Display and lighting devices comprising phosphorescent excimers with preferred molecular orientation as monochromatic emitters

Information

  • Patent Grant
  • 12120945
  • Patent Number
    12,120,945
  • Date Filed
    Friday, February 10, 2023
    a year ago
  • Date Issued
    Tuesday, October 15, 2024
    a month ago
Abstract
An organic light emitting diode having a substrate, a first electrode, a hole transporting layer proximate the first electrode, a second electrode, an electron transporting layer proximate the second electrode, and an emissive layer between the hole transporting layer and the electron transporting layer. The emissive layer includes a square planar tetradentate platinum or palladium complex, and excimers formed by two or more of the complexes are aligned such that emitting dipoles of the excimers are substantially parallel to a surface of the substrate.
Description
TECHNICAL FIELD

This invention relates to phosphorescent excimers with a preferred molecular orientation as monochromatic emitters for display and lighting applications.


BACKGROUND


FIG. 1 depicts a cross-sectional view of an OLED 100. OLED 100 includes anode 102, hole transporting layer (HTL) 104, emissive layer (EML) 106, electron transporting layer (ETL) 108, and metal cathode 110. Anode 102 is typically a transparent material, such as indium tin oxide, and may be formed on substrate 112. EML 106 may include an emitter and a host. Although phosphorescent emitters used in OLEDS such as OLED 100 can reach electron-to-photon conversion efficiency approaching 100%, much of the light emitted in these OLEDS remains trapped in the stratified thin film structure. FIG. 2 depicts four different pathways of photons (modes) in OLED 100, including plasmon mode 204, organic mode 206, and substrate mode 208, all of which represent trapping of photons in OLED 100, and air mode 210, which represents light emitted from OLED 100. Due at least in part to losses via plasmon mode 204, organic mode 206, and substrate mode 208, a maximum external quantum efficiency (EQE) of a typical OLED (e.g., 20-30%) is much less than that of a typical inorganic LED.


SUMMARY

In a general aspect, an organic light emitting diode has a substrate, a first electrode, a hole transporting layer proximate the first electrode, a second electrode, an electron transporting layer proximate the second electrode, and an emissive layer between the hole transporting layer and the electron transporting layer. The emissive layer includes a square planar tetradentate platinum or palladium complex, and excimers formed by two or more of the complexes are aligned such that emitting dipoles of the excimers are substantially parallel to a surface of the substrate.


Implementations of the general aspect may include one or more of the following features.


The first electrode may be formed on the surface of the substrate. The complex may include one of the square planar tetradentate platinum or palladium complexes represented by Formulas I-IX or any example thereof described herein. A concentration of the complex in the emissive layer is in a range of 5 wt % to 100 wt %. In some cases, the emissive layer includes a neat film of the complex. In certain cases, the emissive layer includes a doped film comprising a host material and the complex. A concentration of the complex in the doped film is typically in a range of 5 wt % to 25 wt %. The host material may include a carbazole-based host having one to three carbazole skeletons, such as those described herein. Examples of suitable carbazole-based hosts include tris-PCz (9,9′,9″-triphenyl-9H,9′H,9″H-3,3′:6′3″-tercarbazole), CBP (4,4-di(9H-carbazol-9-yl) biphenyl), mCBP (3,3-di(9H-carbazol-9-yl) biphenyl), and mCP (meta-di(carbazolyl) phenyl).


In some cases, the emissive layer includes one or more doped films including the complex, each doped film having a different concentration of the complex. In one example, the emissive layer has a first doped film including the complex and a second doped film including the complex. A concentration of the complex in the first doped film can be in a range of 15 wt % to 25 wt %, and a concentration of the complex in the second doped film can be in a range of 5 wt % to 15 wt %. The emissive layer may further have a third doped film including the complex. A concentration of the complex in the third doped film can be in a range of 5 wt % to 10 wt %.


The details of one or more implementations of the subject matter described in this specification are set forth in the accompanying drawings and the description below. Other features, aspects, and advantages of the subject matter will become apparent from the description, the drawings, and the claims.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 depicts an organic light emitting diode (OLED).



FIG. 2 depicts different pathways of photons in an OLED.



FIG. 3 depicts excimers aligned with emitting dipoles aligned with respect to a substrate.



FIG. 4 depicts excimers with emitting dipoles randomly oriented with respect to a substrate.



FIG. 5 shows external quantum efficiency (EQE) versus luminance and electroluminescent intensity versus wavelength for an OLED having excimers with emitting dipoles aligned with respect to a substrate.



FIG. 6 shows intensity versus time for an OLED having excimers with emitting dipoles aligned with respect to a substrate.



FIG. 7 shows EQE versus luminance for an OLED disclosed herein.



FIG. 8 shows power efficiency versus luminance an OLED disclosed herein.



FIG. 9 shows cross sections at a wavelength of 600 nm of experimental and model data of angular-dependent p-polarized photoluminescence (PL) emission spectra (considering emission in the x-z plane) for neat films of Pd303 on glass substrates.





DETAILED DESCRIPTION

Square planar tetradentate platinum and palladium complexes can have a high photoluminescent (PL) emission efficiency. Organic light emitting diodes (OLEDs) with excimers formed by these complexes can maintain this high efficiency when, as depicted in FIG. 3, emitting dipoles 300 of the excimers are aligned parallel to substrate 302 of the OLED. In contrast, as depicted in FIG. 4, with emitting dipoles 300 oriented randomly with respect to substrate 302, OLEDs with excimers formed by these complexes demonstrate lower efficiency.


Suitable square planar tetradentate platinum and palladium complexes include complexes represented by Formula I.




embedded image


In Formula I:

    • M represents Pt(II) or Pd(II);
    • R1, R3, R4, and R5 each independently represents hydrogen, halogen, hydroxyl, nitro, cyanide, thiol, or optionally substituted C1-C4 alkyl, alkoxy, amino, or aryl;
    • each n is independently an integer, valency permitting;
    • Y1a, Y1b, Y1c, Y1d, Y1e, Y1f, Y2a, Y2b, Y2c, Y2d, Y2e, Y2f, Y4a, Y4b, Y4c, Y4d, Y4e, Y5a, Y5b, Y5c, Y5d, and Y5e each independently represents C, N, Si, O, S;
    • X2 represents NR, PR, CRR′, SiRR′, CRR′, SiRR′, O, S, S═O, O═S═O, Se, Se═O, or O═Se═O, where R and R′ each independently represents hydrogen, halogen, hydroxyl, nitro, cyanide, thiol, or optionally substituted C1-C4 alkyl, alkoxy, amino, aryl, or heteroaryl;
    • each of L1 and L3 is independently present or absent, and if present, represents a substituted or unsubstituted linking atom or group, where a substituted linking atom is bonded to an alkyl, alkoxy, alkenyl, alkynyl, hydroxy, amine, amide, thiol, aryl, heteroaryl, cycloalkyl, or heterocyclyl moiety;
    • Ar3 and Ar4 each independently represents 6-membered aryl group; and
    • Ar1 and Ar5 each independently represents a 5- to 10-membered aryl, heteroaryl, fused aryl, or fused heteroaryl.


Suitable square planar tetradentate platinum and palladium complexes also include Formulas II-IX.




embedded image


embedded image


In Formulas II-IX:

    • M represents Pt(II) or Pd(II);
    • each R1, R2, R3, R4, R5, and R6 present independently represents hydrogen, halogen, hydroxyl, nitro, cyanide, thiol, or optionally substituted C1-C4 alkyl, alkoxy, amino, or aryl;
    • each n is independently an integer, valency permitting;
    • each Y1a, Y1b, Y1c, Y1d, Y2a, Y2b, Y2c, Y3a, Y3b, Y3c, Y4a, Y4b, Y4c, Y4d, Y5a, Y5b, Y5c, Y5d, Y6a, Y6b, Y6c, and Y6d present independently represents C, N, or Si;
    • U1 and U2 each independently represents NR, O or S, wherein R represents hydrogen, halogen, hydroxyl, nitro, cyanide, thiol, or optionally substituted C1-C4 alkyl, alkoxy, amino, or aryl;
    • U3 and U4 each independently represents N or P; and
    • X represents O, S, NR, CRR′, SiRR′, PR, BR, S═O, O═S═O, Se, Se═O, or O═Se═O, where R and R′ each independently represents hydrogen, halogen, hydroxyl, nitro, cyanide, thiol, or optionally substituted C1-C4 alkyl, alkoxy, amino, aryl, or heteroaryl.


Examples of complexes of Formula I are shown below.




embedded image


Examples of complexes of Formula II-IX are shown below, where M represents Pt(II) or Pd(II) and R and R′ each independently represents substituted or unsubstituted C1-C4 alkyl, alkoxy, aryl, or heteroaryl.




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image



The platinum and palladium complexes disclosed herein may be deposited on a surface of an OLED, such as a hole transporting layer or an electron-transporting layer, via vapor deposition to form an emissive layer of the OLED. In some cases, the substrate may be cooled below room temperature. The structure of theses complexes promotes preferential alignment such that emitting dipoles of the excimers are aligned parallel to the surface on which the emissive layer is formed. A concentration of the complexes in the emissive layer can be in a range between 5 wt % and 100 wt %. That is, the emissive layer may be a neat film or a doped film. A concentration of the complex in the doped film is typically in a range of 5 wt % to 25 wt %.


The host in the doped film may have a carbazole skeleton or other relatively flat structure. In some cases, the host material is a carbazole-based host having one to three carbazole skeletons. Suitable carbazole-based hosts are represented Formulas 1-3:




embedded image



where each occurrence of R1-R9 independently represents halogen, hydroxyl, nitro, cyanide, thiol, or optionally substituted alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkane, cycloalkane, heterocyclyl, amino, alkoxy, haloalkyl, arylalkane, or arylalkene. Examples of suitable carbazole-based hosts include tris-PCz (9,9′,9″-triphenyl-9H,9′H,9″H-3,3′:6′3″-tercarbazole), CBP (4,4-di(9H-carbazol-9-yl) biphenyl), mCBP (3,3-di(9H-carbazol-9-yl) biphenyl), and mCP (meta-di(carbazolyl) phenyl).


In some cases, the emissive layer has one or more doped films including the complex, with each doped film having a different concentration of the complex. In one example, the emissive layer has a first doped film including the complex and a second doped film including the complex. A concentration of the complex in the first doped film is typically in a range of 15 wt % to 25 wt %, and a concentration of the complex in the second doped film is typically in a range of 5 wt % to 15 wt %. The emissive layer further may also have a third doped film including the complex. A concentration of the complex in the third doped film is typically in a range of 5 wt % to 10 wt %.


The platinum and palladium complexes disclosed herein are suitable for use in a wide variety of devices, including, for example, optical and electro-optical devices, including, for example, photo-absorbing devices such as solar- and photo-sensitive devices, OLEDs, photo-emitting devices, devices capable of both photo-absorption and emission, and display, illumination, and automobile taillight applications. Light emitting devices based on electrophosphorescent emitters are described in more detail in WO2000/070655 to Baldo et al., which is incorporated herein by this reference for its teaching of OLEDs, and in particular phosphorescent OLEDs.


Also disclosed herein are compositions and light emitting devices including one or more complexes disclosed herein. The light emitting devices can be OLEDs (e.g., phosphorescent OLEDs). The present disclosure also provides a photovoltaic device comprising one or more complexes or compositions described herein. Further, the present disclosure also provides a luminescent display device comprising one or more complexes or compositions described herein.


Components used to prepare the compositions described herein are disclosed, as well as the compositions themselves to be used within disclosed methods. These and other materials are disclosed, and it is understood that when combinations, subsets, interactions, groups, etc. of these materials are disclosed that while specific reference of each various individual and collective combinations and permutation of these compounds may not be explicitly disclosed, each is specifically contemplated and described herein. For example, if a particular compound is disclosed and discussed and a number of modifications that can be made to a number of molecules including the compounds are discussed, specifically contemplated is each and every combination and permutation of the compound and the modifications that are possible unless specifically indicated to the contrary. Thus, if a class of molecules A, B, and C is disclosed as well as a class of molecules D, E, and F, and an example of a combination molecule, A-D is disclosed, then even if each is not individually recited, each is individually and collectively contemplated, meaning combinations A-E, A-F, B-D, B-E, B-F, C-D, C-E, and C-F are considered disclosed. Likewise, any subset or combination of these is also disclosed. Thus, for example, the sub-group of A-E, B-F, and C-E would be considered disclosed. This concept applies to all aspects of this application including, but not limited to, steps in methods of making and using the compositions disclosed herein. Thus, if there are a variety of additional steps that can be performed, it is understood that each of these additional steps can be performed with any specific embodiment or combination of embodiments of the methods described herein.


As referred to herein, a linking atom or linking group connects two atoms such as, for example, an N atom and a C atom. A linking atom or linking group is in one aspect disclosed as L1, L2, L3, etc. herein. The linking atom can optionally, if valency permits, have other chemical moieties attached. For example, in one aspect, an oxygen would not have any other chemical groups attached as the valency is satisfied once it is bonded to two groups (e.g., N and/or C groups). In another aspect, when carbon is the linking atom, two additional chemical moieties can be attached to the carbon. Suitable chemical moieties include amino, amide, thiol, aryl, heteroaryl, cycloalkyl, and heterocyclyl moieties. The term “cyclic structure” or the like terms used herein refer to any cyclic chemical structure which includes, but is not limited to, aryl, heteroaryl, cycloalkyl, cycloalkenyl, heterocyclyl, carbene, and N-heterocyclic carbene.


As used herein, the term “substituted” is contemplated to include all permissible substituents of organic compounds. In a broad aspect, the permissible substituents include acyclic and cyclic, branched and unbranched, carbocyclic and heterocyclic, and aromatic and nonaromatic substituents of organic compounds. Illustrative substituents include, for example, those described below. The permissible substituents can be one or more and the same or different for appropriate organic compounds. For purposes of this disclosure, the heteroatoms, such as nitrogen, can have hydrogen substituents and/or any permissible substituents of organic compounds described herein which satisfy the valences of the heteroatoms. This disclosure is not intended to be limited in any manner by the permissible substituents of organic compounds. Also, the terms “substitution” or “substituted with” include the implicit proviso that such substitution is in accordance with permitted valence of the substituted atom and the substituent, and that the substitution results in a stable compound, e.g., a compound that does not spontaneously undergo transformation such as by rearrangement, cyclization, elimination, etc. It is also contemplated that, in certain aspects, unless expressly indicated to the contrary, individual substituents can be further optionally substituted (i.e., further substituted or unsubstituted).


In defining various terms, “A1”, “A2”, “A3”, “A4” and “A5” are used herein as generic symbols to represent various specific substituents. These symbols can be any substituent, not limited to those disclosed herein, and when they are defined to be certain substituents in one instance, they can, in another instance, be defined as some other substituents.


The term “alkyl” as used herein is a branched or unbranched saturated hydrocarbon group of 1 to 24 carbon atoms, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, n-pentyl, isopentyl, s-pentyl, neopentyl, hexyl, heptyl, octyl, nonyl, decyl, dode cyl, tetradecyl, hexadecyl, eicosyl, tetracosyl, and the like. The alkyl group can be cyclic or acyclic. The alkyl group can be branched or unbranched. The alkyl group can also be substituted or unsubstituted. For example, the alkyl group can be substituted with one or more groups including, but not limited to, alkyl, cycloalkyl, alkoxy, amino, ether, halide, hydroxy, nitro, silyl, sulfo-oxo, or thiol, as described herein. A “lower alkyl” group is an alkyl group containing from one to six (e.g., from one to four) carbon atoms.


Throughout the specification “alkyl” is generally used to refer to both unsubstituted alkyl groups and substituted alkyl groups; however, substituted alkyl groups are also specifically referred to herein by identifying the specific substituent(s) on the alkyl group. For example, the term “halogenated alkyl” or “haloalkyl” specifically refers to an alkyl group that is substituted with one or more halide, e.g., fluorine, chlorine, bromine, or iodine. The term “alkoxyalkyl” specifically refers to an alkyl group that is substituted with one or more alkoxy groups, as described below. The term “alkylamino” specifically refers to an alkyl group that is substituted with one or more amino groups, as described below, and the like. When “alkyl” is used in one instance and a specific term such as “alkylalcohol” is used in another, it is not meant to imply that the term “alkyl” does not also refer to specific terms such as “alkylalcohol” and the like.


This practice is also used for other groups described herein. That is, while a term such as “cycloalkyl” refers to both unsubstituted and substituted cycloalkyl moieties, the substituted moieties can, in addition, be specifically identified herein; for example, a particular substituted cycloalkyl can be referred to as, e.g., an “alkylcycloalkyl.” Similarly, a substituted alkoxy can be specifically referred to as, e.g., a “halogenated alkoxy,” a particular substituted alkenyl can be, e.g., an “alkenylalcohol,” and the like. Again, the practice of using a general term, such as “cycloalkyl,” and a specific term, such as “alkylcycloalkyl,” is not meant to imply that the general term does not also include the specific term.


The term “cycloalkyl” as used herein is a non-aromatic carbon-based ring composed of at least three carbon atoms. Examples of cycloalkyl groups include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, norbornyl, and the like. The term “heterocycloalkyl” is a type of cycloalkyl group as defined above, and is included within the meaning of the term “cycloalkyl,” where at least one of the carbon atoms of the ring is replaced with a heteroatom such as, but not limited to, nitrogen, oxygen, sulfur, or phosphorus. The cycloalkyl group and heterocycloalkyl group can be substituted or unsubstituted. The cycloalkyl group and heterocycloalkyl group can be substituted with one or more groups including, but not limited to, alkyl, cycloalkyl, alkoxy, amino, ether, halide, hydroxy, nitro, silyl, sulfo-oxo, or thiol as described herein.


The terms “alkoxy” and “alkoxyl” as used herein to refer to an alkyl or cycloalkyl group bonded through an ether linkage; that is, an “alkoxy” group can be defined as —OA1 where A1 is alkyl or cycloalkyl as defined above. “Alkoxy” also includes polymers of alkoxy groups as just described; that is, an alkoxy can be a polyether such as —OA1-OA2 or -OA1-(OA2)a-OA3, where “a” is an integer of from 1 to 200 and A1, A2, and A3 are alkyl and/or cycloalkyl groups.


The term “alkenyl” as used herein is a hydrocarbon group of from 2 to 24 carbon atoms with a structural formula containing at least one carbon-carbon double bond. Asymmetric structures such as (A1A2)C═C(A3A4) are intended to include both the E and Z isomers. This can be presumed in structural formulas herein wherein an asymmetric alkene is present, or it can be explicitly indicated by the bond symbol C═C. The alkenyl group can be substituted with one or more groups including, but not limited to, alkyl, cycloalkyl, alkoxy, alkenyl, cycloalkenyl, alkynyl, cycloalkynyl, aryl, heteroaryl, aldehyde, amino, carboxylic acid, ester, ether, halide, hydroxy, ketone, azide, nitro, silyl, sulfo-oxo, or thiol, as described herein.


The term “cycloalkenyl” as used herein is a non-aromatic carbon-based ring composed of at least three carbon atoms and containing at least one carbon-carbon double bound, i.e., C═C. Examples of cycloalkenyl groups include, but are not limited to, cyclopropenyl, cyclobutenyl, cyclopentenyl, cyclopentadienyl, cyclohexenyl, cyclohexadienyl, norbornenyl, and the like. The term “heterocycloalkenyl” is a type of cycloalkenyl group as defined above, and is included within the meaning of the term “cycloalkenyl,” where at least one of the carbon atoms of the ring is replaced with a heteroatom such as, but not limited to, nitrogen, oxygen, sulfur, or phosphorus. The cycloalkenyl group and heterocycloalkenyl group can be substituted or unsubstituted. The cycloalkenyl group and heterocycloalkenyl group can be substituted with one or more groups including, but not limited to, alkyl, cycloalkyl, alkoxy, alkenyl, cycloalkenyl, alkynyl, cycloalkynyl, aryl, heteroaryl, aldehyde, amino, carboxylic acid, ester, ether, halide, hydroxy, ketone, azide, nitro, silyl, sulfo-oxo, or thiol as described herein.


The term “alkynyl” as used herein is a hydrocarbon group of 2 to 24 carbon atoms with a structural formula containing at least one carbon-carbon triple bond. The alkynyl group can be unsubstituted or substituted with one or more groups including, but not limited to, alkyl, cycloalkyl, alkoxy, alkenyl, cycloalkenyl, alkynyl, cycloalkynyl, aryl, heteroaryl, aldehyde, amino, carboxylic acid, ester, ether, halide, hydroxy, ketone, azide, nitro, silyl, sulfo-oxo, or thiol, as described herein.


The term “cycloalkynyl” as used herein is a non-aromatic carbon-based ring composed of at least seven carbon atoms and containing at least one carbon-carbon triple bound. Examples of cycloalkynyl groups include, but are not limited to, cycloheptynyl, cyclooctynyl, cyclononynyl, and the like. The term “heterocycloalkynyl” is a type of cycloalkenyl group as defined above, and is included within the meaning of the term “cycloalkynyl,” where at least one of the carbon atoms of the ring is replaced with a heteroatom such as, but not limited to, nitrogen, oxygen, sulfur, or phosphorus. The cycloalkynyl group and heterocycloalkynyl group can be substituted or unsubstituted. The cycloalkynyl group and heterocycloalkynyl group can be substituted with one or more groups including, but not limited to, alkyl, cycloalkyl, alkoxy, alkenyl, cycloalkenyl, alkynyl, cycloalkynyl, aryl, heteroaryl, aldehyde, amino, carboxylic acid, ester, ether, halide, hydroxy, ketone, azide, nitro, silyl, sulfo-oxo, or thiol as described herein.


The term “aryl” as used herein is a group that contains any carbon-based aromatic group including, but not limited to, benzene, naphthalene, phenyl, biphenyl, phenoxybenzene, and the like. The term “aryl” also includes “heteroaryl,” which is defined as a group that contains an aromatic group that has at least one heteroatom incorporated within the ring of the aromatic group. Examples of heteroatoms include, but are not limited to, nitrogen, oxygen, sulfur, and phosphorus. Likewise, the term “non-heteroaryl,” which is also included in the term “aryl,” defines a group that contains an aromatic group that does not contain a heteroatom. The aryl group can be substituted or unsubstituted. The aryl group can be substituted with one or more groups including, but not limited to, alkyl, cycloalkyl, alkoxy, alkenyl, cycloalkenyl, alkynyl, cycloalkynyl, aryl, heteroaryl, aldehyde, amino, carboxylic acid, ester, ether, halide, hydroxy, ketone, azide, nitro, silyl, sulfo-oxo, or thiol as described herein. The term “biaryl” is a specific type of aryl group and is included in the definition of “aryl.” Biaryl refers to two aryl groups that are bound together via a fused ring structure, as in naphthalene, or are attached via one or more carbon-carbon bonds, as in biphenyl.


The term “aldehyde” as used herein is represented by the formula —C(O)H. Throughout this specification “C(O)” is a short hand notation for a carbonyl group, i.e., C═O.


The terms “amine” or “amino” as used herein are represented by the formula —NA1A2, where A1 and A2 can be, independently, hydrogen or alkyl, cycloalkyl, alkenyl, cycloalkenyl, alkynyl, cycloalkynyl, aryl, or heteroaryl group as described herein.


The term “alkylamino” as used herein is represented by the formula —NH(-alkyl) where alkyl is a described herein. Representative examples include, but are not limited to, methylamino group, ethylamino group, propylamino group, isopropylamino group, butylamino group, isobutylamino group, (sec-butyl)amino group, (tert-butyl)amino group, pentylamino group, isopentylamino group, (tert-pentyl)amino group, hexylamino group, and the like.


The term “dialkylamino” as used herein is represented by the formula —N(-alkyl)2 where alkyl is a described herein. Representative examples include, but are not limited to, dimethylamino group, diethylamino group, dipropylamino group, diisopropylamino group, dibutylamino group, diisobutylamino group, di(sec-butyl)amino group, di(tert-butyl)amino group, dipentylamino group, diisopentylamino group, di(tert-pentyl)amino group, dihexylamino group, N-ethyl-N-methylamino group, N-methyl-N-propylamino group, N-ethyl-N-propylamino group and the like.


The term “carboxylic acid” as used herein is represented by the formula —C(O)OH.


The term “ester” as used herein is represented by the formula —OC(O)A1 or —C(O)OA1, where A1 can be alkyl, cycloalkyl, alkenyl, cycloalkenyl, alkynyl, cycloalkynyl, aryl, or heteroaryl group as described herein. The term “polyester” as used herein is represented by the formula -(A1O(O)C-A2-C(O)O)a— or -(A1O(O)C-A2-OC(O))a—, where A1 and A2 can be, independently, an alkyl, cycloalkyl, alkenyl, cycloalkenyl, alkynyl, cycloalkynyl, aryl, or heteroaryl group described herein and “a” is an integer from 1 to 500. “Polyester” is as the term used to describe a group that is produced by the reaction between a compound having at least two carboxylic acid groups with a compound having at least two hydroxyl groups.


The term “ether” as used herein is represented by the formula A1OA2, where A1 and A2 can be, independently, an alkyl, cycloalkyl, alkenyl, cycloalkenyl, alkynyl, cycloalkynyl, aryl, or heteroaryl group described herein. The term “polyether” as used herein is represented by the formula -(A1O-A2O)a—, where A1 and A2 can be, independently, an alkyl, cycloalkyl, alkenyl, cycloalkenyl, alkynyl, cycloalkynyl, aryl, or heteroaryl group described herein and “a” is an integer of from 1 to 500. Examples of polyether groups include polyethylene oxide, polypropylene oxide, and polybutylene oxide.


The term “halide” or “halo” as used herein refers to the halogens fluorine, chlorine, bromine, and iodine.


The term “heterocyclyl,” as used herein refers to single and multi-cyclic non-aromatic ring systems and “heteroaryl as used herein refers to single and multi-cyclic aromatic ring systems: in which at least one of the ring members is other than carbon. The terms includes azetidine, dioxane, furan, imidazole, isothiazole, isoxazole, morpholine, oxazole, oxazole, including, 1,2,3-oxadiazole, 1,2,5-oxadiazole and 1,3,4-oxadiazole, piperazine, piperidine, pyrazine, pyrazole, pyridazine, pyridine, pyrimidine, pyrrole, pyrrolidine, tetrahydrofuran, tetrahydropyran, tetrazine, including 1,2,4,5-tetrazine, tetrazole, including 1,2,3,4-tetrazole and 1,2,4,5-tetrazole, thiadiazole, including, 1,2,3-thiadiazole, 1,2,5-thiadiazole, and 1,3,4-thiadiazole, thiazole, thiophene, triazine, including 1,3,5-triazine and 1,2,4-triazine, triazole, including, 1,2,3-triazole, 1,3,4-triazole, and the like.


The term “hydroxyl” as used herein is represented by the formula —OH.


The term “ketone” as used herein is represented by the formula A1C(O)A2, where A1 and A2 can be, independently, an alkyl, cycloalkyl, alkenyl, cycloalkenyl, alkynyl, cycloalkynyl, aryl, or heteroaryl group as described herein.


The term “azide” as used herein is represented by the formula —N3.


The term “nitro” as used herein is represented by the formula —NO2.


The term “cyanide” as used herein is represented by the formula —CN.


The term “silyl” as used herein is represented by the formula —SiA1A2A3, where A1, A2, and A3 can be, independently, hydrogen or an alkyl, cycloalkyl, alkoxy, alkenyl, cycloalkenyl, alkynyl, cycloalkynyl, aryl, or heteroaryl group as described herein.


The term “sulfo-oxo” as used herein is represented by the formulas —S(O)A1, —S(O)2A1, —OS(O)2A1, or —OS(O)2O A1, where A1 can be hydrogen or an alkyl, cycloalkyl, alkenyl, cycloalkenyl, alkynyl, cycloalkynyl, aryl, or heteroaryl group as described herein.


Throughout this specification “S(O)” is a short hand notation for S═O. The term “sulfonyl” is used herein to refer to the sulfo-oxo group represented by the formula —S(O)2A1, where A1 can be hydrogen or an alkyl, cycloalkyl, alkenyl, cycloalkenyl, alkynyl, cycloalkynyl, aryl, or heteroaryl group as described herein. The term “sulfone” as used herein is represented by the formula A1S(O)2A2, where A1 and A2 can be, independently, an alkyl, cycloalkyl, alkenyl, cycloalkenyl, alkynyl, cycloalkynyl, aryl, or heteroaryl group as described herein. The term “sulfoxide” as used herein is represented by the formula A1S(O)A2, where A1 and A2 can be, independently, an alkyl, cycloalkyl, alkenyl, cycloalkenyl, alkynyl, cycloalkynyl, aryl, or heteroaryl group as described herein.


The term “thiol” as used herein is represented by the formula —SH. “R1,” “R2,” “R3,” “Rn,” where n is an integer, as used herein can, independently, possess one or more of the groups listed above. For example, if R1 is a straight chain alkyl group, one of the hydrogen atoms of the alkyl group can optionally be substituted with a hydroxyl group, an alkoxy group, an alkyl group, a halide, and the like. Depending upon the groups that are selected, a first group can be incorporated within second group or, alternatively, the first group can be pendant (i.e., attached) to the second group. For example, with the phrase “an alkyl group comprising an amino group,” the amino group can be incorporated within the backbone of the alkyl group. Alternatively, the amino group can be attached to the backbone of the alkyl group. The nature of the group(s) that is (are) selected will determine if the first group is embedded or attached to the second group.


Compounds described herein may contain “optionally substituted” moieties. In general, the term “substituted,” whether preceded by the term “optionally” or not, means that one or more hydrogens of the designated moiety are replaced with a suitable substituent. Unless otherwise indicated, an “optionally substituted” group may have a suitable substituent at each substitutable position of the group, and when more than one position in any given structure may be substituted with more than one substituent selected from a specified group, the substituent may be either the same or different at every position. Combinations of substituents envisioned by this disclosure are preferably those that result in the formation of stable or chemically feasible compounds. In is also contemplated that, in certain aspects, unless expressly indicated to the contrary, individual substituents can be further optionally substituted (i.e., further substituted or unsubstituted).


In some aspects, a structure of a compound can be represented by a formula:




embedded image



which is understood to be equivalent to a formula:




embedded image



wherein n is typically an integer. That is, Rn is understood to represent five independent substituents, Rn(a), Rn(b), Rn(c), Rn(d), Rn(e). By “independent substituents,” it is meant that each R substituent can be independently defined. For example, if in one instance Rn(a) is halogen, then Rn(b) is not necessarily halogen in that instance.


Several references to R, R1, R2, R3, R4, R5, R6, etc. are made in chemical structures and moieties disclosed and described herein. Any description of R, R1, R2, R3, R4, R5, R6, etc. in the specification is applicable to any structure or moiety reciting R, R1, R2, R3, R4, R5, R6, etc. respectively.


EXAMPLES

The following examples are put forth so as to provide those of ordinary skill in the art with a complete disclosure and description of how the compounds, compositions, articles, devices and/or methods claimed herein are made and evaluated, and are intended to be purely exemplary and are not intended to be limiting in scope. Some of these synthetic examples have been performed. Others are based on an understanding of related synthetic procedures 20 and are predictive in nature. Efforts have been made to ensure accuracy with respect to numbers (e.g., amounts, temperature, etc.), but some errors and deviations should be accounted for. Unless indicated otherwise, parts are parts by weight, temperature is ° C. or is at ambient temperature, and pressure is at or near atmospheric.


Various methods for the preparation method of the compounds described herein are recited in the examples. These methods are provided to illustrate various methods of preparation, but are not intended to limit any of the methods recited herein. Accordingly, one of skill in the art in possession of this disclosure could readily modify a recited method or utilize a different method to prepare one or more of the compounds described herein. The following aspects are only exemplary and are not intended to be limiting in scope.


Temperatures, catalysts, concentrations, reactant compositions, and other process conditions can vary, and one of skill in the art, in possession of this disclosure, could readily select appropriate reactants and conditions for a desired complex.


Device Example 1

An OLED device (Device 1) having the structure ITO/HATCN/NPD/Tris-PCz/20 wt % Pd3O3:mCBP (10 nm)/6 wt % Pd3O3:mCBP (20 nm)/BAlq/BPyTP/LiF/Al was prepared, where

    • ITO: indium tin oxide
    • HATCN: hexaazatriphenylenehexacarbonitrile
    • NPD: N,N′-di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine
    • Tris-PCz:




embedded image




    • Pd3O3:







embedded image




    • mCBP:







embedded image




    • BAlq: bis(8-hydroxy-2-methylquinoline)-(4-phenylphenoxy)aluminum







embedded image




    • BPyTP: 2,7-di(2,2′-bipyridin-5-yl)triphenylene







embedded image




    • LiF: lithium fluoride

    • Al: aluminum






FIG. 5 shows external quantum efficiency versus brightness and electroluminescent intensity versus wavelength for Device 1. FIG. 6 shows relative luminance versus operational time at the constant current of 20 mA/cm2 for Device 1. As shown in FIG. 5, Device 1 shows improved operation stability while maintaining a high device efficiency. A device efficiency of Device 1 was over 22%, with PE of 40 lm/W at 1000 cd/m2 and LT50 of over 470 hours with the brightness of over 7000 cd/cm2. Extrapolating these accelerated testing results to practical luminance of 1000 cd/m2 yields LT50 of 13,000 hrs. The peak device efficiency exceeded 28%, indicating a device out-coupling enhancement due to the alignment of the emitting dipoles of the Pd303 excimers parallel to the surface on which the emissive layer was formed. These results are consistent with the development of a stable monochromic OLED with device efficiency approaching 40% on a standard OLED structure.


Device Example 2

An OLED device (Device 2) having the structure ITO/HATCN/NPD/BCN34/Pd3O3 (15 nm)/BAlq/BPyTP/LiF/Al was prepared, where

    • BCN34,




embedded image



FIG. 7 shows external quantum efficiency versus luminance (brightness) for Device 2. FIG. 8 shows power efficiency versus luminance for Device 2. As shown in FIG. 7, Device 2 shows improved operation stability while maintaining a high device efficiency. A device efficiency of Device 2 was over 30%, with PE of 80 lm/W at 1000 cd/m2 and estimated LT70 of over 30000 hours. The peak device efficiency exceeded 31%, also indicating a device outcoupling enhancement due to the alignment of the emitting dipoles of the Pd303 excimers parallel to the surface on which the emissive layer was formed. These results are consistent with the development of a stable monochromic OLED with device efficiency approaching 40% on a standard OLED structure.


General Example 1


FIG. 9 shows cross sections at a wavelength of 600 nm of the measurements and simulations of the angular dependent p-polarized photoluminescence (PL) emission spectra (considering an emission in the x-z-plane) for films of 20 nm neat Pd303 film on glass substrates. The solid squares represent measured data points, and the solid curve represents simulations for around 95% horizontal orientation of the transition dipole moments for Pd303 excimer.


Synthetic Example 1



embedded image


2-(3-bromophenyl)pyridine (234.10 mg, 1.0 mmol, 1.0 eq), 3-(pyridin-2-yl)phenol (205.44 mg, 1.2 mmol, 1.2 eq), CuI (38 mg, 0.2 mmol, 0.2 eq), picolinic acid (49 mg, 0.4 mmol, 0.4 eq) and K3PO4 (425 mg, 2 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L1 as a white solid in 50%-90% yield.




embedded image


L1 (64.9 mg, 0.20 mmol, 1.0 eq), Pd(OAc)2 (54 mg, 0.24 mmol, 1.2 eq) and n-Bu4NBr (6.5 mg, 0.02 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (10 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product C1 as a white solid in 40%-80% yield.


Synthetic Example 2



embedded image



2-(3-bromo-5-(tert-butyl)phenyl)pyridine (405 mg, 1.4 mmol, 1.0 eq), 3-(pyridin-2-yl)phenol (287 mg, 1.67 mmol, 1.2 eq), CuI (53 mg, 0.28 mmol, 0.2 eq), picolinic acid (34 mg, 0.28 mmol, 0.2 eq) and K3PO4 (594 mg, 2.8 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (15 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L2 as a colorless oil in 50%-90% yield.




embedded image


L2 (405 mg, 1.06 mmol, 1.0 eq), Pd(OAc)2 (286 mg, 1.27 mmol, 1.2 eq) and n-Bu4NBr (34 mg, 0.11 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (62 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product C2 in 40%-80% yield.


Synthetic Example 3



embedded image


3-(4-(tert-butyl)pyridin-2-yl)phenol (227 mg, 1.0 mmol, 1.0 eq), 2-(3-bromophenyl)pyridine (281 mg, 1.2 mmol, 1.2 eq), CuI (38 mg, 0.2 mmol, 0.2 eq), picolinic acid (25 mg, 0.2 mmol, 0.2 eq) and K3PO4 (424 mg, 2 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L3 in 50%-90% yield.




embedded image


L3 (405 mg, 1.06 mmol, 1.0 eq), Pd(OAc)2 (286 mg, 1.27 mmol, 1.2 eq) and n-Bu4NBr (34 mg, 0.11 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (62 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product C3 in 40%-80% yield.


Synthetic Example 4



embedded image


3-(pyridin-2-yl)phenol (171 mg, 1.0 mmol, 1.0 eq), 2-(3-bromo-5-(tert-butyl)phenyl)-4-(tert-butyl)pyridine (415 mg, 1.2 mmol, 1.2 eq), CuI (38 mg, 0.2 mmol, 0.2 eq), picolinic acid (25 mg, 0.2 mmol, 0.2 eq) and K3PO4 (424 mg, 2 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L4 in 50%-90% yield.




embedded image


L4 (436 mg, 1.0 mmol, 1.0 eq), Pd(OAc)2 (269 mg, 1.2 mmol, 1.2 eq) and n-Bu4NBr (32 mg, 0.1 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (63 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product C4 in 40%-80% yield.


Synthetic Example 5



embedded image



2-(3-bromo-5-(tert-butyl)phenyl)pyridine (405 mg, 1.4 mmol, 1.0 eq), 3-(tert-butyl)-5-(pyridin-2-yl)phenol (379 mg, 1.67 mmol, 1.2 eq), CuI (53 mg, 0.28 mmol, 0.2 eq), picolinic acid (34 mg, 0.28 mmol, 0.2 eq) and K3PO4 (594 mg, 2.8 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (15 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L5 as a colorless oil in 50%-90% yield.




embedded image


L5 (437 mg, 1.0 mmol, 1.0 eq), Pd(OAc)2 (269 mg, 1.2 mmol, 1.2 eq) and n-Bu4NBr (32 mg, 0.10 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (62 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product C5 in 40%-80% yield.


Synthetic Example 6



embedded image


3-(4-(tert-butyl)pyridin-2-yl)phenol (227 mg, 1.0 mmol, 1.0 eq), 2-(3-bromophenyl)-4-(tert-butyl)pyridine (348 mg, 1.2 mmol, 1.2 eq), CuI (38 mg, 0.2 mmol, 0.2 eq), picolinic acid (25 mg, 0.2 mmol, 0.2 eq) and K3PO4 (424 mg, 2 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L6 in 50%-90% yield.




embedded image


L6 (405 mg, 1.06 mmol, 1.0 eq), Pd(OAc)2 (286 mg, 1.27 mmol, 1.2 eq) and n-Bu4NBr (34 mg, 0.11 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (62 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product C6 in 40%-80% yield.


Synthetic Example 7



embedded image


2-(3-bromo-5-(tert-butyl)phenyl)-4-(tert-butyl)pyridine (150 mg, 0.43 mmol, 1.0 eq), 3-(4-(tert-butyl)pyridin-2-yl)phenol (118 mg, 0.52 mmol, 1.2 eq), CuI (16 mg, 0.09 mmol, 0.2 eq), picolinic acid (11 mg, 0.09 mmol, 0.2 eq) and K3PO4 (183 mg, 0.86 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (5 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L7 as a colorless oil in 50%-90% yield.




embedded image


L7 (141 mg, 0.29 mmol, 1.0 eq), Pd(OAc)2 (77 mg, 0.34 mmol, 1.2 eq) and n-Bu4NBr (9 mg, 0.03 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (18 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product C7 in 40%-80% yield.


Synthetic Example 8



embedded image


2-(3-bromo-5-(tert-butyl)phenyl)-4-(tert-butyl)pyridine (150 mg, 0.43 mmol, 1.0 eq), 3-(tert-butyl)-5-(pyridin-2-yl)phenol (118 mg, 0.52 mmol, 1.2 eq), CuI (16 mg, 0.09 mmol, 0.2 eq), picolinic acid (I1 mg, 0.09 mmol, 0.2 eq) and K3PO4 (183 mg, 0.86 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (5 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L8 in 50%-90% yield.




embedded image


L8 (141 mg, 0.29 mmol, 1.0 eq), Pd(OAc)2 (77 mg, 0.34 mmol, 1.2 eq) and n-Bu4NBr (9 mg, 0.03 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (18 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product C8 in 40%-80% yield.


Synthetic Example 9



embedded image


3-(tert-butyl)-5-(4-(tert-butyl)pyridin-2-yl)phenol (283 mg, 1 mmol, 1.0 eq), 2-(3-bromo-5-(tert-butyl)phenyl)-4-(tert-butyl)pyridine (415 mg, 1.2 mmol, 1.2 eq). CuI (38 mg, 0.2 mmol, 0.2 eq), picolinic acid (25 mg, 0.2 mmol, 0.2 eq) and K3PO4 (424 mg, 2 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L9 in 50%-90% yield.




embedded image


L9 (159 mg, 0.29 mmol, 1.0 eq), Pd(OAc)2 (77 mg, 0.34 mmol, 1.2 eq) and n-Bu4NBr (9 mg, 0.03 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (18 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product C9 in 40%-80% yield.


Synthetic Example 10



embedded image



3-methyl-5-(pyridin-2-yl)phenol (300 mg, 1.62 mmol, 1.0 eq), 24(3-bromophenyl)pyridine (450 mg, 1.94 mmol, 1.2 eq), CuI (62 mg, 0.32 mmol, 0.2 eq), picolinic acid (40 mg, 0.32 mmol, 0.2 eq) and K3PO4 (688 mg, 3.24 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (18 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L10 in 50%-95% yield.




embedded image


L10 (450 mg, 1.33 mmol, 1.0 eq), Pd(OAc)2 (358 mg, 1.6 mmol, 1.2 eq) and n-Bu4NBr (43 mg, 0.133 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (83 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product C10 in 40%-80% yield.


Synthetic Example 11



embedded image



2-methyl-5-(pyridin-2-yl)phenol (300 mg, 1.62 mmol, 1.0 eq), 24(3-bromophenyl)pyridine (450 mg, 1.94 mmol, 1.2 eq), CuI (62 mg, 0.32 mmol, 0.2 eq), picolinic acid (40 mg, 0.32 mmol, 0.2 eq) and K3PO4 (688 mg, 3.24 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (18 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L11 in 50%-97% yield.




embedded image


L11 (480 mg, 1.42 mmol, 1.0 eq), Pd(OAc)2 (381 mg, 1.7 mmol, 1.2 eq) and n-Bu4NBr (43 mg, 0.133 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (83 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product C11 in 40%-90% yield.


Synthetic Example 12



embedded image


4-methyl-3-(pyridin-2-yl)phenol (300 mg, 1.62 mmol, 1.0 eq), 2-(3-bromophenyl)pyridine (450 mg, 1.94 mmol, 1.2 eq), CuI (62 mg, 0.32 mmol, 0.2 eq), picolinic acid (40 mg, 0.32 mmol, 0.2 eq) and K3PO4 (688 mg, 3.24 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (18 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L12 in 60%-95% yield.




embedded image


L12 (480 mg, 1.42 mmol, 1.0 eq), Pd(OAc)2 (381 mg, 1.7 mmol, 1.2 eq) and n-Bu4NBr (43 mg, 0.133 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (83 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product C12 in 60%-90% yield.


Synthetic Example 13



embedded image


3-(4-methylpyridin-2-yl)phenol (300 mg, 1.62 mmol, 1.0 eq), 2-(3-bromophenyl)pyridine (450 mg, 1.94 mmol, 1.2 eq), CuI (62 mg, 0.32 mmol, 0.2 eq), picolinic acid (40 mg, 0.32 mmol, 0.2 eq) and K3PO4 (688 mg, 3.24 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (18 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L13 in 60%-95% yield.




embedded image


L13 (480 mg, 1.42 mmol, 1.0 eq), Pd(OAc)2 (381 mg, 1.7 mmol, 1.2 eq) and n-Bu4NBr (43 mg, 0.133 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (83 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product C13 in 60%-90% yield.


Synthetic Example 14



embedded image


3-(5-methylpyridin-2-yl)phenol (300 mg, 1.62 mmol, 1.0 eq), 2-(3-bromophenyl)pyridine (450 mg, 1.94 mmol, 1.2 eq), CuI (62 mg, 0.32 mmol, 0.2 eq), picolinic acid (40 mg, 0.32 mmol, 0.2 eq) and K3PO4 (688 mg, 3.24 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (18 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L14 in 60%-95% yield.




embedded image


L14 (480 mg, 1.42 mmol, 1.0 eq), Pd(OAc)2 (381 mg, 1.7 mmol, 1.2 eq) and n-Bu4NBr (43 mg, 0.133 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (83 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product C14 in 60%-90% yield.


Synthetic Example 15



embedded image


3-(3-methylpyridin-2-yl)phenol (300 mg, 1.62 mmol, 1.0 eq), 2-(3-bromophenyl)pyridine (450 mg, 1.94 mmol, 1.2 eq), CuI (62 mg, 0.32 mmol, 0.2 eq), picolinic acid (40 mg, 0.32 mmol, 0.2 eq) and K3PO4 (688 mg, 3.24 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (18 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L15 in 60%-95% yield.




embedded image


L15 (480 mg, 1.42 mmol, 1.0 eq), Pd(OAc)2 (381 mg, 1.7 mmol, 1.2 eq) and n-Bu4NBr (43 mg, 0.133 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (83 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product C15 in 60%-90% yield.


Synthetic Example 16



embedded image


3-(6-methylpyridin-2-yl)phenol (300 mg, 1.62 mmol, 1.0 eq), 2-(3-bromophenyl)pyridine (450 mg, 1.94 mmol, 1.2 eq), CuI (62 mg, 0.32 mmol, 0.2 eq), picolinic acid (40 mg, 0.32 mmol, 0.2 eq) and K3PO4 (688 mg, 3.24 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (18 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L16 in 60%-95% yield.




embedded image


L16 (480 mg, 1.42 mmol, 1.0 eq), Pd(OAc)2 (381 mg, 1.7 mmol, 1.2 eq) and n-Bu4NBr (43 mg, 0.133 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (83 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product C16 in 60%-90% yield.


Synthetic Example 17



embedded image


4-methyl-3-(pyridin-2-yl)phenol (300 mg, 1.62 mmol, 1.0 eq), (4-bromo-2-(pyridin-2-yl)phenyl)methylium (481 mg, 1.94 mmol, 1.2 eq), CuI (62 mg, 0.32 mmol, 0.2 eq), picolinic acid (40 mg, 0.32 mmol, 0.2 eq) and K3PO4 (688 mg, 3.24 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (18 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L17 in 60%-95% yield.




embedded image


L17 (498 mg, 1.42 mmol, 1.0 eq), Pd(OAc)2 (381 mg, 1.7 mmol, 1.2 eq) and n-Bu4NBr (43 mg, 0.133 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (83 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product C17 in 60%-90% yield.


Synthetic Example 18



embedded image


3-methyl-5-(pyridin-2-yl)phenol (300 mg, 1.62 mmol, 1.0 eq), 2-(3-bromo-5-methylphenyl)pyridine (481 mg, 1.94 mmol, 1.2 eq), CuI (62 mg, 0.32 mmol, 0.2 eq), picolinic acid (40 mg, 0.32 mmol, 0.2 eq) and K3PO4 (688 mg, 3.24 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (18 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L18 in 60%-95% yield.




embedded image


L18 (498 mg, 1.42 mmol, 1.0 eq), Pd(OAc)2 (381 mg, 1.7 mmol, 1.2 eq) and n-Bu4NBr (43 mg, 0.133 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (83 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product C18 in 60%-90% yield.


Synthetic Example 19



embedded image


2-methyl-5-(pyridin-2-yl)phenol (300 mg, 1.62 mmol, 1.0 eq), 2-(3-bromo-4-methylphenyl)pyridine (481 mg, 1.94 mmol, 1.2 eq), CuI (62 mg, 0.32 mmol, 0.2 eq), picolinic acid (40 mg, 0.32 mmol, 0.2 eq) and K3PO4 (688 mg, 3.24 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (18 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L19 in 60%-95% yield.




embedded image


L19 (498 mg, 1.42 mmol, 1.0 eq), Pd(OAc)2 (381 mg, 1.7 mmol, 1.2 eq) and n-Bu4NBr (43 mg, 0.133 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (83 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product C19 in 60%-90% yield.


Synthetic Example 20



embedded image


2-methyl-5-(pyridin-2-yl)phenol (300 mg, 1.62 mmol, 1.0 eq), 2-(3-bromo-5-methylphenyl)pyridine (481 mg, 1.94 mmol, 1.2 eq), CuI (62 mg, 0.32 mmol, 0.2 eq), picolinic acid (40 mg, 0.32 mmol, 0.2 eq) and K3PO4 (688 mg, 3.24 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (18 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L20 in 60%-95% yield.




embedded image


L20 (498 mg, 1.42 mmol, 1.0 eq), Pd(OAc)2 (381 mg, 1.7 mmol, 1.2 eq) and n-Bu4NBr (43 mg, 0.133 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (83 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product C20 in 60%-90% yield.


Synthetic Example 21



embedded image


2-methyl-5-(pyridin-2-yl)phenol (300 mg, 1.62 mmol, 1.0 eq), (4-bromo-2-(pyridin-2-yl)phenyl)methylium (481 mg, 1.94 mmol, 1.2 eq), CuI (62 mg, 0.32 mmol, 0.2 eq), picolinic acid (40 mg, 0.32 mmol, 0.2 eq) and K3PO4 (688 mg, 3.24 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (18 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L21 in 60%-95% yield.




embedded image


L21 (498 mg, 1.42 mmol, 1.0 eq), Pd(OAc)2 (381 mg, 1.7 mmol, 1.2 eq) and n-Bu4NBr (43 mg, 0.133 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (83 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product C21 in 60%-90% yield.


Synthetic Example 22



embedded image


3-methyl-5-(pyridin-2-yl)phenol (300 mg, 1.62 mmol, 1.0 eq), (4-bromo-2-(pyridin-2-yl)phenyl)methylium (481 mg, 1.94 mmol, 1.2 eq), CuI (62 mg, 0.32 mmol, 0.2 eq), picolinic acid (40 mg, 0.32 mmol, 0.2 eq) and K3PO4 (688 mg, 3.24 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (18 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L22 in 60%-95% yield.




embedded image


L22 (498 mg, 1.42 mmol, 1.0 eq), Pd(OAc)2 (381 mg, 1.7 mmol, 1.2 eq) and n-Bu4NBr (43 mg, 0.133 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (83 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product C22 in 60%-90% yield.


Synthetic Example 23



embedded image


4-methyl-3-(pyridin-2-yl)phenol (300 mg, 1.62 mmol, 1.0 eq), 2-(3-bromophenyl)-4-methylpyridine (481 mg, 1.94 mmol, 1.2 eq), CuI (62 mg, 0.32 mmol, 0.2 eq), picolinic acid (40 mg, 0.32 mmol, 0.2 eq) and K3PO4 (688 mg, 3.24 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (18 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L23 in 60%-95% yield.




embedded image


L23 (498 mg, 1.42 mmol, 1.0 eq), Pd(OAc)2 (381 mg, 1.7 mmol, 1.2 eq) and n-Bu4NBr (43 mg, 0.133 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (83 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product C23 in 60%-90% yield.


Synthetic Example 24



embedded image


3-methyl-5-pyridin-2-yl)phenol (300 mg, 1.62 mmol, 1.0 eq), 2-(3-bromophenyl)-4-methylpyridine (481 mg, 1.94 mmol, 1.2 eq), CuI (62 mg, 0.32 mmol, 0.2 eq), picolinic acid (40 mg, 0.32 mmol, 0.2 eq) and K3PO4 (688 mg, 3.24 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (18 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L24 in 60%-95% yield.




embedded image


L24 (498 mg, 1.42 mmol, 1.0 eq), Pd(OAc)2 (381 mg, 1.7 mmol, 1.2 eq) and n-Bu4NBr (43 mg, 0.133 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (83 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product C24 in 60%-90% yield.


Synthetic Example 25



embedded image


2-methyl-5-(pyridin-2-yl)phenol (300 mg, 1.62 mmol, 1.0 eq), 2-(3-bromophenyl)-4-methylpyridine (481 mg, 1.94 mmol, 1.2 eq), CuI (62 mg, 0.32 mmol, 0.2 eq), picolinic acid (40 mg, 0.32 mmol, 0.2 eq) and K3PO4 (688 mg, 3.24 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (18 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L25 in 60%-95% yield.




embedded image


L25 (498 mg, 1.42 mmol, 1.0 eq), Pd(OAc)2 (381 mg, 1.7 mmol, 1.2 eq) and n-Bu4NBr (43 mg, 0.133 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (83 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product C25 in 60%-90% yield.


Synthetic Example 26



embedded image


3-(1-methyl-1H-imidazol-2-yl)phenol (75 mg, 0.43 mmol, 1.0 eq), 2-(3-bromophenyl)-1-methyl-1H-imidazole (123 mg, 0.52 mmol, 1.2 eq), CuI (16 mg, 0.09 mmol, 0.2 eq), picolinic acid (11 mg, 0.09 mmol, 0.2 eq) and K3PO4 (183 mg, 0.86 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (5 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L26 in 50%-80% yield.




embedded image


L26 (478 mg, 1.45 mmol, 1.0 eq), Pd(OAc)2 (348 mg, 1.55 mmol, 1.07 eq) and n-Bu4NBr (48 mg, 0.15 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (30 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product C26 in 40%-80% yield.


Synthetic Example 27



embedded image


3-(1-methyl-1H-benzo[d]imidazol-2-yl)phenol (224 mg, 1.0 mmol, 1.0 eq), 2-(3-bromophenyl)-1-methyl-1H-benzo[d]imidazole (345 mg, 1.2 mmol, 1.2 eq), CuI (38 mg, 0.2 mmol, 0.2 eq), picolinic acid (25 mg, 0.2 mmol, 0.2 eq) and K3PO4 (424 mg, 2 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L27 in 40%-80% yield.




embedded image


L27 (431 mg, 1.0 mmol, 1.0 eq), Pd(OAc)2 (246 mg, 1.1 mmol, 1.1 eq) and n-Bu4NBr (32 mg, 0.1 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (30 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product C27 in 30%-80% yield.


Synthetic Example 28



embedded image


3-(1-methyl-1H-imidazol-2-yl)phenol (174 mg, 1.0 mmol, 1.0 eq), 2-(3-bromophenyl)-1-methyl-1H-benzo[d]imidazole (344 mg, 1.2 mmol, 1.2 eq), CuI (38 mg, 0.2 mmol, 0.2 eq), picolinic acid (25 mg, 0.2 mmol, 0.2 eq) and K3PO4 (424 mg, 2 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L28 in 30%-80% yield.




embedded image


L28 (380 mg, 1.0 mmol, 1.0 eq), Pd(OAc)2 (246 mg, 1.1 mmol, 1.1 eq) and n-Bu4NBr (32 mg, 0.1 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (30 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product C28 in 30%-70% yield.


Synthetic Example 29



embedded image


Benzo[4,5]imidazo[1,2-f]phenanthridin-7-yl trifluoromethanesulfonate (1(0) mg, 0.24 mmol, 1.0 eq), benzo[4,5]imidazo[1,2-f]phenanthridin-7-ol (82 mg, 0.29 mmol, 1.2 eq), Pd(OAc)2 (11 mg, 0.05 mmol, 0.2 eq), Johnphos (22 mg, 0.072 mmol, 0.3 eq) and K3PO4 (102 mg, 0.48 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent toluene (5 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate (2:1) as eluent to obtain the desired product ligand L29 in 20%-60% yield.




embedded image


L29 (110 mg, 0.20 mmol, 1.0 eq), Pd(OAc)2 (54 mg, 0.24 mmol, 1.2 eq) and n-Bu4NBr (6.5 mg, 0.02 mmol, 0.1 eq) were added to a dry pressure tube was then taken into a glove box and acetic acid (10 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and removed the solvent. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product C29 in 10%˜50% yield.


Synthetic Example 30



embedded image


11-bromodibenzo[f,h]quinolin-6-ylium (308 mg, 1.0 mmol, 1.0 eq), 3-(pyridin-2-yl)phenol (205.44 mg, 1.2 mmol, 1.2 eq), CuI (38 mg, 0.2 mmol, 0.2 eq), picolinic acid (49 mg, 0.4 mmol, 0.4 eq) and K3PO4 (425 mg, 2 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L30 as a white solid in 50%-90% yield.




embedded image


L30 (80 mg, 0.20 mmol, 1.0 eq), Pd(OAc)2 (54 mg, 0.24 mmol, 1.2 eq) and n-Bu4NBr (6.5 mg, 0.02 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (10 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product C30 in 30%-80% yield.


Synthetic Example 31



embedded image


3-(pyridin-2-yl)phenol (171 mg, 1 mmol, 1.0 eq), 2-(3-bromophenyl)-1-methyl-1H-benzo[d]imidazole (344 mg, 1.2 mmol, 1.2 eq), CuI (38 mg, 0.2 mmol, 0.2 eq), picolinic acid (25 mg, 0.2 mmol, 0.2 eq) and K3PO4 (425 mg, 2 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel to obtain the desired product ligand L31 in 40%-80% yield.




embedded image


L31 (377 mg, 1.0 mmol, 1.0 eq), Pd(OAc)2 (246 mg, 1.1 mmol, 1.1 eq) and n-Bu4NBr (32 mg, 0.1 mmol, 0.1 eq) were added to a dry pressure tube was then taken into a glove box and acetic acid (63 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel to obtain the desired product C31 in 30%-70% yield.


Synthetic Example 32



embedded image


3-(pyridin-2-yl)phenol (171 mg, 1 mmol, 1.0 eq), 2-(3-bromophenyl)-1-methyl-1H-imidazole (244 mg, 1.2 mmol, 1.2 eq), CuI (38 mg, 0.2 mmol, 0.2 eq), picolinic acid (25 mg, 0.2 mmol, 0.2 eq) and K3PO4 (425 mg, 2 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate (2:1) as eluent to obtain the desired product ligand L32 in 40%-80% yield.




embedded image


L32 (327 mg, 1.0 mmol, 1.0 eq), Pd(OAc)2 (246 mg, 1.1 mmol, 1.1 eq) and n-Bu4NBr (32 mg, 0.1 mmol, 0.1 eq) were added to a dry pressure tube was then taken into a glove box and acetic acid (63 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product C32 in 30%-70% yield.


Synthetic Example 33



embedded image


Benzo[4,5]imidazo[1,2-f]phenanthridin-7-ol (293 mg, 1.03 mmol, 1.0 eq), 2-(3-bromophenyl)-4-(tert-butyl)pyridine (357 mg, 1.23 mmol, 1.2 eq), CuI (40 mg, 0.21 mmol, 0.2 eq), picolinic acid (25 mg, 0.21 mmol, 0.2 eq) and K3PO4 (437 mg, 2.06 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L33 in 30%-80% yield.




embedded image


L33 (493 mg, 1.0 mmol, 1.0 eq), Pd(OAc)2 (246 mg, 1.1 mmol, 1.1 eq) and n-Bu4NBr (32 mg, 0.1 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (63 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product C33 in 30%-70% yield.


Synthetic Example 34



embedded image


Benzo[4,5]imidazo[1,2-f]phenanthridin-7-ol (293 mg, 1.03 mmol, 1.0 eq), 2-(3-bromo-5-(tert-butyl)phenyl)pyridine (357 mg 1.23 mmol, 1.2 eq), CuI (40 mg, 0.21 mmol, 0.2 eq), picolinic acid (25 mg, 0.21 mmol, 0.2 eq) and K3PO4 (437 mg, 2.06 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L34 in 50%-85% yield.




embedded image


L34 (493 mg, 1.0 mmol, 1.0 eq), Pd(OAc)2 (246 mg, 1.1 mmol, 1.1 eq) and n-Bu4NBr (32 mg, 0.1 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (63 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product C34 in 30%-70% yield.


Synthetic Example 35



embedded image


Benzo[4,5]imidazo[1,2-f]phenanthridin-7-ol (293 mg, 1.03 mmol, 1.0 eq), 2-(3-bromo-4-(tert-butyl)phenyl)pyridine (357 mg 1.23 mmol, 1.2 eq), CuI (40 mg, 0.21 mmol, 0.2 eq), picolinic acid (25 mg, 0.21 mmol, 0.2 eq) and K3PO4 (437 mg, 2.06 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L35 in 50%-90% yield.




embedded image


L35 (493 mg, 1.0 mmol, 1.0 eq), Pd(OAc)2 (246 mg, 1.1 mmol, 1.1 eq) and n-Bu4NBr (32 mg, 0.1 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (63 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product C35 in 30%-80% yield.


Synthetic Example 36



embedded image


Benzo[4,5]imidazo[1,2-f]phenanthridin-7-ol (293 mg, 1.03 mmol, 1.0 eq), 2-(3-bromo-4-methylphenyl)pyridine (305 mg 1.23 mmol, 1.2 eq), CuI (40 mg, 0.21 mmol, 0.2 eq), picolinic acid (25 mg, 0.21 mmol, 0.2 eq) and K3PO4 (437 mg, 2.06 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L36 in 50%-90% yield.




embedded image


L36 (451 mg, 1.0 mmol, 1.0 eq), Pd(OAc)2 (246 mg, 1.1 mmol, 1.1 eq) and n-Bu4NBr (32 mg, 0.1 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (63 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product C36 in 30%-80% yield.


Synthetic Example 37



embedded image


Benzo[4,5]imidazo[1,2-f]phenanthridin-7-ol (293 mg, 1.03 mmol, 1.0 eq), 2-(3-bromo-5-methylphenyl)pyridine (305 mg 1.23 mmol, 1.2 eq), CuI (40 mg, 0.21 mmol, 0.2 eq), picolinic acid (25 mg, 0.21 mmol, 0.2 eq) and K3PO4 (437 mg, 2.06 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L37 in 50%-90% yield.




embedded image


L37 (451 mg, 1.0 mmol, 1.0 eq), Pd(OAc)2 (246 mg, 1.1 mmol, 1.1 eq) and n-Bu4NBr (32 mg, 0.1 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (63 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product C37 in 30%-80% yield.


Synthetic Example 38



embedded image


Benzo[4,5]imidazo[1,2-f]phenanthridin-7-ol (293 mg, 1.03 mmol, 1.0 eq), 2-(5-bromo-2-methylphenyl)pyridine (305 mg 1.23 mmol, 1.2 eq), CuI (40 mg, 0.21 mmol, 0.2 eq), picolinic acid (25 mg, 0.21 mmol, 0.2 eq) and K3PO4 (437 mg, 2.06 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L38 in 50%-90% yield.




embedded image


L38 (451 mg, 1.0 mmol, 1.0 eq), Pd(OAc)2 (246 mg, 1.1 mmol, 1.1 eq) and n-Bu4NBr (32 mg, 0.1 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (63 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product C38 in 30%-80% yield.


Synthetic Example 39



embedded image


Benzo[c]benzo[4,5]imidazo[1,2-a][1,5]naphthyridin-7-ol (285.3 mg, 1 mmol, 1.0 eq), 2-(3-bromophenyl)pyridine (281 mg, 1.2 mmol, 1.2 eq), CuI (38 mg, 0.2 mmol, 0.2 eq), picolinic acid (49 mg, 0.4 mmol, 0.4 eq) and K3PO4 (425 mg, 2 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate (2:1) as eluent to obtain the desired product ligand L39 in 30%-80% yield.




embedded image


L39 (438 mg, 1.0 mmol, 1.0 eq), Pd(OAc)2 (246 mg, 1.1 mmol, 1.1 eq) and n-Bu4NBr (32 mg, 0.1 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (63 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product C39 in 20%-70% yield.


Synthetic Example 40



embedded image


Benzo[c]benzo[4,5]imidazo[1,2-a][1,8]naphthyridin-7-ol (285.3 mg, 1 mmol, 1.0 eq), 2-(3-bromophenyl)pyridine (281 mg, 1.2 mmol, 1.2 eq), CuI (38 mg, 0.2 mmol, 0.2 eq), picolinic acid (49 mg, 0.4 mmol, 0.4 eq) and K3PO4 (425 mg, 2 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate (2:1) as eluent to obtain the desired product ligand L40 in 30%-80% yield.




embedded image


L40 (438 mg, 1.0 mmol, 1.0 eq), Pd(OAc)2 (246 mg, 1.1 mmol, 1.1 eq) and n-Bu4NBr (32 mg, 0.1 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (63 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product C40 in 20%-70% yield.


Synthetic Example 41



embedded image


Benzo[c]imidazo[1,2-a][1,5]naphthyridin-11-ol (235 mg, 1 mmol, 1.0 eq), 2-(3-bromophenyl)pyridine (281 mg, 1.2 mmol, 1.2 eq), CuI), CuI (38 mg, 0.2 mmol, 0.2 eq), picolinic acid (49 mg, 0.4 mmol, 0.4 eq) and K3PO4 (425 mg, 2 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel to obtain the desired product ligand L41 in 30%-80% yield.




embedded image


L41 (388 mg, 1.0 mmol, 1.0 eq), Pd(OAc)2 (246 mg, 1.1 mmol, 1.1 eq) and n-Bu4NBr (32 mg, 0.1 mmol, 0.1 eq) were added to a dry pressure tube was then taken into a glove box and acetic acid (63 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and removed the solvent. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product C41 in 20%-70% yield.


Synthetic Example 42



embedded image


Benzo[c]imidazo[1,2-a][1,8]naphthyridin-11-ol (235 mg, 1 mmol, 1.0 eq), 2-(3-bromophenyl)pyridine (281 mg, 1.2 mmol, 1.2 eq), CuI), CuI (38 mg, 0.2 mmol, 0.2 eq), picolinic acid (49 mg, 0.4 mmol, 0.4 eq) and K3PO4 (425 mg, 2 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate (2:1) as eluent to obtain the desired L42 in 30%-80% yield.




embedded image


L42 (388 mg, 1.0 mmol, 1.0 eq), Pd(OAc)2 (246 mg, 1.1 mmol, 1.1 eq) and n-Bu4NBr (32 mg, 0.1 mmol, 0.1 eq) were added to a dry pressure tube was then taken into a glove box and acetic acid (63 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and removed the solvent. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product C42 in 20%-70% yield.


Synthetic Example 43



embedded image


Imidazo[1,2-f]phenanthridin-11-ol (235 mg, 1.0 mmol, 1.0 eq), 2-(3-bromophenyl)-4-(tert-butyl)pyridine (348 mg, 1.2 mmol, 1.2 eq), CuI (38 mg, 0.2 mmol, 0.2 eq), picolinic acid (49 mg, 0.4 mmol, 0.4 eq) and K3PO4 (425 mg, 2 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L43 in 30%-80% yield.




embedded image


L43 (443 mg, 1.0 mmol, 1.0 eq), Pd(OAc)2 (246 mg, 1.1 mmol, 1.1 eq) and n-Bu4NBr (32 mg, 0.1 mmol, 0.1 eq) were added to a dry pressure tube was then taken into a glove box and acetic acid (63 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product C43 in 20%-70% yield.


Synthetic Example 44



embedded image


Imidazo[1,2-f]phenanthridin-11-ol (235 mg, 1.0 mmol, 1.0 eq), 2-(3-bromo-5-(tert-butyl)phenyl)pyridine (348 mg, 1.2 mmol, 1.2 eq), CuI (38 mg, 0.2 mmol, 0.2 eq), picolinic acid (49 mg, 0.4 mmol, 0.4 eq) and K3PO4 (425 mg, 2 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L44 in 30%-80% yield.




embedded image


L44 (443 mg, 1.0 mmol, 1.0 eq), Pd(OAc)2 (246 mg, 1.1 mmol, 1.1 eq) and n-Bu4NBr (32 mg, 0.1 mmol, 0.1 eq) were added to a dry pressure tube was then taken into a glove box and acetic acid (63 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product C44 in 20%-70% yield.


Synthetic Example 45



embedded image


Imidazo[1,2-f]phenanthridin-11-ol (235 mg, 1.0 mmol, 1.0 eq), 2-(3-bromo-5-(tert-butyl)phenyl)-4-(tert-butyl)pyridine (415 mg, 1.20 mmol, 1.2 eq), CuI (38 mg, 0.2 mmol, 0.2 eq), picolinic acid (49 mg, 0.4 mmol, 0.4 eq) and K3PO4 (425 mg, 2 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L45 in 30%-80% yield.




embedded image


L45 (500 mg, 1.0 mmol, 1.0 eq), Pd(OAc)2 (246 mg, 1.1 mmol, 1.1 eq) and n-Bu4NBr (32 mg, 0.1 mmol, 0.1 eq) were added to a dry pressure tube was then taken into a glove box and acetic acid (63 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product C45 in 20%-70% yield.


Synthetic Example 46



embedded image


Imidazo[1,2-f]phenanthridin-11-ol (235 mg, 1.0 mmol, 1.0 eq), 2-(3-bromo-5-methylphenyl)pyridine (298 mg, 1.20 mmol, 1.2 eq), CuI (38 mg, 0.2 mmol, 0.2 eq), picolinic acid (49 mg, 0.4 mmol, 0.4 eq) and K3PO4 (425 mg, 2 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L46 in 40%-90% yield.




embedded image


L46 (401 mg, 1.0 mmol, 1.0 eq), Pd(OAc)2 (246 mg, 1.1 mmol, 1.1 eq) and n-Bu4NBr (32 mg, 0.1 mmol, 0.1 eq) were added to a dry pressure tube was then taken into a glove box and acetic acid (63 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product C46 in 30%-80% yield.


Synthetic Example 47



embedded image


Imidazo[1,2-f]phenanthridin-11-ol (235 mg, 1.0 mmol, 1.0 eq), 2-(3-bromo-4-methylphenyl)pyridine (298 mg, 1.20 mmol, 1.2 eq), CuI (38 mg, 0.2 mmol, 0.2 eq), picolinic acid (49 mg, 0.4 mmol, 0.4 eq) and K3PO4 (425 mg, 2 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L47 in 40%-90% yield.




embedded image


L47 (401 mg, 1.0 mmol, 1.0 eq), Pd(OAc)2 (246 mg, 1.1 mmol, 1.1 eq) and n-Bu4NBr (32 mg, 0.1 mmol, 0.1 eq) were added to a dry pressure tube was then taken into a glove box and acetic acid (63 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product C47 in 30%-80% yield.


Synthetic Example 48



embedded image


Imidazo[1,2-f]phenanthridin-11-ol (235 mg, 1.0 mmol, 1.0 eq), 2-(5-bromo-2-methylphenyl)pyridine (298 mg, 1.20 mmol, 1.2 eq), CuI (38 mg, 0.2 mmol, 0.2 eq), picolinic acid (49 mg, 0.4 mmol, 0.4 eq) and K3PO4 (425 mg, 2 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to obtain the desired product ligand L48 in 40%-90% yield.




embedded image


L48 (401 mg, 1.0 mmol, 1.0 eq), Pd(OAc)2 (246 mg, 1.1 mmol, 1.1 eq) and n-Bu4NBr (32 mg, 0.1 mmol, 0.1 eq) were added to a dry pressure tube was then taken into a glove box and acetic acid (63 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product C48 in 30%-80% yield.


Synthetic Example 49



embedded image


Benzo[4,5]imidazo[1,2-f]phenanthridin-7-ol (227 mg, 0.8 mmol, 1.0 eq), 2-(3-bromophenyl)-1-methyl-TH-benzo[d]imidazole (276 mg, 0.96 mmol, 1.2 eq), CuI (30 mg, 0.2 mmol, 0.2 eq), picolinic acid (20 mg, 0.2 mmol, 0.2 eq) and K3PO4 (339 mg, 1.6 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (12 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel using hexane/ethyl acetate (2:1) as eluent to obtain the desired product ligand L49 in 30%-80% yield.




embedded image


LC49 (234 mg, 0.48 mmol, 1.0 eq), Pd(OAc)2 (118 mg, 0.53 mmol, 1.2 eq) and n-Bu4NBr (15 mg, 0.05 mmol, 0.1 eq) were added to a dry pressure tube, which was taken into a glove box and acetic acid (35 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product C49 in 20%-70% yield.


Synthetic Example 50



embedded image


Benzo[c]benzo[4,5]imidazo[1,2-a][1,5]naphthyridin-7-ol (285.3 mg, 1 mmol, 1.0 eq), 2-(3-bromophenyl)-1-methyl-1H-benzo[d]imidazole (345 mg, 1.2 mmol, 1.2 eq), CuI (38 mg, 0.2 mmol, 0.2 eq), picolinic acid (49 mg, 0.4 mmol, 0.4 eq) and K3PO4 (425 mg, 2 mmol, 2.0 eq) were added to a dry Shlenck tube equipped with a magnetic stir bar. The tube was evacuated and backfilled with nitrogen. The evacuation and backfill procedure was repeated for a total of three times. Then solvent DMSO (10 mL) was added under the protection of nitrogen. The mixture was stirred in an oil bath at a temperature of 90° C. for 3 days and then cooled down to ambient temperature, diluted with ethyl acetate. The mixture was washed with water three times and then dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the residue was purified through column chromatography on silica gel to obtain the desired product ligand L50 in 30%-80% yield.




embedded image


L50 (490 mg, 1.0 mmol, 1.0 eq), Pd(OAc)2 (246 mg, 1.1 mmol, 1.1 eq) and n-Bu4NBr (32 mg, 0.1 mmol, 0.1 eq) were added to a dry pressure tube was then taken into a glove box and acetic acid (63 mL) was added. The mixture was bubbled with nitrogen for 30 minutes and then the tube was sealed. Then the mixture was heated to reflux in an oil bath and stirred for 2 days, cooled to ambient temperature and the solvent removed. Then the solid was purified through column chromatography on silica gel using dichloromethane as eluent to obtain the desired product C50 in 20%-70% yield.


Only a few implementations are described and illustrated. Variations, enhancements and improvements of the described implementations and other implementations can be made based on what is described and illustrated in this document.

Claims
  • 1. An organic light emitting diode comprising: a substrate;a first electrode;a hole transporting layer proximate the first electrode;a second electrode;an electron transporting layer proximate the second electrode; andan emissive layer between the hole transporting layer and the electron transporting layer, wherein the emissive layer comprises a square planar tetradentate platinum complex represented by one of Formulas I-IX, and excimers formed by two or more of the complexes are aligned such that emitting dipoles of the excimers are substantially parallel to a surface of the substrate:
  • 2. The organic light emitting diode of claim 1, wherein the complex represented by Formula I comprises one of:
  • 3. The organic light emitting diode of claim 1, wherein a concentration of the complex in the emissive layer is in a range of 5 wt % to 100 wt %.
  • 4. The organic light emitting diode of claim 3, wherein the emissive layer comprises a neat film of the complex.
  • 5. The organic light emitting diode of claim 3, wherein the emissive layer comprises a doped film comprising a host material and the complex.
  • 6. The organic light emitting diode of claim 5, wherein a concentration of the complex in the doped film is in a range of 5 wt % to 25 wt %.
  • 7. The organic light emitting diode of claim 5, wherein the host material comprises a carbazole-based host having one to three carbazole skeletons.
  • 8. The organic light emitting diode of claim 7, wherein the carbazole-based host is represented by one of Formulas 1-3:
  • 9. The organic light emitting diode of claim 8, wherein the carbazole-based host comprises one or more of tris-PCz (9,9′,9″-triphenyl-9H,9′H,9″H-3,3′:6′3″-tercarbazole), CBP (4,4-di(9H-carbazol-9-yl) biphenyl), mCBP (3,3-di(9H-carbazol-9-yl) biphenyl), and mCP (meta-di(carbazolyl) phenyl).
  • 10. The organic light emitting diode of claim 1, wherein the emissive layer comprises one or more doped films comprising the complex, each doped film having a different concentration of the complex.
  • 11. The organic light emitting diode of claim 10, wherein the emissive layer comprises a first doped film comprising the complex and a second doped film comprising the complex.
  • 12. The organic light emitting diode of claim 11, wherein a concentration of the complex in the first doped film is in a range of 15 wt % to 25 wt % and a concentration of the complex in the second doped film is in a range of 5 wt % to 15 wt %.
  • 13. The organic light emitting diode of claim 12, wherein the emissive layer further comprises a third doped film comprising the complex.
  • 14. The organic light emitting diode of claim 13, wherein a concentration of the complex in the third doped film is in a range of 5 wt % to 10 wt %.
  • 15. The organic light emitting diode of claim 1, wherein the first electrode is formed on the surface of the substrate.
  • 16. The organic light emitting diode of claim 1, wherein, in Formula I, Ar1 and Ar5 do not represent imidazolium carbene, pyrazine, or triazole.
CROSS-REFERENCE TO RELATED APPLICATION

This application is a continuation of U.S. application Ser. No. 16/756,219, filed Apr. 15, 2020, now allowed, which is a 35 U.S.C. § 371 National Stage Patent Application of International Patent Application No. PCT/US2018/056364, filed Oct. 17, 2018, which claims the benefit of U.S. Patent Application No. 62/573,639 filed Oct. 17, 2017, all of which applications are incorporated herein by reference in their entireties.

STATEMENT OF GOVERNMENT SUPPORT

This invention was made with government support under DE-EE0007090 awarded by the Department of Energy. The government has certain rights in the invention.

US Referenced Citations (347)
Number Name Date Kind
4769292 Tang Sep 1988 A
5451674 Silver Sep 1995 A
5641878 Dandliker Jun 1997 A
5707745 Forrest Jan 1998 A
5844363 Gu Dec 1998 A
6200695 Arai Mar 2001 B1
6303238 Thompson Oct 2001 B1
6780528 Tsuboyama Aug 2004 B2
7002013 Chi Feb 2006 B1
7037599 Culligan May 2006 B2
7064228 Yu Jun 2006 B1
7268485 Tyan Sep 2007 B2
7279704 Walters Oct 2007 B2
7332232 Ma Feb 2008 B2
7442797 Itoh Oct 2008 B2
7501190 Ise Mar 2009 B2
7635792 Cella Dec 2009 B1
7655322 Forrest Feb 2010 B2
7854513 Quach Dec 2010 B2
7947383 Ise May 2011 B2
8106199 Jabbour Jan 2012 B2
8133597 Yasukawa Mar 2012 B2
8389725 Li Mar 2013 B2
8617723 Stoessel Dec 2013 B2
8669364 Li Mar 2014 B2
8778509 Yasukawa Jul 2014 B2
8816080 Li Aug 2014 B2
8846940 Li Sep 2014 B2
8871361 Xia Oct 2014 B2
8927713 Li Jan 2015 B2
8933622 Kawami Jan 2015 B2
8946417 Li Feb 2015 B2
8987451 Tsai Mar 2015 B2
9059412 Zeng Jun 2015 B2
9076974 Li Jul 2015 B2
9082989 Li Jul 2015 B2
9203039 Li Dec 2015 B2
9221857 Li Dec 2015 B2
9224963 Li Dec 2015 B2
9238668 Li Jan 2016 B2
9312502 Li Apr 2016 B2
9312505 Brooks Apr 2016 B2
9318725 Li Apr 2016 B2
9324957 Li Apr 2016 B2
9382273 Li Jul 2016 B2
9385329 Li Jul 2016 B2
9425415 Li Aug 2016 B2
9461254 Tsai Oct 2016 B2
9493698 Beers Nov 2016 B2
9502671 Li Nov 2016 B2
9550801 Li Jan 2017 B2
9598449 Li Mar 2017 B2
9617291 Li Apr 2017 B2
9666822 Forrest May 2017 B2
9673409 Li Jun 2017 B2
9698359 Li Jul 2017 B2
9711739 Li Jul 2017 B2
9711741 Li Jul 2017 B2
9711742 Li Jul 2017 B2
9735397 Riegel Aug 2017 B2
9755163 Li Sep 2017 B2
9818959 Li Nov 2017 B2
9865825 Li Jan 2018 B2
9879039 Li Jan 2018 B2
9882150 Li Jan 2018 B2
9899614 Li Feb 2018 B2
9920242 Li Mar 2018 B2
9923155 Li Mar 2018 B2
9941479 Li Apr 2018 B2
9947881 Li Apr 2018 B2
9985224 Li May 2018 B2
10020455 Li Jul 2018 B2
10033003 Li Jul 2018 B2
10056564 Li Aug 2018 B2
10056567 Li Aug 2018 B2
10158091 Li Dec 2018 B2
10177323 Li Jan 2019 B2
10211411 Li Feb 2019 B2
10211414 Li Feb 2019 B2
10263197 Li Apr 2019 B2
10294417 Li May 2019 B2
10392387 Li Aug 2019 B2
10411202 Li Sep 2019 B2
10414785 Li Sep 2019 B2
10516117 Li Dec 2019 B2
10566553 Li Feb 2020 B2
10566554 Li Feb 2020 B2
10615349 Li Apr 2020 B2
10622571 Li Apr 2020 B2
10727422 Li Jul 2020 B2
10745615 Li Aug 2020 B2
10790457 Li Sep 2020 B2
10793546 Li Oct 2020 B2
10804476 Li Oct 2020 B2
10822363 Li Nov 2020 B2
10836785 Li Nov 2020 B2
10851106 Li Dec 2020 B2
10886478 Li Jan 2021 B2
10930865 Li Feb 2021 B2
10937976 Li Mar 2021 B2
10944064 Li Mar 2021 B2
10964897 Li Mar 2021 B2
10991897 Li Apr 2021 B2
10995108 Li May 2021 B2
11011712 Li May 2021 B2
11063228 Li Jul 2021 B2
11101435 Li Aug 2021 B2
11114626 Li Sep 2021 B2
11121328 Li Sep 2021 B2
11145830 Li Oct 2021 B2
20010019782 Tatsuya Sep 2001 A1
20020068190 Tsuboyama Jun 2002 A1
20030062519 Yamazaki Apr 2003 A1
20030180574 Huang Sep 2003 A1
20030186077 Chen Oct 2003 A1
20040230061 Seo Nov 2004 A1
20050037232 Tyan Feb 2005 A1
20050139810 Kuehl Jun 2005 A1
20050170207 Ma Aug 2005 A1
20050260446 Mackenzie Nov 2005 A1
20060024522 Thompson Feb 2006 A1
20060032528 Wang Feb 2006 A1
20060066228 Antoniadis Mar 2006 A1
20060073359 Ise Apr 2006 A1
20060094875 Itoh May 2006 A1
20060127696 Stossel Jun 2006 A1
20060182992 Nii Aug 2006 A1
20060202197 Nakayama Sep 2006 A1
20060210831 Sano Sep 2006 A1
20060255721 Igarashi Nov 2006 A1
20060263635 Ise Nov 2006 A1
20060286406 Igarashi Dec 2006 A1
20070057630 Nishita Mar 2007 A1
20070059551 Yamazaki Mar 2007 A1
20070082284 Stoessel Apr 2007 A1
20070103060 Hisanori May 2007 A1
20070160905 Morishita Jul 2007 A1
20070252140 Limmert Nov 2007 A1
20080001530 Ise Jan 2008 A1
20080036373 Hisanori Feb 2008 A1
20080054799 Satou Mar 2008 A1
20080079358 Satou Apr 2008 A1
20080102310 Thompson May 2008 A1
20080111476 Choi May 2008 A1
20080241518 Satou Oct 2008 A1
20080241589 Fukunaga Oct 2008 A1
20080269491 Jabbour Oct 2008 A1
20080315187 Bazan Dec 2008 A1
20090026936 Satou Jan 2009 A1
20090026939 Kinoshita Jan 2009 A1
20090032989 Karim Feb 2009 A1
20090039768 Igarashi Feb 2009 A1
20090079340 Kinoshita Mar 2009 A1
20090126796 Yang May 2009 A1
20090128008 Ise May 2009 A1
20090136779 Cheng May 2009 A1
20090153045 Kinoshita Jun 2009 A1
20090167157 Murakami Jul 2009 A1
20090167167 Aoyama Jul 2009 A1
20090205713 Mitra Aug 2009 A1
20090218561 Kitamura Sep 2009 A1
20090261721 Murakami Oct 2009 A1
20090267500 Kinoshita Oct 2009 A1
20100000606 Thompson Jan 2010 A1
20100013386 Thompson Jan 2010 A1
20100043876 Tuttle Feb 2010 A1
20100093119 Shimizu Apr 2010 A1
20100127246 Nakayama May 2010 A1
20100141127 Xia Jun 2010 A1
20100147386 Benson-Smith Jun 2010 A1
20100171111 Takada Jul 2010 A1
20100171418 Kinoshita Jul 2010 A1
20100200051 Triani Aug 2010 A1
20100204467 Lamarque Aug 2010 A1
20100270540 Chung Oct 2010 A1
20100288362 Hatwar Nov 2010 A1
20100297522 Creeth Nov 2010 A1
20100301315 Masui Dec 2010 A1
20100307594 Zhu Dec 2010 A1
20110028723 Li Feb 2011 A1
20110049496 Fukuzaki Mar 2011 A1
20110062858 Yersin Mar 2011 A1
20110132440 Sivarajan Jun 2011 A1
20110217544 Young Sep 2011 A1
20110227058 Masui Sep 2011 A1
20110301351 Li Dec 2011 A1
20120024383 Kaiho Feb 2012 A1
20120025588 Humbert Feb 2012 A1
20120039323 Hirano Feb 2012 A1
20120095232 Li Apr 2012 A1
20120108806 Li May 2012 A1
20120146012 Limmert Jun 2012 A1
20120181528 Takada Jul 2012 A1
20120199823 Molt Aug 2012 A1
20120202997 Parham Aug 2012 A1
20120204960 Kato Aug 2012 A1
20120215001 Li Aug 2012 A1
20120223634 Xia Sep 2012 A1
20120264938 Li Oct 2012 A1
20120273736 James Nov 2012 A1
20120302753 Li Nov 2012 A1
20130048963 Beers Feb 2013 A1
20130082245 Kottas Apr 2013 A1
20130137870 Li May 2013 A1
20130168656 Tsai Jul 2013 A1
20130172561 Tsai Jul 2013 A1
20130200340 Otsu Aug 2013 A1
20130203996 Li Aug 2013 A1
20130237706 Li Sep 2013 A1
20130341600 Lin Dec 2013 A1
20140014922 Lin Jan 2014 A1
20140014931 Riegel Jan 2014 A1
20140027733 Zeng Jan 2014 A1
20140042475 Park Feb 2014 A1
20140066628 Li Mar 2014 A1
20140073798 Li Mar 2014 A1
20140084261 Brooks Mar 2014 A1
20140114072 Li Apr 2014 A1
20140147996 Vogt May 2014 A1
20140148594 Li May 2014 A1
20140191206 Cho Jul 2014 A1
20140203248 Zhou Jul 2014 A1
20140249310 Li Sep 2014 A1
20140326960 Kim Nov 2014 A1
20140330019 Li Nov 2014 A1
20140364605 Li Dec 2014 A1
20140374728 Adamovich Dec 2014 A1
20150008419 Li Jan 2015 A1
20150018558 Li Jan 2015 A1
20150028323 Xia Jan 2015 A1
20150060804 Kanitz Mar 2015 A1
20150069334 Xia Mar 2015 A1
20150105556 Li Apr 2015 A1
20150123047 Maltenberger May 2015 A1
20150162552 Li Jun 2015 A1
20150194616 Li Jul 2015 A1
20150207086 Li Jul 2015 A1
20150228914 Li Aug 2015 A1
20150274762 Li Oct 2015 A1
20150287938 Li Oct 2015 A1
20150311456 Li Oct 2015 A1
20150318500 Li Nov 2015 A1
20150349279 Li Dec 2015 A1
20150380666 Szigethy Dec 2015 A1
20160028028 Li Jan 2016 A1
20160028029 Li Jan 2016 A1
20160043331 Li Feb 2016 A1
20160072082 Brooks Mar 2016 A1
20160130225 Tasaki May 2016 A1
20160133861 Li May 2016 A1
20160133862 Li May 2016 A1
20160181529 Tsai Jun 2016 A1
20160194344 Li Jul 2016 A1
20160197285 Zeng Jul 2016 A1
20160197291 Li Jul 2016 A1
20160204358 Stoessel Jul 2016 A1
20160285015 Li Sep 2016 A1
20160359120 Li Dec 2016 A1
20160359125 Li Dec 2016 A1
20170005278 Li Jan 2017 A1
20170012224 Li Jan 2017 A1
20170040555 Li Feb 2017 A1
20170047533 Li Feb 2017 A1
20170066792 Li Mar 2017 A1
20170069855 Li Mar 2017 A1
20170077420 Li Mar 2017 A1
20170125708 Li May 2017 A1
20170267923 Li Sep 2017 A1
20170271611 Li Sep 2017 A1
20170301871 Li Oct 2017 A1
20170305881 Li Oct 2017 A1
20170309943 Angell Oct 2017 A1
20170331056 Li Nov 2017 A1
20170342098 Li Nov 2017 A1
20170373260 Li Dec 2017 A1
20180006246 Li Jan 2018 A1
20180013096 Hamada Jan 2018 A1
20180037812 Pegington Feb 2018 A1
20180052366 Hao Feb 2018 A1
20180053904 Li Feb 2018 A1
20180062084 Watabe Mar 2018 A1
20180130960 Li May 2018 A1
20180138428 Li May 2018 A1
20180148464 Li May 2018 A1
20180159051 Li Jun 2018 A1
20180166655 Li Jun 2018 A1
20180175329 Li Jun 2018 A1
20180194790 Li Jul 2018 A1
20180198081 Zeng Jul 2018 A1
20180219161 Li Aug 2018 A1
20180226592 Li Aug 2018 A1
20180226593 Li Aug 2018 A1
20180230173 Ji Aug 2018 A1
20180277777 Li Sep 2018 A1
20180301641 Li Oct 2018 A1
20180312750 Li Nov 2018 A1
20180331307 Li Nov 2018 A1
20180334459 Li Nov 2018 A1
20180337345 Li Nov 2018 A1
20180337349 Li Nov 2018 A1
20180337350 Li Nov 2018 A1
20180353771 Kim Dec 2018 A1
20190013485 Li Jan 2019 A1
20190058137 Ko Feb 2019 A1
20190067602 Li Feb 2019 A1
20190109288 Li Apr 2019 A1
20190119312 Chen Apr 2019 A1
20190157352 Li May 2019 A1
20190194536 Li Jun 2019 A1
20190221757 Tarran Jul 2019 A1
20190259963 Li Aug 2019 A1
20190276485 Li Sep 2019 A1
20190312217 Li Oct 2019 A1
20190367546 Li Dec 2019 A1
20190389893 Li Dec 2019 A1
20200006678 Li Jan 2020 A1
20200055885 Tarran Feb 2020 A1
20200071330 Li Mar 2020 A1
20200075868 Li Mar 2020 A1
20200119288 Li Apr 2020 A1
20200119289 Lin Apr 2020 A1
20200140471 Chen May 2020 A1
20200152891 Li May 2020 A1
20200168798 Han May 2020 A1
20200227656 Li Jul 2020 A1
20200227660 Li Jul 2020 A1
20200239505 Li Jul 2020 A1
20200243776 Li Jul 2020 A1
20200287153 Li Sep 2020 A1
20200332185 Li Oct 2020 A1
20200373505 Li Nov 2020 A1
20200403167 Li Dec 2020 A1
20210024526 Li Jan 2021 A1
20210024559 Li Jan 2021 A1
20210047296 Li Feb 2021 A1
20210091316 Li Mar 2021 A1
20210095195 Ma Apr 2021 A1
20210104687 Li Apr 2021 A1
20210111355 Li Apr 2021 A1
20210126208 Li Apr 2021 A1
20210193936 Li Jun 2021 A1
20210193947 Li Jun 2021 A1
20210217973 Li Jul 2021 A1
20210230198 Li Jul 2021 A1
20210261589 Li Aug 2021 A1
20210273182 Li Sep 2021 A1
20210292351 Macinnis Sep 2021 A1
Foreign Referenced Citations (200)
Number Date Country
1680366 Oct 2005 CN
1777663 May 2006 CN
1894267 Jan 2007 CN
1894269 Jan 2007 CN
101142223 Mar 2008 CN
101667626 Mar 2010 CN
102449108 May 2012 CN
102892860 Jan 2013 CN
102971396 Mar 2013 CN
103102372 May 2013 CN
104232076 Dec 2014 CN
104377231 Feb 2015 CN
104576934 Apr 2015 CN
104693243 Jun 2015 CN
105367605 Mar 2016 CN
105418591 Mar 2016 CN
106783922 May 2017 CN
1617493 Jan 2006 EP
1808052 Jul 2007 EP
1874893 Jan 2008 EP
1874894 Jan 2008 EP
1919928 May 2008 EP
1968131 Sep 2008 EP
2020694 Feb 2009 EP
2036907 Mar 2009 EP
2096690 Sep 2009 EP
2112213 Oct 2009 EP
2417217 Feb 2012 EP
2684932 Jan 2014 EP
2711999 Mar 2014 EP
3032293 Jun 2016 EP
2002010505 Jan 2002 JP
2002105055 Apr 2002 JP
2003342284 Dec 2003 JP
2005031073 Feb 2005 JP
2005267557 Sep 2005 JP
2005310733 Nov 2005 JP
2006047240 Feb 2006 JP
2006232784 Sep 2006 JP
2006242080 Sep 2006 JP
2006242081 Sep 2006 JP
2006256999 Sep 2006 JP
2006257238 Sep 2006 JP
2006261623 Sep 2006 JP
2006290988 Oct 2006 JP
2006313796 Nov 2006 JP
2006332622 Dec 2006 JP
2006351638 Dec 2006 JP
2007019462 Jan 2007 JP
2007031678 Feb 2007 JP
2007042875 Feb 2007 JP
2007051243 Mar 2007 JP
2007053132 Mar 2007 JP
2007066581 Mar 2007 JP
2007073620 Mar 2007 JP
2007073845 Mar 2007 JP
2007073900 Mar 2007 JP
2007080593 Mar 2007 JP
2007080677 Mar 2007 JP
2007088105 Apr 2007 JP
2007088164 Apr 2007 JP
2007096259 Apr 2007 JP
2007099765 Apr 2007 JP
2007110067 Apr 2007 JP
2007110102 Apr 2007 JP
2007519614 Jul 2007 JP
2007258550 Oct 2007 JP
2007324309 Dec 2007 JP
2008010353 Jan 2008 JP
2008091860 Apr 2008 JP
2008103535 May 2008 JP
2008108617 May 2008 JP
2008109085 May 2008 JP
2008109103 May 2008 JP
2008116343 May 2008 JP
2008117545 May 2008 JP
2008160087 Jul 2008 JP
2008198801 Aug 2008 JP
2008270729 Nov 2008 JP
2008270736 Nov 2008 JP
2008310220 Dec 2008 JP
2009016184 Jan 2009 JP
2009016579 Jan 2009 JP
2009032977 Feb 2009 JP
2009032988 Feb 2009 JP
2009059997 Mar 2009 JP
2009076509 Apr 2009 JP
2009161524 Jul 2009 JP
2009247171 Oct 2009 JP
2009266943 Nov 2009 JP
2009267171 Nov 2009 JP
2009267244 Nov 2009 JP
2009272339 Nov 2009 JP
2009283891 Dec 2009 JP
4460952 May 2010 JP
2010135689 Jun 2010 JP
2010171205 Aug 2010 JP
2011071452 Apr 2011 JP
2012074444 Apr 2012 JP
2012079895 Apr 2012 JP
2012079898 Apr 2012 JP
5604505 Sep 2012 JP
2012522843 Sep 2012 JP
2012207231 Oct 2012 JP
2012222255 Nov 2012 JP
2012231135 Nov 2012 JP
2013023500 Feb 2013 JP
2013048256 Mar 2013 JP
2013053149 Mar 2013 JP
2013525436 Jun 2013 JP
2014019701 Feb 2014 JP
2014058504 Apr 2014 JP
2014520096 Aug 2014 JP
2012709899 Nov 2014 JP
2014221807 Nov 2014 JP
2014239225 Dec 2014 JP
2015081257 Apr 2015 JP
20060011537 Feb 2006 KR
20060015371 Feb 2006 KR
20060115371 Nov 2006 KR
20070061830 Jun 2007 KR
20070112465 Nov 2007 KR
20130043460 Apr 2013 KR
101338250 Dec 2013 KR
20140052501 May 2014 KR
200701835 Jan 2007 TW
201249851 Dec 2012 TW
201307365 Feb 2013 TW
201710277 Mar 2017 TW
2000070655 Nov 2000 WO
2004003108 Jan 2004 WO
2004070655 Aug 2004 WO
2004085450 Oct 2004 WO
2004108857 Dec 2004 WO
2005042444 May 2005 WO
2005042550 May 2005 WO
2005113704 Dec 2005 WO
2006033440 Mar 2006 WO
2006067074 Jun 2006 WO
2006081780 Aug 2006 WO
2006098505 Sep 2006 WO
2006113106 Oct 2006 WO
2006115299 Nov 2006 WO
2006115301 Nov 2006 WO
2007034985 Mar 2007 WO
2007069498 Jun 2007 WO
2008054578 May 2008 WO
2008066192 Jun 2008 WO
2008066195 Jun 2008 WO
2008066196 Jun 2008 WO
2008101842 Aug 2008 WO
2008117889 Oct 2008 WO
2008123540 Oct 2008 WO
2008131932 Nov 2008 WO
2009003455 Jan 2009 WO
2009008277 Jan 2009 WO
2009011327 Jan 2009 WO
2009017211 Feb 2009 WO
2009023667 Feb 2009 WO
2009086209 Jul 2009 WO
2009111299 Sep 2009 WO
2010007098 Jan 2010 WO
2010056669 May 2010 WO
2010093176 Aug 2010 WO
2010105141 Sep 2010 WO
2010118026 Oct 2010 WO
2011064335 Jun 2011 WO
2011070989 Jun 2011 WO
2011089163 Jul 2011 WO
2011137429 Nov 2011 WO
2011137431 Nov 2011 WO
2012074909 Jun 2012 WO
2012112853 Aug 2012 WO
2012116231 Aug 2012 WO
2012142387 Oct 2012 WO
2012162488 Nov 2012 WO
2012163471 Dec 2012 WO
2013130483 Sep 2013 WO
2014009310 Jan 2014 WO
2014016611 Jan 2014 WO
2014031977 Feb 2014 WO
2014047616 Mar 2014 WO
2014047616 Mar 2014 WO
2014109814 Jul 2014 WO
2014208271 Dec 2014 WO
2015027060 Feb 2015 WO
2015131158 Sep 2015 WO
2016025921 Feb 2016 WO
2016029137 Feb 2016 WO
2016029186 Feb 2016 WO
2016088354 Jun 2016 WO
2016197019 Dec 2016 WO
2017117935 Jul 2017 WO
2018071697 Apr 2018 WO
2018140765 Aug 2018 WO
2019079505 Apr 2019 WO
2019079508 Apr 2019 WO
2019079509 Apr 2019 WO
2019236541 Dec 2019 WO
2020018476 Jan 2020 WO
Non-Patent Literature Citations (158)
Entry
Olynick et al. (2009). “The link between nanoscale feature development in a negative resist and the Hansen solubility sphere,” Journal of Polymer Science: Part B: Polymer Physics, 47, 2091-2105.
Peet et al. (2007). “Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols,” Nature Materials, 6, 497-500.
Pivrikas et al. (2008). “Substituting the postproduction treatment for bulk-heterojunction solar cells using chemical additives,” Organic Electronics, 9, 775-82.
Pui Keong Chow et al., “Strongly Phosphorescent Palladium(II) Complexes of Tetradentate Ligands with Mixed Oxygen, Carbon, and Nitrogen Donor Atoms: Photophysics, Photochemistry, and Applications,” Angew. Chem. Int. Ed. 2013, 52, 11775-11779.
Pui-Keong Chow et al., “Highly luminescent palladium(II) complexes with sub-millisecond blue to green phosphorescent excited states. Photocatalysis and highly efficient PSF-OLEDs,” Chem. Sci., 2016, 7, 6083-6098.
Results from SciFinder Compound Search on Dec. 8, 2016. (17 pages).
Rui Zhu et al., “Color tuning based on a six-membered chelated iridium (III) complex with aza-aromatic ligand,” Chemistry Letters, vol. 34, No. 12, 2005, pp. 1668-1669.
Russell J. Holmes et al., “Blue and Near-UV Phosphorescence from Iridium Complexes with Cyclometalated Pyrazolyl or N-Heterocyclic Carbene Ligands,” Inorganic Chemistry, 2005, vol. 44, No. 22, pp. 7995-8003.
S. Lamansky et al., “Synthesis and Characterization of Phosphorescent Cyclometalated Iridium Complexes”, Inorg. Chem., vol. 40, pp. 1704-1711, 2001.
Sajoto, T. et al., “Temperature Dependence of Blue Phosphorescent Cyclometalated Ir(III) Complexes”, Journal of the American Chemical Society, Jun. 2009, vol. 131, No. 28, pp. 9813-9822 <DOI: 10.1021/ja903317w>.
Sakai, Y. et al., “Simple model-free estimation of orientation order parameters of vacuum-deposited and spin-coated amorphous films used in organic light-emitting diodes”, Applied Physics Express, Aug. 2015, vol. 8, No. 9, pp. 096601-1-096601-4 <DOI:10.7567/APEX.8.096601>.
Saricifci et al. (1993). “Semiconducting polymerbuckminsterfullerene heterojunctions: diodes photodiodes, and photovoltaic cells,” Appl. Phys. Lett., 62, 585-87.
Satake et al., “Interconvertible Cationic and Neutral Pyridinylimidazole η3-Allylpalladium Complexes. Structural Assignment by 1H, 13C, and 15N NMR and X-ray Diffraction”, Organometallics, vol. 18, No. 24, 1999, pp. 5108-5111.
Saunders et al. (2008). “Nanoparticle-polymer photovoltaic cells,” Advances in Colloid and Interface Science, 138, 1-23.
Senes, A. et al., “Transition dipole moment orientation in films of solution processed fluorescent oligomers: Investigating the influence of molecular anisotropy”, Journal of Materials Chemistry C, Jun. 2016, vol. 4, No. 26, pp. 6302-6308 <DOI:10.1039/c5tc03481g>.
Shih-Chun Lo et al. “High-Triplet-Energy Dendrons: Enhancing the Luminescence of Deep Blue Phosphorescent Indium(III) Complexes” J. Am. Chem. Soc., vol. 131, 2009, pp. 16681-16688.
Shin et al. (2010). “Abrupt morphology change upon thermal annealing in Poly(3-hexathiophene)/soluble fullerene blend films for polymer solar cells,” Adv. Funct. Mater., 20, 748-54.
Shiro Koseki et al., “Spin-orbit coupling analyses of the geometrical effects on phosphorescence in Ir(ppy)3 and its derivatives”, J. Phys. Chem. C, vol. 117, pp. 5314-5327 (2013).
Shizuo Tokito et al. “Confinement of triplet energy on phosphorescent molecules for highly-efficient organic blue-light-emitting devices” Applied Physics Letters, vol. 83, No. 3, Jul. 21, 2003, pp. 569-571.
Stefan Bernhard, “The First Six Years: A Report,” Department of Chemistry, Princeton University, May 2008, 11 pages.
Stephen R. Forrest, “The path to ubiquitous and low-cost organic electronic appliances on plastic,” Nature, vol. 428, Apr. 29, 2004, pp. 911-918.
Steven C. F. Kui et al., “Robust phosphorescent platinum(II) complexes with tetradentate O^N^C^N ligands: high efficiency OLEDs with excellent efficiency stability,” Chem. Commun., 2013, vol. 49, pp. 1497-1499.
Steven C. F. Kui et al., “Robust Phosphorescent Platinum(II) Complexes Containing Tetradentate O^N^C^N Ligands: Excimeric Excited State and Application in Organic White-Light-Emitting Diodes,” Chem. Eur. J., 2013, vol. 19, pp. 69-73.
Strouse, G. et al., “Optical Spectroscopy of Single Crystal [Re(bpy)(CO)4](PF6): Mixing between Charge Transfer and Ligand Centered Excited States”, Inorganic Chemistry, Oct. 1995, vol. 34, No. 22, pp. 5578-5587 <DOI:10.1021/ic00126a031>.
Supporting Information: Xiao-Chun Hang et al., “Highly Efficient Blue-Emitting Cyclometalated Platinum(II) Complexes by Judicious Molecular Design,” Wiley-VCH 2013, 7 pages.
Sylvia Bettington et al. “Tris-Cyclometalated Iridium(III) Complexes of Carbazole(fluorenyl)pyridine Ligands: Synthesis, Redox and Photophysical Properties, and Electrophosphorescent Light-Emitting Diodes” Chemistry: A European Journal, 2007, vol. 13, pp. 1423-1431.
Tang, C. et al., “Organic electroluminescent diodes”, Applied Physics Letters, Jul. 1987, vol. 51, No. 12, pp. 913-915 <DOI: 10.1063/1.98799>.
Tsuoboyama, A. et al., “Homoleptic Cyclometalated Iridium Complexes with Highly Efficient Red Phosphorescence and Application to Organic Light-Emitting Diode”, Journal of the American Chemical Society, Sep. 2003, vol. 125, No. 42, pp. 12971-12979 <DOI: 10.1021/ja034732d>.
Turro, N., “Modern Molecular Photochemistry” (Sausalito, California, University Science Books, 1991), p. 48. (3 pages).
Tyler Fleetham et al., “Efficient “pure” blue OLEDs employing tetradentate Pt complexes with a narrow spectral bandwidth,” Advanced Materials (Weinheim, Germany), Vo. 26, No. 41, 2014, pp. 7116-7121.
Tyler Fleetham et al., “Efficient Red-Emitting Platinum Complex with Long Operational Stability,” ACS Appl. Mater. Interfaces 2015, 7, 16240-16246.
Tyler Fleetham, “Phosphorescent Pt(II) and Pd(II) Complexes for Efficient, High-Color-Quality, and Stable OLEDs”, 52 pages, Material Science and Engineering, Arizona State University (Year: 2016).
V. Adamovich et al., “High efficiency single dopant white electrophosphorescent light emitting diodes”, New J. Chem, vol. 26, pp. 1171-1178. 2002.
V. Thamilarasan et al., “Green-emitting phosphorescent iridium(III) complex: Structural, photophysical and electrochemical properties,” Inorganica Chimica Acta, vol. 408, 2013, pp. 240-245.
Vanessa Wood et al., “Colloidal quantum dot light-emitting devices,” Nano Reviews 1, Jul. 2010, pp. 5202. (7 pages).
Vezzu, D. et al.: Highly luminescent tridentate platinum (II) complexes featured in fused five-six-membered metallacycle and diminishing concentration quenching. Inorganic Chem., vfol. 50 (17), pp. 8261-8273, 2011.
Wang et al. (2010). “The development of nanoscale morphology in polymer: fullerene photovoltaic blends during solvent casting,” Soft Matter, 6, 4128-4134.
Wang et al., C(aryl)-C(alkyl) bond formation from Cu(Cl04)2-mediated oxidative cross coupling reaction between arenes and alkyllithium reagents through structurally well-defined Ar—Cu(III) intermediates, Chem Commun, 48: 9418-9420 (2012).
Williams et al., “Organic light-emitting diodes having exclusive near-infrared electrophosphorescence”, Applied Physics Letters, vol. 89, pp. 083506 (3 pages), 2006.
Williams, E. et al., “Excimer-Based White Phosphorescent Organic Light-Emitting Diodes with Nearly 100 % Internal Quantum Efficiency”, Advanced Materials, Jan. 2007, vol. 19, No. 2, pp. 197-202 <DOI: 10.1002/adma.200602174>.
Wong. Challenges in organometallic research—Great opportunity for solar cells and OLEDs. Journal of Organometallic Chemistry 2009, vol. 694, pp. 2644-2647.
Written Opinion mailed on Aug. 17, 2012 for Intl. Pat. App. No. PCT/US2012/039323 filed May 24, 2012 and published as WO 2012/162488 on Nov. 29, 2012 (Applicants—Arizona Board of Regents Acting for and on Behalf of Arizona State University; Inventors—Li et al.; (6 pages).
Xiao-Chu Hang et al., “Highly Efficient Blue-Emitting Cyclometalated Platinum(II) Complexes by Judicious Molecular Design,” Angewandte Chemie, International Edition, vol. 52, Issue 26, Jun. 24, 2013, pp. 6753-6756.
Xiaofan Ren et al., “Ultrahigh Energy Gap Hosts in Deep Blue Organic Electrophosphorescent Devices,” Chem. Mater., vol. 16, 2004, pp. 4743-4747.
Xin Li et al., “Density functional theory study of photophysical properties of iridium (III) complexes with phenylisoquinoline and phenylpyridine ligands”, The Journal of Physical Chemistry C, 2011, vol. 115, No. 42, pp. 20722-20731.
Yakubov, L.A. et al., Synthesis and Properties of Zinc Complexes of mesoHexadecyloxy-Substituted Tetrabenzoporphyrin and Tetrabenzoazaporphyrins, Russian Journal of Organic Chemistry, 2008, vol. 44, No. 5, pp. 755-760.
Yang et al. (2005). “Nanoscale morphology of high-performance polymer solar cells,” Nano Lett., 5, 579-83.
Yang, X. et al., “Efficient Blue- and White-Emitting Electrophosphorescent Devices Based on Platinum(II) [1,3-Difluoro-4,6-di(2-pyridinyl)benzene] Chloride”, Advanced Materials, Jun. 2008, vol. 20, No. 12, pp. 2405-2409 <DOI:10.1002/adma.200702940>.
Yao et al. (2008). “Effect of solvent mixture on nanoscale phase separation in polymer solar cells,” Adv. Funct. Mater., 18, 1783-89.
Yao et al., Cu(Cl04)2-Mediated Arene C—H Bond Halogenations of Azacalixaromatics Using Alkali Metal Halides as Halogen Sources, The Journal of Organic Chemistry, 77(7): 3336-3340 (2012).
Ying Yang et al., “Induction of Circularly Polarized Electroluminescence from an Achiral Light-Emitting Polymer via a Chiral Small-Molecule Dopant,” Advanced Materials, vol. 25, Issue 18, May 14, 2013, pp. 2624-2628.
Yu et al. (1995). “Polymer Photovoltaic Cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions,” Science, 270, 1789-91.
Z Liu et al., “Green and blue-green phosphorescent heteroleptic iridium complexes containing carbazole-functionalized beta-diketonate for non-doped organic light-emitting diodes”, Organic Electronics 9 (2008) pp. 171-182.
Z. Xu et al., “Synthesis and properties of iridium complexes based 1,3,4-oxadiazoles derivatives”, Tetrahedron 64 (2008) pp. 1860-1867.
Zhi-Qiang Zhu et al., “Efficient Cyclometalated Platinum(II) Complex with Superior Operational Stability,” Adv. Mater. 29 (2017) 1605002, pp. 1-5.
Zhi-Qiang Zhu et.al., “Harvesting All Electrogenerated Excitons through Metal Assisted Delayed Fluorescent Materials,” Adv. Mater. 27 (2015) 2533-2537.
Zhu, W. et al., “Highly efficient electrophosphorescent devices based on conjugated polymers doped with iridium complexes”, Applied Physics Letters, Mar. 2002, vol. 80, No. 12, pp. 2045-2047 <DOI: 10.1063/1.1461418>.
The claim set of the U.S. Appl. No. 62/444,973, filed Jan. 11, 2017, Lichang Zeng, 36 pages. (Year: 2017).
Adachi, C. et al., “High-efficiency organic electrophosphorescent devices with tris(2-phenylpyridine)iridium doped into electron-transporting materials”, Applied Physics Letters, Aug. 2000, vol. 77, No. 6, pp. 904-906 <DOI:10.1063/1.1306639>.
Ayan Maity et al., “Room-temperature synthesis of cyclometalated iridium(III) complexes; kinetic isomers and reactive functionalities” Chem. Sci., vol. 4, pp. 1175-1181 (2013).
Baldo et al., “Very High-Efficiency Green Organic Light-Emitting Devices Based on Electrophosphorescence”, Appl Phys Lett, 75(3):4-6 (1999).
Baldo et al., “Highly Efficient Phosphorescent Emission from Organic Electroluminescent Devices,” Nature, vol. 395, Sep. 10, 1998, pp. 151-154.
Baldo, M. et al., “Excitonic singlet-triplet ratio in a semiconducting organic thin film”, Physical Review B, Nov. 1999, vol. 60, No. 20, pp. 14422-14428 <DOI: 10.1103/PhysRevB.60.14422>.
Baldo, M. et al., “High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer”, Nature, Feb. 2000, vol. 403, pp. 750-753.
Barry O'Brien et al.: White organic light emitting diodes using Pt-based red, green and blue phosphorescent dopants. Proc. SPIE, vol. 8829, pp. 1-6, Aug. 25, 2013.
Barry O'Brien et al., “High efficiency white organic light emitting diodes employing blue and red platinum emitters,” Journal of Photonics for Energy, vol. 4, 2014, pp. 043597-1-8.
Berson et al. (2007). “Poly(3-hexylthiophene) fibers for photovoltaic applications,” Adv. Funct. Mat., 17, 1377-84.
Bouman et al. (1994). “Chiroptical properties of regioregular chiral polythiophenes,” Mol. Cryst. Liq. Cryst., 256, 439-48.
Brian W. D'Andrade et al., “Controlling Exciton Diffusion in Multilayer White Phosphorescent Organic Light Emitting Devices”, Adv. Mater., vol. 14, No. 2, Jan. 16, 2002, pp. 147-151.
Bronner; “Dipyrrin based luminescent cyclometallated palladium and platinum complexes”, Dalton Trans., 2010, 39, 180-184. DOI: 10.1039/b908424j (Year: 2010) (5 pages).
Brooks, J. et al., “Synthesis and Characterization of Phosphorescent Cyclometalated Platinum Complexes”, Inorganic Chemistry, May 2002, vol. 41, No. 12, pp. 3055-3066 <DOI:10.1021/ic0255508>.
Brown, A. et al., “Optical spectroscopy of triplet excitons and charged excitations in poly(p-phenylenevinylene) light-emitting diodes”, Chemical Physics Letters, Jul. 1993, vol. 210, No. 1-3, pp. 61-66 <DOI:10.1016/0009-2614(93) 89100-V>.
Burroughes, J. et al., “Light-emitting diodes based on conjugated polymers”, Nature, Oct. 1990, vol. 347, pp. 539-541.
Campbell et al. (2008). “Low-temperature control of nanoscale morphology for high performance polymer photovoltaics,” Nano Lett., 8, 3942-47.
Chen, F. et al., “High-performance polymer light-emitting diodes doped with a red phosphorescent iridium complex”, Applied Physics Letters, Apr. 2002 [available online Mar. 2002], vol. 80, No. 13, pp. 2308-2310 10.1063/1.1462862>.
Chen, X., et al., “Fluorescent Chemosensors Based on Spiroring-Opening of Xanthenes and Related Derivatives”, Chemical Reviews, 2012 [available online Oct. 2011], vol. 112, No. 3, pp. 1910-1956 <DOI:10.1021/cr200201z>.
Chew, S. et al: Photoluminescence and electroluminescence of a new blue-emitting homoleptic iridium complex. Applied Phys. Letters; vol. 88, pp. 093510-1-093510-3, 2006.
Chi et al.; Transition-metal phosphors with cyclometalating ligands: fundamentals and applications, Chemical Society Reviews, vol. 39, No. 2, Feb. 2010, pp. 638-655.
Chi-Ming Che et al. “Photophysical Properties and OLEO Applications of Phosphorescent Platinum(II) Schiff Base Complexes,” Chem. Eur. J., vol. 16, 2010, pp. 233-247.
Christoph Ulbricht et al., “Synthesis and Characterization of Oxetane-Functionalized Phosphorescent Ir(III)-Complexes”, Macromol. Chem. Phys. 2009, 210, pp. 531-541.
Coakley et al. (2004). “Conjugated polymer photovoltaic cells,” Chem. Mater., 16, 4533-4542.
Colombo, M. et al., “Synthesis and high-resolution optical spectroscopy of bis[2-(2-thienyl)pyridinato-C3, N′](2,2′-bipyridine)iridium(III)”, Inorganic Chemistry, Jul. 1993, vol. 32, No. 14, pp. 3081-3087 <DOI:10.1021/ic00066a019>.
Corrected Notice of Allowance dated Feb. 23, 2021 for U.S. Appl. No. 15/905,385 (pp. 1-3).
D.F. O'Brien et al., “Improved energy transfer in electrophosphorescent devices,” Appl. Phys. Lett., vol. 74, No. 3, Jan. 18, 1999, pp. 442-444.
D'Andrade, B. et al., “Operational stability of electrophosphorescent devices containing p and n doped transport layers ”, Applied Physics Letters, Nov. 2003, vol. 83, No. 19, pp. 3858-3860 <DOI:10.1063/1.1624473>.
Dan Wang et al., “Carbazole and arylamine functionalized iridium complexes for efficient electro-phosphorescent light-emitting diodes”, Inorganica Chimica Acta 370 (2011) pp. 340-345.
Dileep A. K. Vezzu et al., “Highly Luminescent Tetradentate Bis-Cyclometalated Platinum Complexes: Design, Synthesis, Structure, Photophysics, and Electroluminescence Application,” Inorg. Chem., vol. 49, 2010, pp. 5107-5119.
Dorwald, Side Reactions in Organic Synthesis 2005, Wiley:VCH Weinheim Preface, pp. 1-15 & Chapter 1, pp. 279-308.
Dorwald; “Side Reactions in Organic Synthesis: A Guide to Successful Synthesis Design,” Chapter 1, 2005 Wiley-VCH Verlag Gmbh & Co. KGaA, Wienheim, 32 pages.
Dsouza, R., et al., “Fluorescent Dyes and Their Supramolecular Host/Guest Complexes with Macrocycles in Aqueous Solution”, Oct. 2011, vol. 111, No. 12, pp. 7941-7980 <DOI: 10.1021/cr200213s>.
Eric Turner et al., “Cyclometalated Platinum Complexes with Luminescent Quantum Yields Approaching 100%,” Inorg. Chem., 2013, vol. 52, pp. 7344-7351.
Evan L. Williams et al., “Excimer-Based White Phosphorescent Organic Light Emitting Diodes with Nearly 100% Internal Quantum Efficiency,” Adv. Mater., vol. 19, 2007, pp. 197-202.
Finikova, M.A. et al., New Selective Synthesis of Substituted Tetrabenzoporphyris, Doklady Chemistry, 2003, vol. 391, No. 4-6, pp. 222-224.
Fuchs, C. et al., “Enhanced light emission from top-emitting organic light-emitting diodes by optimizing surface plasmon polariton losses”, arXiv, submitted Mar. 2015, 11 pages, arXiv:1503.01309.
Fuchs, C. et al., “Enhanced light emission from top-emitting organic light-emitting diodes by optimizing surface plasmon polariton losses”, Physical Review B, Dec. 2015, vol. 92, No. 24, pp. 245306-1-245306-10 <DOI: 10.1103/PhysRevB.92.245306>.
Galanin et al. Synthesis and Properties of meso-Phenyl-Substituted Tetrabenzoazaporphines Magnesium Complexes. Russian Journal of Organic Chemistry (Translation of Zhurnal Organicheskoi Khimii) (2002), 38(8), 1200-1203.
Galanin et al., meso-Phenyltetrabenzoazaporphyrins and their zinc complexes. Synthesis and spectral properties, Russian Journal of General Chemistry (2005), 75(4), 651-655.
Gather, M. et al., “Recent advances in light outcoupling from white organic light-emitting diodes,” Journal of Photonics for Energy, May 2015, vol. 5, No. 1, 057607-1-057607-20 <DOI:10.1117/1.JPE.5.057607>.
Glauco Ponterini et al., “Comparison of Radiationless Decay Processes in Osmium and Platinum Porphyrins,” J. Am. Chem. Soc., vol. 105, No. 14, 1983, pp. 4639-4645.
Gong et al., Highly Selective Complexation of Metal lons by the Self-Tuning Tetraazacalixpyridine macrocycles, Tetrahedron, 65(1): 87-92 (2009).
Gottumukkala, V. et al., Synthesis, cellular uptake and animal toxicity of a tetra carboranylphenyl N-tetrabenzoporphyr in, Bioorganic & Medicinal Chemistry, 2006, vol. 14, pp. 1871-1879.
Graf, A. et al., “Correlating the transition dipole moment orientation of phosphorescent emitter molecules in OLEDs with basic material properties”, Journal of Materials Chemistry C, Oct. 2014, vol. 2, No. 48, pp. 10298-10304 <DOI: 10.1039/c4tc00997e>.
Guijie Li et al., “Efficient and stable red organic light emitting devices from a tetradentate cyclometalated platinum complex,” Organic Electronics, 2014, vol. 15 pp. 1862-1867.
Guijie Li et al., “Modifying Emission Spectral Bandwidth of Phosphorescent Platinum(II) Complexes Through Synthetic Control,” Inorg. Chem. 2017, 56, 8244-8256.
Guijie Li et al., Efficient and Stable White Organic Light-Emitting Diodes Employing a Single Emitter, Adv. Mater., 2014, vol. 26, pp. 2931-2936.
Hansen (1969). “The universality of the solubility parameter,” I & EC Product Research and Development, 8, 2-11.
Hatakeyama, T. et al., “Ultrapure Blue Thermally Activated Delayed Fluorescence Molecules: Effi cient Homo-Lumo Separation by the Multiple Resonance Effect”, Advanced Materials, Apr. 2016, vol. 28, No. 14, pp. 2777-2781, <DOI:10.1002/adma.201505491>.
Dong Ryun Lee et al. “Emitting Materials for Thermally Activated Delayed Fluorescent Organic Light-Emitting Diodes Using Benzofurocarbazole and Benzothienocarbazole as Donor Moieties” SID 2015 Digest, vol. 46, p. 502-504 (Year: 2015).
Hirohiko Fukagawa et al., “Highly Efficient and Stable Red Phosphorescent Organic Light-Emitting Diodes Using Platinum Complexes,” Adv. Mater., 2012, vol. 24, pp. 5099-5103.
Hoe-Joo Seo et al., “Blue phosphorescent iridium(III) complexes containing carbazole-functionalized phenyl pyridine for organic light-emitting diodes: energy transfer from carbazolyl moieties to iridium(III) cores”, RSC Advances, 2011, 1, pp. 755-757.
Holmes, R. et al., “Efficient, deep-blue organic electrophosphorescence by guest charge trapping”, Applied Physics Letters, Nov. 2003 [available online Oct. 2003], vol. 83, No. 18, pp. 3818-3820 <DOI:10.1063/1.1624639>.
Huaijun Tang et al., “Novel yellow phosphorescent iridium complexes containing a carbazoleeoxadiazole unit used in polymeric light-emitting diodes”, Dyes and Pigments 91 (2011) pp. 413-421.
Imre et al (1996). “Liquid-liquid demixing ffrom solutions of polystyrene. 1. A review. 2. Improved correlation with solvent properties,” J. Phys. Chem. Ref. Data, 25, 637-61.
International Preliminary Report on Patentability issued on Nov. 26, 2013 for Intl. Pat. App. No. PCT/US2012/039323 filed May 24, 2012 and published as WO 2012/162488 on Nov. 29, 2012 (Applicants—Arizona Board of Regents Acting for and on Behalf of Arizona State University; Inventors—Li et al.; (7 pages).
Ivaylo Ivanov et al., “Comparison of the INDO band structures of polyacetylene, polythiophene, polyfuran, and polypyrrole,” Synthetic Metals, vol. 116, Issues 1-3, Jan. 1, 2001, pp. 111-114.
Jack W. Levell et al., “Carbazole/iridium dendrimer side-chain phosphorescent copolymers for efficient light emitting devices”, New J. Chem., 2012, vol. 36, pp. 407-413.
Jan Kalinowski et al., “Light-emitting devices based on organometallic platinum complexes as emitters,” Coordination Chemistry Reviews, vol. 255, 2011, pp. 2401-2425.
Jeong et al. (2010). “Improved efficiency of bulk heterojunction poly (3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester photovoltaic devices using discotic liquid crystal additives,” Appl. Phys. Lett.. 96, 183305. (3 pages).
Jeonghun Kwak et al., “Bright and Efficient Full-Color Colloidal Quantum Dot Light-Emitting Diodes Using an Inverted Device Structure,” Nano Letters 12, Apr. 2, 2012, pp. 2362-2366.
Ji Hyun Seo et al., “Efficient blue-green organic light-emitting diodes based on heteroleptic tris-cyclometalated iridium (III) complexes”. Thin Solid Films, vol. 517, pp. 1807-1810 (2009).
JP2009267244, English Translation from EPO, Nov. 2009, 80 pages.
JP2010135689, English translation from EPO, dated Jun. 2010, 95 pages.
JP4460952 machine translation downloaded from Google patents Dec. 30, 2022.
Kai Li et al., “Light-emitting platinum(II) complexes supported by tetradentate dianionic bis(N-heterocyclic carbene) ligands: towards robust blue electrophosphors,” Chem. Sci., 2013, vol. 4, pp. 2630-2644.
Ke Feng et al., “Norbornene-Based Copolymers Containing Platinum Complexes and Bis(carbazolyl)benzene Groups in Their Side-Chains,” Macromolecules, vol. 42, 2009, pp. 6855-6864.
Kim et al (2009). “Altering the thermodynamics of phase separation in inverted bulk-heterojunction organic solar cells,” Adv. Mater., 21, 3110-15.
Kim et al. (2005). “Device annealing effect in organic solar cells with blends of regioregular poly (3-hexylthiophene) and soluble fullerene,” Appl. Phys. Lett. 86, 063502. (3 pages).
Kim, HY et al., “Crystal Organic Light-Emitting Diodes with Perfectly Oriented Non-Doped Pt-Based Emitting Layer”, Advanced Functional Materials, Feb. 2016, vol. 28, No. 13, pp. 2526-2532 <DOI:10.1002/adma.201504451>.
Kim, JJ., “Setting up the new efficiency limit of OLEDs; Abstract” [online], Electrical Engineering—Princeton University, Aug. 2014 [retrieved on Aug. 24, 2016], retrieved from the internet: <URL:http://ee.princeton.edu/events/setting-new-efficiency-limit-oled> 2 pages.
Kim, SY. et al., “Organic Light-Emitting Diodes with 30% External Quantum Efficiency Based on a Horizontally Oriented Emitter”, Advanced Functional Materials, Mar. 2013, vol. 23, No. 31, pp. 3896-3900 <DOI:10.1002/adfm.201300104 >.
Korean Office Action (with English translation) for App. No. KR10-2015-0104260, dated Jan. 12, 2022, 12 pages.
Kroon et al. (2008). “Small bandgap olymers for organic solar cells,” Polymer Reviews, 48, 531-82.
Kwon-Hyeon Kim et al., “Controlling Emitting Dipole Orientation with Methyl Substituents on Main Ligand of Iridium Complexes for Highly Efficient Phosphorescent Organic Light-Emitting Diodes”, Adv. Optical Mater. 2015, 3, pp. 1191-1196.
Kwong, R. et al., “High operational stability of electrophosphorescent devices”, Applied Physics Letters, Jul. 2002 [available online Jun. 2002], vol. 81, No. 1, pp. 162-164 <DOI:10.1063/1.1489503>.
Lamansky, S. et al., “Cyclometalated Ir complexes in polymer organic light-emitting devices”, Journal of Applied Physics, Aug. 2002 [available online Jul. 2002], vol. 92, No. 3, pp. 1570-1575 <10.1063/1.1491587>.
Lampe, T. et al., “Dependence of Phosphorescent Emitter Orientation on Deposition Technique in Doped Organic Films”, Chemistry of Materials, Jan. 2016, vol. 28, pp. 712-715 <DOI:10.1021/acs.chemmater.5b04607>.
Lee et al. (2008). “Processing additives for inproved efficiency from bulk heterojunction solar cells,” J. Am. Chem. Soc, 130, 3619-23.
Li et al. (2005). “Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly (3-hexylthiophene),” J. Appl. Phys., 98, 043704. (5 pages).
Li et al. (2007). “Solvent annealing effect in polymer solar cells based on poly(3-hexylthiophene) and methanofullerenes,” Adv. Funct. Mater, 17, 1636-44.
Li, J. et al., “Synthesis and characterization of cyclometalated Ir(III) complexes with pyrazolyl ancillary ligands”, Polyhedron, Jan. 2004, vol. 23, No. 2-3, pp. 419-428 <DOI:10.1016/j.poly.2003.11.028>.
Li, J., “Efficient and Stable OLEDs Employing Square Planar Metal Complexes and Inorganic Nanoparticles”, in DOE SSL R&D Workshop (Raleigh, North Carolina, 2016), Feb. 2016, 15 pages.
Li, J., et al., “Synthetic Control of Excited-State Properties in Cyclometalated Ir(III) Complexes Using Ancillary Ligands”, Inorganic Chemistry, Feb. 2005, vol. 44, No. 6, pp. 1713-1727 <DOI:10.1021/ic048599h>.
Liang, et al. (2010). “For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%,” Adv. Mater. 22, E135-38.
Lin, TA et al., “ Sky-Blue Organic Light Emitting Diode with 37% External Quantum Efficiency Using Thermally Activated Delayed Fluorescence from Spiroacridine-Triazine Hybrid”, Advanced Materials, Aug. 2016, vol. 28, No. 32, pp. 6876-6983 <DOI: 10.1002/adma.201601675>.
Machine-translated English version of JP 2012/074444 A, Sekine Noboru, Apr. 12, 2012 (Year: 2012) 75 pages.
Maestri et al., “Absorption Spectra and Luminescence Properties of Isomeric Platinum (II) and Palladium (II) Complexes Containing 1, 1′-Biphenyldiyl, 2-Phenylpyridine, and 2,2′-Bipyridine as Ligands,” Helvetica Chimica Acta, vol. 71, Issue 5, Aug. 10, 1988, pp. 1053-1059.
Marc Lepeltier et al., “Efficient blue green organic light-emitting devices based on a monofluorinated heteroleptic iridium(III) complex,” Synthetic Metals, vol. 199, 2015, pp. 139-146.
Markham, J. et al., “High-efficiency green phosphorescence from spin-coated single-layer dendrimer light-emitting diodes ”, Applied Physics Lettersm Apr. 2002, vol. 80, vol. 15, pp. 2645-2647 <DOI: 10.1063/1.1469218>.
Matthew J. Jurow et al., “Understanding and predicting the orientation of heteroleptic phosphors in organic light-emitting materials”, Nature Materials, vol. 15, Jan. 2016, pp. 85-93.
Michl, J., “Relationship of bonding to electronic spectra”, Accounts of Chemical Research, May 1990, vol. 23, No. 5, pp. 127-128 <DOI: 10.1021/ar00173a001>.
Miller, R. et al., “Polysilane high polymers”, Chemical Reviews, Sep. 1989, vol. 89, No. 6, pp. 1359-1410 DOI:10.1021/cr00096a006>.
Morana et al. (2007). “Organic field-effect devices as tool to characterize the bipolar transport in polymer-fullerene blends: the case of P3HT-PCBM,” Adv. Funct. Mat., 17, 3274-83.
Moule et al. (2008). “Controlling morphology in Polymer-Fullerene mixtures,” Adv. Mater., 20, 240-45.
Murakami; JP 2007324309, English machine translation from EPO, dated Dec. 13, 2007, 89 pages.
Nazeeruddin, M. et al., “Highly Phosphorescence Iridium Complexes and Their Application in Organic Light-Emitting Devices”, Journal of the American Chemical Society, Jun. 2003, vol. 125, No. 29, pp. 8790-8797 <DOI: 10.1021/ja021413y>.
Nicholas R. Evans et al., “Triplet Energy Back Transfer in Conjugated Polymers with Pendant Phosphorescent Iridium Complexes,” J. Am. Chem. Soc., vol. 128, 2006, pp. 6647-6656.
Nillson et al. (2007). “Morphology and phase segregation of spin-casted films of polyfluorene/PCBM Blends,” Macromolecules, 40, 8291-8301.
Official Action (and English Translation) issued by the Japanese Patent Office dated Mar. 11, 2015 for Pat. App. No. 2013-508082 filed May 2, 2011, 16 pages.
Related Publications (1)
Number Date Country
20230247897 A1 Aug 2023 US
Provisional Applications (1)
Number Date Country
62573639 Oct 2017 US
Continuations (1)
Number Date Country
Parent 16756219 US
Child 18167283 US