first side at block 620 might be less than 20%, less than 10%, less than 5%, less than 2%, less than 1%, less than 0.5%, less than 0.2%, or less than 0.1% of the half-cycle time in different embodiments.
As the cycle within block 608 is repeated, energy may be extracted from conversion of the heat differential at block 628. When appropriate, this extracted energy may be converted to electrical energy as indicated at block 632.
The engine-control methods described herein generally make use of some driving power that effectively reduces the net engine output. It is expected, however, that the increased output that results from more closely approximating the ideal Carnot cycle may more than make up for the power required to actuate the displacer directly. In addition, the ability to arbitrarily control displacer motion is expected to result in higher engine efficiency and specific power (power divided by weight) through real-time control of engine speed and output power.
Thus, having described several embodiments, it will be recognized by those of skill in the art that various modifications, alternative constructions, and equivalents may be used without departing from the spirit of the invention. Accordingly, the above description should not be taken as limiting the scope of the invention, which is defined in the following claims.
Number | Name | Date | Kind |
---|---|---|---|
3006146 | Jackson | Oct 1961 | A |
3533232 | Hodgson | Oct 1970 | A |
3638420 | Kelly et al. | Feb 1972 | A |
3772883 | Davoud et al. | Nov 1973 | A |
3996745 | Davoud et al. | Dec 1976 | A |
4055962 | Terry | Nov 1977 | A |
4148195 | Gerstmann et al. | Apr 1979 | A |
4149389 | Hayes et al. | Apr 1979 | A |
4195482 | Moloney | Apr 1980 | A |
4313304 | Hunt | Feb 1982 | A |
4433550 | Durenec | Feb 1984 | A |
4522033 | Jensen | Jun 1985 | A |
4532778 | Clark et al. | Aug 1985 | A |
4586334 | Nilsson, Sr. et al. | May 1986 | A |
4753072 | Johansson et al. | Jun 1988 | A |
4856280 | Chagnot | Aug 1989 | A |
4894989 | Mizuno et al. | Jan 1990 | A |
4897997 | Meijer et al. | Feb 1990 | A |
5010734 | Ho | Apr 1991 | A |
5115157 | Blumenau | May 1992 | A |
5195321 | Howard | Mar 1993 | A |
5228293 | Vitale | Jul 1993 | A |
5428653 | El-Genk | Jun 1995 | A |
5442913 | Cho et al. | Aug 1995 | A |
5638684 | Siegel et al. | Jun 1997 | A |
5706659 | Houtman | Jan 1998 | A |
5782084 | Jarvis | Jul 1998 | A |
5875863 | Jarvis et al. | Mar 1999 | A |
5899071 | Stone et al. | May 1999 | A |
5916140 | Hageman | Jun 1999 | A |
5918463 | Penswick et al. | Jul 1999 | A |
5934076 | Coney | Aug 1999 | A |
6286310 | Conrad | Sep 2001 | B1 |
6305442 | Ovshinsky et al. | Oct 2001 | B1 |
6330800 | Price et al. | Dec 2001 | B1 |
6470679 | Ertle | Oct 2002 | B1 |
6536207 | Kamen et al. | Mar 2003 | B1 |
6606860 | McFarland | Aug 2003 | B2 |
6625992 | Maguire et al. | Sep 2003 | B2 |
6701721 | Berchowitz | Mar 2004 | B1 |
6843057 | Yamamoto | Jan 2005 | B2 |
6948315 | Kirby et al. | Sep 2005 | B2 |
20030074897 | Rollston | Apr 2003 | A1 |
20050172623 | Hurt | Aug 2005 | A1 |
20050279094 | Yoshino | Dec 2005 | A1 |
Number | Date | Country |
---|---|---|
19843600 | Mar 1999 | DE |
4093559 | Mar 1992 | JP |