1. Field of the Invention
The present invention relates to a display apparatus and a drive control method therefore. Particularly, the invention relates to a display apparatus equipped with a display panel (display pixel array) having an array of a plurality of display pixels with a current-controlled (or current-driven) light emitting devices which emit lights of predetermined luminance gradations when supplied with a current according to display data, and a drive control method for the display apparatus.
2. Description of the Related Art
Recently, researches and developments for fully practical use and popularization of a light emission type display as the next generation display device to a liquid crystal display (LCD) which is widely used as a monitor or a display for a personal computer, a video device, portable information device and so forth have become active. The light emission type display has a display panel with a two-dimensional array of organic electroluminescence devices (organic EL devices), or self-emitting devices (self-emission type optical elements), such as light emitting diodes (LEDs).
Particularly, the light emission type display employing an active matrix drive system has a faster display response than an LCD. In addition, the light emission type display does not have a view angle dependency, and can achieve high luminescence, high contrast, high definition of display quality, etc. Further, the light emission type display has an excellent feature such that, unlike the LCD, it does not need a backlight, thus ensuring a flatter and lighter configuration.
Various drive control mechanisms and control methods for controlling the operation (emission state) of light emitting devices in such a light emission type display. For example, Unexamined Japanese Patent Application KOKAI Publication No. 2001-42822 describes the configuration having a drive circuit (pixel drive circuit) including a plurality of switching devices for emission drive control of a light emitting device for each of arrayed display cells of the display panel.
The display pixel having the conventional pixel drive circuit will be briefly described below.
The light emission type display (organic EL display) described in the Unexamined Japanese Patent Application KOKAI Publication No. 2001-42822 has, as shown in
Each display cell EMp has a pixel drive circuit DCp having a select transistor (TFT) T1p, a drive transistor (TFT) T2p, and a capacitor Cp, as shown in
In the light emission type display with the display panel 110P having the display cells EMp, first, the scan-line drive circuit 120P sequentially applies the ON-level scan-line select voltage to the individual scan lines Yp to turn on the select transistors T1p of the display cells EMp (pixel drive circuits DCp) in a row, thereby setting the display cells EMp selected. In synchronism with the timing, the data-line drive circuit 130P applies the data voltage to the individual data lines Xp in columns so that a potential corresponding to the data voltage is applied to the node Np (i.e., the node between the gate terminal of the drive transistor T2p and one end of the capacitor Cp) via the select transistor T1p of each display cell EMp (pixel drive circuit DCp).
Accordingly, the drive transistor T2p is turned on in a conductive state corresponding to the potential of the node Np (strictly, the potential difference between the gate and source) (i.e., conductive state corresponding to the data voltage). A predetermined emission drive current flows to the common line Gp (ground potential GND) via the organic EL device OEL and the drive transistor T2p from the supply voltage line Vp (supply voltage Vdd), causing the organic EL device OEL to emit light with a luminance gradation corresponding to the data voltage (display data). At this time, the potential (data voltage) applied to the gate terminal (node Np) of the drive transistor T2p is held (stored) in the capacitor Cp.
Next, the scan-line drive circuit 120P applies the OFF-level scan-line select voltage to the scan lines Yp to turn off the select transistors T1p of the display cells EMp in a row. This sets the display cells EMp unselected, electrically disconnecting the data lines Xp from the pixel drive circuits DCp. At this time, the potential (data voltage) held in the capacitor Cp causes the potential of the gate terminal (node Np) of the drive transistor T2p to be held. As a result, a predetermined voltage is applied between the gate and source of the drive transistor T2p, so that the drive transistor T2p keeps the ON state. Accordingly, as in the light emission operation in the selected state, a predetermined emission drive current flows to the common line Gp (ground potential GND) via the organic EL device OEL and the drive transistor T2p from the supply voltage line Vp (supply voltage Vdd), so that light emission is maintained.
This drive control method controls the value of the emission drive current flowing to the organic EL device OEL to ensure light emission with a predetermined luminance gradation by regulating the value of the data voltage to be applied to each display cell EMp (specifically, the gate terminal of the drive transistor T2p of the pixel drive circuit DCp).
As the drive control method for an active matrix type light emission display, current-based gradation control is known in addition to the voltage-based gradation control described in the Unexamined Japanese Patent Application KOKAI Publication No. 2001-42822. The current-based gradation control supplies the data current having a value corresponding to display data to the display cells set in a selected state, thereby controlling the value of the emission drive current flowing to each organic EL device OEL according to the value of the data current.
In consideration of enlarging the display panel of the display apparatus, which has the aforementioned display cells (pixel drive circuits), however, the following problem arises in case of a display panel having a wide screen whose horizontal-vertical screen ratio (aspect ratio) is, for example, 16:9 and compatible with high vision video images of 1920 horizontal pixels×1080 vertical pixels.
In the display panel 110P shown in
With regard to the supply voltage line Vp to which the supply voltage Vdd is supplied, particularly, when the value of the supply voltage Vdd to be supplied to each display cell in the display panel changes, it does not become possible to permit flow of the emission drive current whose value corresponds to the display data (data voltage) to each display cell. This disables light emission with a desired luminance gradation, degrading the display quality. This problem also arises in a case of controlling the value of the emission drive current flowing to the organic EL device OEL using the value of the data current corresponding to display data.
Accordingly, it is an object of the present invention to provide a display apparatus which allows an emission drive current having an adequate current value corresponding to display data to flow to light emitting devices to ensure light emission with an adequate luminance gradation and an excellent display quality even in a case of enlarging a display panel or designing a high-definition display panel, and a drive control method for the display apparatus.
A display apparatus having a display panel according to the first aspect of the invention includes:
a substrate whose distance between both peripheral edge portions in a column direction is shorter than a distance between both peripheral edge portions in a row direction;
a plurality of display pixels provided on the substrate in the row direction and the column direction;
a plurality of power source lines laid out on the substrate in the row direction and connected to the plurality of display pixels; and
a plurality of power supply lines laid out to the peripheral edge portion of the substrate in the column direction and connected to the power source lines at individual nodes.
The display apparatus according to the invention and the drive control method therefore allow an emission drive current having an adequate current value corresponding to display data to flow to light emitting devices to ensure light emission with an adequate luminance gradation. This can achieve an excellent display quality even in a case of enlarging a display panel or designing a high-definition display panel.
These objects and other objects and advantages of the present invention will become more apparent upon reading of the following detailed description and the accompanying drawings in which:
A display apparatus and a drive control method therefore both according to the present invention will be described below by way of embodiment with reference to the accompanying drawings. The following description of the embodiment will be given of a light emission display apparatus which is configured to have a two-dimensional array of a plurality of display pixels (display cells) each having a light emitting device and displays image information as the individual display pixels perform light emission with a luminance gradation corresponding to display data (video image data). However, the invention is not limited to this particular type, but may be adapted to a display apparatus which, like an LCD, performs gradation control on each display pixel according to display data (sets the gradation sate corresponding to display data), and displays desired image information with transmission light to the display panel or reflected light therefrom.
<Display Apparatus>
First, the schematic configuration of the display apparatus according to the invention will be described referring to the accompanying drawings.
As shown in
The individual structures will be described below specifically.
(Display Panel)
As shown in
The display area 110a of the display panel 110 has the aspect ratio set like 3:4 or 9:16 so that the column-directional length is shorter than the row-directional length. The distance between both columnar-directional peripheral edge portions 11b and 11c of the insulative substrate 11 is set shorter the distance between both row-directional peripheral edge portions 11d and 11e.
The power supply lines PL extend across the display area 110a in the column direction to near the both columnar-directional peripheral edge portions 11b and 11c of the substrate 11.
In the vicinity of the upper peripheral edge portion 11b, one ends of the power supply lines PL are connected to one ends of the lead wires APL (APL1, APL2, APL3, . . . , APLn). The other ends of the lead wires APL are connected to the power source driver 140A. Likewise, in the vicinity of the lower peripheral edge portion 11c, the other ends of the power supply lines PL are connected to one ends of the lead wires BPL (BPL1, BPL2, BPL3, . . . , BPLn). The other ends of the lead wires BPL are connected to the power source driver 140B.
The lead wires APL and the lead wires BPL are formed on a flexible printed board, and the power source driver 140A and the power source driver 140B may be, or may not be, formed on the flexible printed board.
A plurality of nodes Nz grouped for each of the pixel blocks BL1 to BL3 are provided on each power supply line PL. Each node Nz is connected to the power source line VL extending in an approximately orthogonal direction to the power supply line PL. Each power supply line PL is connected to a group of the power source lines VL grouped into one of the pixel blocks BL1 to BL3. In other words, each power source line VL is grouped into one of the pixel blocks BL1 to BL3. Each power source line VL is connected to the individual power supply lines PL in one grouped pixel block BL, which are laid out in the column direction at predetermined distances, provided in the row direction, excluding every certain number of power supply lines PL equal to the number of pixel blocks at the associated node Nz. That is, each power source line VL is connected to the power supply lines PL, with the (number of pixel blocks−1) power supply lines PL in between being excluded, at the associated nodes Nz.
More specifically, the individual display pixels EM in the pixel block BL1 are connected to a plurality of nodes Nz of the power supply lines PL1, PL4, . . . , PL(3xr+1) where r is an integer equal to or greater than 0 such that 3xr+3 becomes equal to or less than the total number n of the power supply lines PL. Likewise, the individual display pixels EM in the pixel block BL2 are connected to a plurality of nodes Nz of the power supply lines PL2, PL5, . . . , PL(3xr+2). Further, the individual display pixels EM in the pixel block BL3 are connected to a plurality of nodes Nz of the power supply lines PL3, PL6, . . . , PL(3xr+3).
In the display panel 110 shown in
Let D1max be the longest distance in shorter ones of distances D1 from the individual nodes Nz of a plurality of power supply lines PL to one ends of the power supply lines PL which are connected to the power source driver 140A and the other ends of the power supply lines PL which are connected to the power source driver 140B. For the first row of display pixels EM, for example, a distance Du from each node Nz of the power supply line PL to one end thereof is shorter than a distance Dd from each node Nz of the power supply line PL to the other end thereof.
For the individual nodes Nz, shorter distances are compared with one another, and the longest distance thereamong, e.g., the distance from the node Nz in the m/2-th row or the (1+m/2)-th row to one end of the power supply line PL or the other end thereof, is set as the distance D1max.
Let D2max be the longest distance (about half the interval between adjoining nodes Nz in the row direction in
For each display pixel EM, a shorter one of the distance to one end of the power supply line PL connected to the power source driver 140A and the distance to the other end of the power supply line PL connected to the power source driver 140B is set shorter than half the distance between both peripheral edge portions 11d, 11e in the row direction of the substrate 11. It is therefore possible to make shorter the distance of the longest one of the interconnection wires from the display pixels EM to the peripheral edge portions of the substrate 11 as compared with a case where the individual power supply lines PL are laid out to extend in the row direction so that one ends and other ends thereof are respectively disposed in the vicinity of both peripheral edge portions 11d, 11e. The voltage drop of such an interconnection wire becomes greater as the distance of the interconnection wire becomes longer. It is therefore possible to suppress a voltage drop at that portion which is affected most by the voltage drop.
As described above, the lead terminals of the power supply lines PL for connection to the power source driver 140A or the power source driver 140B are provided at that peripheral side of the display panel 110 (substrate 11) which is the shorter side of the aspect ratio (column direction). This makes it possible to suppress a voltage drop at that one of the interconnection portions from the lead terminals of the power supply lines PL to the display pixels EM which has the longest distance, as compared with a case where the lead terminals of the power supply lines PL for connection to the power source driver 140A or the power source driver 140B are provided at that peripheral side of the display panel 110 (substrate 11) which is the longer side of the aspect ratio (row direction). This can reduce a variation in the display characteristic of each display pixel EM.
Although lead wires (lead wires APL or lead wires BPL) are provided on both columnar-directional peripheral edge portions of the display panel 110 in the above-described example, lead wires may be provided only one peripheral edge portion. In this case, if the lead wires APL are provided only at the upper peripheral edge portion 11b of the power supply lines PL, the power supply lines PL are connected only to the power source driver 140A via the lead wires APL. That is, the power source driver 140B need not be provided. If the lead wires BPL are provided only at the lower peripheral edge portion 11c of the power supply lines PL, however, the power supply lines PL are connected only to the power source driver 140B via the lead wires BPL. That is, the power source driver 140A need not be provided. When the lead wires are provided only one peripheral edge portion (e.g., peripheral edge portion 11b) in the column direction (modification), a comparative example to the modification would be a display panel configured in such a way that the power supply lines PL are laid out to extend in the row direction and the lead wires are provided only one (e.g., peripheral edge portion 11d) of both columnar-directional peripheral edge portions 11d, 11e. The distance from the node Nz farthest from one peripheral edge portion (e.g., peripheral edge portion 11b), i.e., the node Nz closest to the other peripheral edge portion (e.g., peripheral edge portion 11c) opposite to the one peripheral edge portion in the column direction, to the one peripheral edge portion (e.g., peripheral edge portion 11b) in the modification can be made shorter than the distance from the node Nz farthest from one peripheral edge portion (e.g., peripheral edge portion 11d), i.e., the node Nz closest to the other peripheral edge portion (e.g., peripheral edge portion 11e) opposite to the one peripheral edge portion, to the one peripheral edge portion (e.g., peripheral edge portion 11d). A specific example of the display pixels will be described in detail later.
(Scan Driver)
The scan driver 120 is provided in the display panel 110, specifically, on the insulative substrate 11 of the display panel 110. The scan driver 120 sets each row of display pixels EM in a selected state by applying the scan signal Vse1 of the select level (ON-level signal for the display pixels EM to be described later) to individual scan lines SL in rows based on the scan control signal supplied from the system controller 150. Specifically, the scan driver 120 sets individual rows of display pixels EM in a selected state in order by executing the operation of applying the scan signal Vse1 to the scan lines SL at non-overlapping timings shifted from one another.
In the display apparatus 100 according to the embodiment, particularly, plural rows of display pixels EM grouped into a pixel block beforehand in the display panel 110 are set in a selected state in order by sequentially applying the scan signal Vse1 applied to the scan lines SL in the group. Further, all the display pixels EM arrayed in the display panel 110 are sequentially set in a selected state row by row by repeatedly executing a similar operation for the individual pixel blocks.
As shown in
(Data Driver)
The data driver 130 is provided in the display panel 110, specifically, on the insulative substrate 11 of the display panel 110. Based on a data control signal supplied from the system controller 150, the data driver 130 sequentially latches and holds display data (luminance gradation data) including a digital signal, supplied from the display data generator 160 to be described later, row by row at a predetermined timing. Then, the data driver 130 generates a gradation current Idata having a current value corresponding to the gradation value of the display data. The data driver 130 supplies the gradation current Idata to the display pixels EM of the row set in the selected state (write period) via the data lines DL in columns at a time.
As shown in
The data driver 130 shown in
(Power Source Driver)
The power source drivers 140A, 140B supplies a supply voltage Vsc having the same voltage level to lead wires APL and the lead wires BPL at the same time, for each pixel block, based on a power source control signal supplied from the system controller 150. The output supply voltage Vsc is applied to the display pixels EM via the power source lines VL from both ends of the power supply lines PL laid out in the column direction of the display panel 110.
Specifically, as shown in
In the select period for the pixel block BL1, for example, the scan signal Vse1 of the select level (ON level on) is sequentially output to the scan lines SL1, SL2, . . . , SL(m/3). During this period, the power source drivers 140A, 140B synchronously output the supply voltage Vsc of the low level L (=Vs) to the lead wires APL1, APL4, . . . , APL(3xr+1) and lead wires BPL1, BPL4, . . . , BPL(3xr+1). The supply voltage Vsc of the low level L is supplied to the display pixels EM of the pixel block BL1 via the power supply lines PL1, PL4, . . . , PL(3xr+1) and the power source lines VL1, VL2, VL3, . . . , VL(m/3) of the pixel block BL1. During this period, the scan signal Vse1 of the non-select level (OFF level off) is applied to the display pixels EM of the pixel block BL2 and the display pixels EM of the pixel block BL3 to render the display pixels EM in an unselected state, and the supply voltage Vsc of the high level H (=Ve; second supply voltage) is supplied to those display pixels EM.
Likewise, in the select period for the pixel block BL2, for example, the scan signal Vse1 of the select level (ON level on) is sequentially output to the scan lines SL(1+m/3), SL(2+m/3), . . . , SL(2xm/3). During this period, the power source drivers 140A, 140B synchronously output the supply voltage Vsc of the low level L (=Vs) to the lead wires APL2, APL5, . . . , APL(3xr+2) and lead wires BPL2, BPL5, . . . , BPL(3xr+2). The supply voltage Vsc of the low level L is supplied to the display pixels EM of the pixel block BL2 via the power supply lines PL2, PL5, . . . , PL(3xr+2) and the power source lines VL(1+m/3), VL(2+m/3), VL(3+m/3), . . . , VL(2xm/3) of the pixel block BL2. During this period, the scan signal Vse1 of the non-select level (OFF level off) is applied to the display pixels EM of the pixel block BL1 and the display pixels EM of the pixel block BL3 to render the display pixels EM in an unselected state, and the supply voltage Vsc of the high level H is supplied to those display pixels EM.
In the select period for the pixel block BL3, for example, the scan signal Vse1 of the select level (ON level on) is sequentially output to the scan lines SL(1+2xm/3), SL(2+2xm/3), . . . , SLm. During this period, the power source drivers 140A, 140B synchronously output the supply voltage Vsc of the low level L (=Vs) to the lead wires APL3, APL6, . . . , APL(3xr+3) and lead wires BPL3, BPL6, . . . , BPL(3xr+3). The supply voltage Vsc of the low level L is supplied to the display pixels EM of the pixel block BL3 via the power supply lines PL3, PL6, . . . , PL(3xr+3) and the power source lines VL(1+2xm/3), VL(2+2xm/3), VL(3+2xm/3), . . . , VLm of the pixel block BL3. During this period, the scan signal Vse1 of the non-select level (OFF level off) is applied to the display pixels EM of the pixel block BL1 and the display pixels EM of the pixel block BL2 to render the display pixels EM in an unselected state, and the supply voltage Vsc of the high level H is supplied to those display pixels EM.
Accordingly, in case of using the display panel 110 whose screen aspect ratio (horizontal-vertical ratio) corresponds to the wide screen (display panel having the aspect ratio of 16:9, e.g., 1920 horizontal pixels×1080 vertical pixels), the supply path (wire length from the power source driver 140A, 140B to each display pixel EM) of the supply voltage Vsc to be applied to the display pixels EM via the power supply lines PL and the power source lines VL from the power source drivers 140A, 140B becomes shorter than the total length of the power source lines VL laid out in the row direction. This suppresses a voltage drop caused by the wire resistance of the supply path and a delay of the timing of applying the supply voltage. Specific evaluation will be given later.
During the period (write period) where the scan signal of the select level is applied to one row of display pixels EM in the pixel block to render the display pixels EM in a selected state, the display pixels EM of the pixel block are set in a non-emission state (non-display state) as the supply voltage Vsc of the low level L (=Vs) is simultaneously applied to all rows of display pixels EM of the pixel block. After writing to the row of display pixels EM of the pixel block is terminated, the display pixels EM of the pixel block are set in an emission state (display state) as the supply voltage Vsc of the high level H (=Ve) is simultaneously applied to all rows of display pixels EM of the pixel block.
The power source drivers 140A, 140B have the same configuration, and have well-known shift registers 141A, 141B, and output circuit portions 142A, 142B as shown in, for example,
In the power source driver 140A, 140B according to the embodiment, the power supply lines PL laid out in the column direction of the display panel 110 are laid out in parallel to the data lines DL, and are connected to each power source line VL in the same pixel block, with every number of power supply lines equal to (the number of pixel blocks set in the display panel 110-1) the associated pixel block being excluded (i.e., every two other power supply lines PL1, PL4, . . . , PL(3xr+1) for the pixel block BL1). Accordingly, as the power source driver 140A, 140B sequentially applies the supply voltage Vsc to the power supply lines PL (every two other power supply lines PL(3xr+1), PL(3xr+2), PL(3xr+3)), the pixel blocks BL1, BL2, BL3 are sequentially set in a non-emission state or an emission state.
When the select period (write period) of each row and an all-pixel emission period are repeated in order, the power source drivers 140A, 140B may apply the supply voltage Vsc to all the lead wires APL and lead wires BPL at a time based on the power source control signal supplied from the system controller 150 as shown in, for example,
During the write period, the gradation signal (gradation current Idata) flows to the display pixels EM of the selected row according to display data. At this time, the unselected display pixels EM, like the selected display pixels EM, do not emit light even if the potential between capacitors Cs is high enough for the organic EL device OEL to emit light, because the supply voltage Vsc whose potential is the low level L. When the period is changed to the emission period, of the entire display pixels EM of the display panel 110, those display pixels EM whose potentials between capacitors Cs are high enough for the organic EL device OEL to emit light emit light regardless of whether the row has been selected immediately before or not.
An emission period may be provided between the select period for each row and the select period for a next row this way to enable simultaneous emission of all the pixels that should emit light.
(System Controller)
The system controller 150 at least generates and sends a scan control signal, a data control signal and a power source control signal to the scan driver 120, the data driver 130 and the power source driver 140A, 140B as timing control signals to control the operational states thereof. With the control signals, the system controller 150 operates each driver at a predetermined timing to generate the scan signal Vse1 having a predetermined voltage level, and the gradation signal (gradation current Idata) and the supply voltage Vsc both corresponding to display data and output them to the display panel 110. In this manner, the system controller 150 continuously executes the drive control operation (writing, emission) of the individual display pixels EM (the pixel drive circuit DC to be described later) to perform control to display predetermined image information based on a video signal on the display panel 110 (the display drive control of the display apparatus to be described later).
(Display Data Generator)
The display data generator 160 extracts a luminance gradation signal component from a video signal supplied from, for example, outside the display panel 110, and supplies the luminance gradation signal component to the data register 132 of the data driver 130 as display data (luminance gradation data) comprised of a digital signal for each row of the display panel 110. When the video signal, like a television broadcast signal (composite video signal), includes a timing signal component which defines the display timing for image information, the display data generator 160 may have a function of extracting and supplying the timing signal component in addition to the function of extracting the luminance gradation signal component. In this case, the system controller 150 generates the individual control signals to be individually supplied to the scan driver 120, the data driver 130 and the power source drivers 140A, 140B based on the timing signal supplied from the display data generator 160.
(Specific Example of Display Panel and Display Pixel)
A description will now be given of a specific example of the display panel of the display apparatus according to the embodiment and two-dimensionally arrayed display pixels of the display panel.
The display panel adaptable to the embodiment has a plurality of display pixels EM each having a set of color pixels PXr, PXg, PXb of three colors of red (R), green (G) and blue (B), arrayed in a matrix, for example, as shown in
Each display pixel EM (RGB color pixels PXr, PXg, PXb) is formed in an area roughly defined by power source lines VL in parallel to the scan lines SL laid out in the row direction and power supply lines PL in parallel to the data lines DL laid out in the column direction.
As in the case illustrated in
That is, all the power source lines VL1 to VL360 included in the pixel block BL1 are commonly connected to PL1, PL4, . . . , PL(3xr+1), . . . , PL 1918 via the nodes Nz. All the power source lines VL361 to VL720 included in the pixel block BL2 are commonly connected to PL2, PL5, . . . , PL(3xr+2), . . . , PL1919 via the nodes Nz. All the power source lines VL721 to VL1080 included in the pixel block BL3 are commonly connected to PL3, PL6, . . . , PL(3xr+3), . . . , PL1920 via the nodes Nz.
Each display pixel EM (or the color pixels PXr, PXg, PXb) has the pixel drive circuit DC and the organic EL device (light emitting device) OEL as shown in
Specifically, the pixel drive circuit DC has a transistor (write control means, second switch means) Tr11, a transistor (write control means, third switch means) Tr12, a transistor (write control means, first switch means) Tr13, and the capacitor (charge storage means, capacitative element) Cs. The transistor Tr11 has a gate terminal connected via a node N11 to the scan line SL, a drain terminal connected to the power source line VL, and a source terminal connected to a node N13. The transistor Tr12 has a gate terminal connected to the scan line SL, a source terminal connected via a node N12 to the data line DL, and a drain terminal connected to a node N14. The transistor Tr13 has a gate terminal connected to a node N13, a drain terminal connected to the power source line VL, and a source terminal connected to the node N14. The capacitor Cs is connected to between the node N13 and the node N14 (between the gate and source of the transistor Tr13). The power source line VL is connected to the power supply line PL to which the supply voltage Vsc is applied via the node Nz. The transistors Tr11 to Tr13 are n-channel thin film transistors.
The organic EL device OEL has an anode terminal (e.g., pixel electrode) connected to the node N14 of the pixel drive circuit DC, and a cathode terminal (e.g., opposing electrode) connected to a common voltage line GL. The common voltage line GL is applied with an arbitrary common voltage Vcom (e.g., ground potential GND) which is equal in potential to Vs, or is higher than Vs and lower in potential than Ve (Vs≦Vcom<Ve) where Vs is the value of the supply voltage Vsc which is set to the low level L in the write period (select period) during which the gradation signal (gradation current Idata) corresponding to display data is supplied to the display pixel EM and Ve is the value of the supply voltage Vsc which is set to the high level H in the emission period (non-select period) during which the emission drive current is supplied to the organic EL device OEL to emit light of a predetermined luminance gradation.
In
Although an organic EL device is used as a light emitting device which is cause to emit light by the pixel drive circuit DC in the embodiment, the light emitting device is not limited to this type in the invention, but other light emitting devices, such as a light emitting diode, may be used as long as it is a current-controlled light emitting device. The foregoing description of the embodiment has been given of the case where the pixel drive circuit DC generates the emission drive current corresponding to display data and supplies the emission drive current to the current-controlled light emitting devices to emit light, thereby displaying image information. However, the configuration may be modified to generate a voltage component corresponding to display data for emission drive of voltage-controlled light emitting devices, or the aligned states of the liquid crystal molecules may be changed.
(Drive Control Method for Display Pixels)
The basic drive control method for the above-described display pixels (pixel drive circuit) will be described referring to the accompanying drawings.
The drive control method for the display pixels EM having the pixel drive circuit DC shown in
A non-emission period Tnem (non-display period) where the supply of the emission drive current to the organic EL device OEL is cut off to disable light emission is set in that period in the one process cycle period Tcyc excluding the emission period Tem (including the write period Twrt) (Tcyc≧Tem+Tnem, Tnem>Twrt). The relationship between the write period Twrt and the non-emission period Tnem is not limited to a case where the write period Twrt is set at the head of the non-emission period Tnem as shown in
The one process cycle period Tcyc according to the embodiment is set to a period needed for the display pixels EM, for example, to display image information for one pixel in one frame (one screen) of images. That is, as will be explained later in the description of the drive control method for the display apparatus, when one frame of images is displayed on the display panel 110 having a plurality of display pixels EM two-dimensionally arrayed in rows and columns, the one process cycle period Tcyc is set to a period needed for one row of display pixels EM to display one row of images in one frame of images.
(Write Period)
First, in the write period Twrt, the scan signal Vse1 of the select level (ON level on) is applied to the scan lines SL from the scan driver 120, thereby rendering the display pixels EM in a selected state as shown in
In synchronism with the selection timing, the data driver 130 lets the gradation current Idata having a current value corresponding to display data flow into the pixel drive circuit DC. The data driver 130 is a circuit which controls the current value of the gradation current Idata flowing to the pixel drive circuit DC. When the gradation current Idata flows to the pixel drive circuit DC and the data lines DL, the potential of the data lines DL becomes lower than the supply voltage Vsc of the low level L.
As a result, the transistors Tr11 and Tr12 provided in the pixel drive circuit DC are turned on, applying the supply voltage Vsc of the low level L to the gate terminal of the transistor Tr13 (node N13; one end of the capacitor Cs) via the transistor Tr11 and causing the source terminal of the transistor Tr13 (node N14; the other end of the capacitor Cs) to be electrically connected to the data line DL via the transistor Tr12.
The data line DL becomes lower in potential than the power source line VL when the gradation current Idata is supplied. Accordingly, the gradation current Idata flows to the pixel drive circuit DC and the data line DL in order from the lead wire APL and/or the lead wire BPL via the power supply line PL and the power source line VL, so that the gradation current Idata flows to the data driver 130. Then, a voltage lower in potential than the supply voltage Vsc of the low level L is applied to the source terminal of the transistor Tr13 (node N14; the other end of the capacitor Cs).
In this manner, when the data driver 130 forcibly lets the gradation current Idata having the desired current value corresponding to display data flow between the drain and source of the transistor Tr13, the potential difference between the nodes N13 and N14 (between the gate and source of the transistor Tr13) becomes a potential difference according to the current value of the gradation current Idata. In other words, the potential difference is converged to the potential difference that allows the gradation current Idata having the desired current value to flow between the drain and source of the transistor Tr13. The then gradation current Idata is called “write current Ia”.
At this time, charges corresponding to the potential difference between the nodes N13 and N14 (between the gate and source of the transistor Tr13) are stored and held as a voltage component in the capacitor Cs (see a potential Vc across the capacitor Cs in
(Non-Writing and Non-Emission Period)
In the non-emission period Tnem other than the write period Twrt (specifically, periods which are set before and after the write period Twrt or a period which is set before or after the write period Twrt), as shown in
As a result, the transistors Tr11 and Tr12 provided in the pixel drive circuit DC are set off. This electrically disconnects the gate terminal of the transistor Tr13 (node N13; one end of the capacitor Cs) from the power source line VL, and electrically disconnects the source terminal of the transistor Tr13 (node N14; the other end of the capacitor Cs) from the data line DL. When the writing operation has been executed immediately before the non-emission period Tnem other than the write period Twrt, charges stored in the write period Twrt are held in the capacitor Cs.
Accordingly, the ON/OFF state of the transistor Tr13 is set based on the potential difference held between the nodes N13 and N14 (between the gate and source of the transistor Tr13; across the capacitor Cs). Regardless of the operational state of the transistor Tr13, however, the supply voltage Vsc (=Vs) of the low level L (equal to or lower than the ground potential GND) is applied to the power source line VL, and the node N14 is set blocked from the data line DL. Therefore, the potential to be applied to the anode terminal (node N14) of the organic EL device OEL is set equal to or lower than the potential Vcom (ground potential GND) of the cathode terminal of the organic EL device OEL. Accordingly, a reverse bias voltage is applied to the organic EL device OEL, so that the emission drive current does not flow to the organic EL device OEL, which does not emit light (non-emission operation).
(Emission Period)
Next, in the emission period Tem, as shown in
When the scan signal Vse1 of the OFF level off is applied to the scan line SL, the transistors Tr11 and Tr12 provided in the pixel drive circuit DC are turned off (or kept off). This blocks the application of the supply voltage Vsc to the gate terminal of the transistor Tr13 (node N13; one end of the capacitor Cs), and blocks the application of the voltage level, originated from the acquisition of the gradation current Idata, to the source terminal of the transistor Tr13 (node N14; the other end of the capacitor Cs) or keeps the application of the voltage level blocked. Accordingly, charges stored in the write period Twrt are held in the capacitor Cs.
The potential difference between the nodes N13 and N14 (between the gate and source of the transistor Tr13; across the capacitor Cs) is held this way, and the transistor Tr13 keeps the ON state. The supply voltage Vsc higher in potential than the common voltage Vcom (ground potential GND) is applied to the power source line VL. Therefore, the potential to be applied to the anode terminal (node N14) of the organic EL device OEL becomes higher than the potential of the cathode terminal of the organic EL device OEL.
Therefore, a predetermined emission drive current Ib flows to the organic EL device OEL from the power source line VL in the forward bias direction via the transistor Tr13 and the node N14, so that the organic EL device OEL emits light. The voltage component held in the capacitor Cs (the potential Vc across the capacitor Cs) is equivalent to the potential difference when the write current Ia corresponding to the gradation current Idata flows in the transistor Tr13. Accordingly, the emission drive current Ib flowing to the organic EL device OEL has a current value equivalent to the write current Ia (Ib*=Ia). Therefore, the display pixel EM (organic EL device OEL) emits light of a predetermined luminance gradation according to display data (gradation current Idata).
The display pixel EM (pixel drive circuit DC) according to the embodiment lets the gradation current Idata (write current Ia) designating a current value corresponding to display data flow between the drain and source of the transistor Tr13 for emission drive. Based on the voltage component held between the between the gate and source of the transistor Tr13 according to the current value of the gradation current Idata; the emission drive current Ib which flows to the organic EL device (light emitting device) OEL is controlled. Such control can ensure the use of the drive control method of the current gradation designation type which permits emission with a predetermined luminance gradation.
In the current gradation designation type, the current value of the current which flows to the organic EL device OEL is controlled by a current signal, not only by a voltage signal. Even if the resistance of the transistor Tr13 or the like increases (e.g., if the threshold of the gate voltage changes), the data driver 130 forcibly sets the write current Ia flowing to the transistor Tr13 to have the desired current value. This makes it possible to suppress the problem such that the emission drive current Ib becomes considerably smaller.
Although the foregoing description of the embodiment has been given of the drive control method of the current gradation designation type, the invention is not limited to this type. For example, the display apparatus may have a circuit configuration adapted to the drive control method of the voltage gradation designation type. Note that the voltage gradation designation type allows the emission drive current whose current value corresponds to display data to flow to the light emitting device of each display pixel by applying a gradation voltage having a voltage value corresponding to display data, thereby ensuring light emission with the desired luminance gradation. When the current value of the emission drive current Ib needed for emission is considerably small as required by the organic EL device OEL, however, the current value of the write current Ia becomes smaller too. In this respect, the display apparatus 100 of the current gradation designation type is particularly effective for the influence of the voltage drop on the display apparatus 100 is greater than that on the display apparatus of the voltage gradation designation type.
According to the display pixel EM (pixel drive circuit DC) of the embodiment, the single transistor Tr13 for emission drive, which constitutes the pixel drive circuit DC provided in each display pixel EM can realize both the voltage holding function and the emission drive function. The voltage holding function is to hold (store) the voltage component (charges) corresponding to the level of the gradation current Idata corresponding to display data into the capacitor Cs. The emission drive function is to control the current value of the emission drive current Ib to be supplied to the organic EL device OEL based on the voltage component held in the capacitor Cs and the supply voltage Vsc. As the single transistor achieves both functions, it is possible to stably achieve the desired emission characteristic over a long period of time without being influenced by a variation in the operational characteristic of each transistor constituting the pixel drive circuit DC.
Although the pixel drive circuit DC provided in each display pixel EM has a circuit configuration having three thin-film transistors Tr11 to Tr13 in the foregoing description of the embodiment, as shown in
(Device Configuration of Display Pixel)
Next, a specific device configuration (planar layout and cross-sectional structure) of the display pixel EM (pixel drive circuit DC and organic EL device OEL) as shown in
In the display pixel EM (color pixels PXr, PXg, PXb) shown in
As shown in
As shown in
Not only the gate insulation film 12 but also a parasitic capacitor layer SMC1 provided on the gate insulation film 12 and a parasitic capacitor layer CL1 provided on the parasitic capacitor layer SMC1 are intervened in the intersection area of the data line DL and the power source line VL. The parasitic capacitor layer SMC1 is formed by patterning the same layer as the semiconductor layer SMC in such a way that the layer remains in the intersection area. The parasitic capacitor layer CL1 is formed by patterning the same layer as the block layer BL in such a way that the layer remains in the intersection area. The data line DL is protected so as not to be interfered with the voltage to be applied to the power source line VL by increasing the distance between the data line DL and the power source line VL this way.
Next, after a protection insulation film 13 is formed on the entire region on the insulative substrate 11, the contact hole Hlz is formed to expose the top surface of the power source line VL and a contact metal is filled in the contact hole Hlz. Further, after a planarization film 14 is formed on the entire region on the insulative substrate 11, a wiring groove to expose the contact hole Hlz (contact metal) is formed. Then, a wiring metal is filled in the groove to form the power supply line PL.
This forms the pixel drive circuit DC including a plurality of transistors Tr11 to Tr13, the capacitor Cs (formed in an area where the gate electrode Tr13g and the source electrode Tr13s of the transistor Tr13 extend facing each other), the scan line SL, the power source line VL, the data line DL and the power supply line PL.
As shown in
The source electrode Tr11s of the transistor Tr11, the gate electrode Tr13g of the transistor Tr13 and one side electrode of the capacitor Cs (on the insulative substrate 11 side) are electrically connected to one another via a contact hole H13 (equivalent to the node N13) formed in the gate insulation film 12. The power source line VL and the power supply line PL are electrically connected to each other via the contact hole HLz (equivalent to the node Nz) formed in the protection insulation film 13.
Further, the drain electrode Tr12d of the transistor Tr12, the source electrode Tr13s of the transistor Tr13 and the other side electrode of the capacitor Cs are electrically connected to a pixel electrode 15 of the organic EL device OEL, which will be described later, via a contact hole H14 (equivalent to the node N14) formed in the protection insulation film 13 and the planarization film 14.
A cap layer 21 is provided on the power supply line PL so as not to expose the power supply line PL. The cap layer 21 is formed by etching the same layer as that of the pixel electrode 15. The presence of the cap layer 21 prevents the power supply line PL from contacting an etchant at the time of patterning the cap layer 21 and the pixel electrode 15 with the etchant. That is, the cap layer 21 is provided to prevent a cell reaction from being caused by the etchant when the pixel electrode 15 contains a transparent conductive metal oxide like ITO and the power supply line PL contains a metal like Al.
Next, the pixel electrode (e.g., anode electrode) 15 is formed in each of organic-EL-device-OEL forming areas APr, APg, APb of the color pixels PXr, PXg, PXb on the planarization film 14. Thereafter, an interlayer insulation film 16 and an insulative bank (partition) 18 which insulate between the color pixels PXr, PXg, PXb (forming areas APr, APg, APb) are formed. Next, a polymer organic material is applied to an area defined by the bank 18, thereby forming an organic EL layer 17 constituting the organic EL device OEL of each color pixel PXr, PXg, PXb (e.g., a hole transport layer 17a and an electron transport layer 17b).
Next, the organic EL device OEL having a well-known device structure is formed by forming an opposing electrode (e.g., cathode electrode) 19 in an arbitrary area on the insulative substrate 11 including the forming areas APr, APg, APb and the bank 18. The display panel 110 may have a bottom emission structure or a top emission structure. In the bottom emission structure, light emitted from the organic EL layer 17 of each display pixel EM (color pixels PXr, PXg, PXb) is output toward the insulative substrate 11. In the top emission structure, light emitted from the organic EL layer 17 of the display pixel EM is output toward the opposing electrode 19. When the display panel 110 has the bottom emission structure, the pixel electrode 15 has a light transmission characteristic while the opposing electrode 19 has a light reflection characteristic.
When the display panel 110 has the top emission structure, the pixel electrode 15 has at least a light reflection characteristic while the opposing electrode 19 has a light transmission characteristic. In this case, the pixel electrode 15 may have an electrode structure including a single-layer conductive layer having a light reflection characteristic or may have a multilayer structure including, for example, a reflection metal layer and a transparent metal oxide layer.
In the cross-sectional structure of the display pixel EM as shown in
The planar layout of the display pixel EM as shown in
<Drive Control Method for Display Apparatus>
Next, a drive control method (display drive method) for the display apparatus according to the invention will be explained.
The display drive method for the display apparatus 100 according to the embodiment is carried out as follows. An operation of writing the gradation current Idata corresponding to display data in each row of display pixels EM (pixel drive circuits DC) laid out in the display panel 110 is performed for every row. During the operation, plural rows of display pixels EM (organic EL devices OEL) in each of pixel blocks grouped beforehand are caused to perform, at a time, an emission operation with a predetermined luminance gradation corresponding to the display data (gradation current) at a predetermined timing. One screen of image information is displayed on the display panel 110 in this manner.
One example of the display drive method for the drive control method according to the embodiment will be illustrated below. As shown in
Accordingly, the organic EL devices OEL provided in the display pixels EM included in the pixel block BL1 are set in a reverse bias state, regardless of whether or not the scan signal Vse1 of the select level (ON level on) is applied to the scan lines SL1-SL360 included in the pixel block BL1. Therefore, the current does not flow to the organic EL device OEL from the pixel drive circuit DC, thereby setting all the display pixels EM in a non-emission state (the display pixels EM do not emit light).
The write period Twrt (indicated by cross-meshing in
In synchronism with the select timing, the gradation current Idata having a negative current value corresponding to display data is supplied to each data line DL from the data driver 130. In this state, the voltage component corresponding to the gradation current Idata is held (charges are stored) between the gate and source of the transistor Tr13 (across the capacitor Cs) provided in the pixel drive circuit DC of each of the display pixel EM in the row set in the selected state. When the write period Twrt ends, the scan driver 120 applies the scan signal Vse1 of the non-select level (OFF level off) to the scan lines SL set in the selected state. At this timing, the transistor Tr11 is turned off, and the voltage component between the gate and source of the transistor Tr13 is held (display data is written).
This writing operation is sequentially performed on all rows of display pixels EM included in the pixel block BL1 in such a way that the writing operations do not overlap in terms of time. After writing to the display pixels EM is finished for all the rows included in the pixel block BL1, the voltage level of the supply voltage Vsc1 to be applied to the power supply lines PL1, PL4, . . . , PL(3xr+1) from the power source drivers 140A, 140B is changed from the low level L to the high level H (=Ve) (see the emission period Tem to be described later).
In synchronism with the timing, or after the timing, the power source drivers 140A, 140B apply a supply voltage Vsc2 (=Vs) of the low level L to the power supply lines PL2, PL5, . . . , PL(3xr+2). As a result, the supply voltage Vsc2 is applied to all the power source lines VL361-VL720 included in the pixel block BL2, thus setting each row of display pixels EM in a non-emission state. In the non-emission state of the pixel block BL2, as in the case of the pixel block BL1, the operation of holding the voltage component corresponding to display data in each row of display pixels EM is executed sequentially.
For all the rows of display pixels EM included in the pixel block BL3, likewise, the power source drivers 140A, 140B apply a supply voltage Vsc3 of the low level L to the power source lines VL721-VL1080 via the power supply lines PL3, PL6, . . . , PL(3xr+3). As a result, the display pixels EM in each row are set in a non-emission state, and the operation of holding the voltage component corresponding to display data in the display pixels EM is sequentially executed row by row.
Accordingly, display data is sequentially written in all the two-dimensionally arrayed display pixels EM of the display panel 110, row by row.
Next, a description will be given of the emission period Tem (indicated by dot hatching in
In synchronism with the timing, the power source drivers 140A, 140B simultaneously apply a supply voltage Vsc1 (=Ve) of the high level H to the power supply lines PL1, PL4, . . . , PL(3xr+1). As a result, the supply voltage Vsc1 of the high level H is applied to all the power source lines VL1-VL360 included in the pixel block BL1 connected to the power supply lines PL1, PL4, . . . , PL(3xr+1) via the nodes Nz (contact holes Hlz).
Accordingly, the organic EL devices OEL of all the display pixels EM included in the pixel block BL1 are set in a forward bias state. Based on the voltage component (written display data) held in each display pixel EM (between the gate and source of the transistor Tr13 for emission drive) in the above-described writing operation, the emission drive current Ib corresponding to display data (gradation current Idata) flows to the organic EL device OEL from the pixel drive circuit DC. Therefore, all the display pixels EM in the pixel block BL1 emit lights of a predetermined luminance gradation at a time (are set in an emission state).
This emission operation is continuously executed in the next one frame period ((k+1)-th frame) Tfr to the timing at which the operation of writing one screen of display data in each row of display pixels EM (i.e., the timing, or before the timing, of starting the write period Twrt for one row of display pixels EM included in the pixel block BL1). This emission operation of causing all the display pixels EM included in each of the pixel blocks BL1 to BL3 to perform an emission operation at a time. As a result, image information based on one screen (k-th frame) of display data is displayed on the display panel 110.
Thereafter, a sequence of display drive operations including the aforementioned non-emission operation (including the writing operation) and emission operation are repeatedly executed in the next (k+1)-th frame or subsequent frames too.
According to the drive control method for the display apparatus, in the period where the writing operation to each row of display pixels included in the same pixel block is sequentially executed, the display pixels (light emitting devices) included in that pixel block do not perform an emission operation, and can be set in a non-emission state (non-display state). This makes it possible to realize the display drive control of a pseudo-impulse type which performs emission with a luminance gradation corresponding to display data only in a given period (emission period excluding the non-emission period) in one frame period.
In the timing chart illustrated in
Further, in the display pixels and the drive control method (display drive method) according to the embodiment, the pair of power source drivers 140A, 140B are arranged facing each other in the column direction (upward and downward in the diagram) of the display panel 110 with the display panel 110 having the aspect ratio of 16:9 for the wide screen (having, for example, 1920 horizontal display pixels×1080 vertical display pixels) in between. The power source drivers 140A, 140B simultaneously apply the same supply voltage Vsc (Vsc1, Vsc2, Vsc3) to one end side and the other end side of each power supply line PL, thereby applying the supply voltage Vsc to all the power source lines VL included in a specific pixel block. All the display pixels EM included in the pixel block are set in a non-emission state or in an emission state at a time.
The display apparatus has power supply lines PL corresponding to the number of the pixel blocks preset for the display panel 110, and a predetermined supply voltage Vsc is applied from both ends of a plurality of power supply lines PL commonly connected to all the power source lines VL included in each pixel block. This makes it possible to surely set the length of the supply-voltage supply path (wiring length) shorter as compared with the system of supplying the supply voltage from one lengthwise end of the display panel to the power source lines. Therefore, the number of display pixels which are substantially driven for emission by the pixel current (dot current) supplied from a single power supply line PL can surely be made smaller than the number of the display pixels in one row.
Specifically, in the display panel compatible with the aspect ratio for the wide screen having 1920 horizontal pixels×1080 vertical pixels, when each display pixel includes three RGB color pixels, the number of pixels connected to each power source line becomes 1920 pixels×3 colors=5760 pixels. In the case of applying the supply voltage from one end side of the power source lines laid out in the row direction, it is necessary to supply the power source lines with the current large enough to simultaneously drive all the display pixels (5760 pixels). For the sake of descriptive convenience, the configuration of this system is referred to as “comparative example”.
In the display apparatus according to the embodiment, the two-dimensionally arrayed display pixels of the display panel are grouped (separated) into a plurality of pixel blocks each consisting of a predetermined number of rows beforehand. The supply voltage is applied to the power source lines for each pixel block via a plurality of power supply lines arranged in the column direction. The power supply lines are so set as to be connected to the display pixels via the power source lines so that the number of pixels to which the current is supplied over a single power source line (strictly speaking, the number of pixels which are substantially driven by the current) is made smaller than that of the comparative example (i.e., 5760 pixels).
When the number of segments of the display panel (the number of pixel blocks) is set to 3, the number of all the pixels (the number of rows) in the column direction is 1080, so that the number of pixels in the column direction included in each pixel block (the number of power source lines) becomes 1080/3=360 pixels. In a specific pixel block, therefore, the number of the pixels in the row direction in which the current is supplied by a single power supply line is set to or less than 5760/360=16 pixels. This setting can make the density of the current to be supplied to the power supply line can be made smaller than that of the comparative example.
In other words, the total number of pixels in the row direction (horizontal direction) of the display panel in which the current is supplied by a single power supply line is set to or less than NC×NA/NS where NC is the total number of pixels in the row direction (horizontal direction) of the display panel, NA is the number of segments of the display panel (the number of pixel blocks), and NS the number of rows (number of scan lines) panel. The display panel (
According to the embodiment, therefore, it is possible to surely shorten the path along which the supply voltage is applied to the display pixels and to surely set shorter the number of display pixels to which the pixel current is supplied accordingly. This makes it possible to suppress the voltage drop of the supply voltage and the delay of the application timing thereof, thus permitting the emission drive current having the adequate current value corresponding to display data to flow to the light emitting devices and ensuring an emission operation with the adequate luminance gradation. It is therefore possible to realize a display apparatus having an excellent display quality.
The foregoing description of the embodiment has been given of the case where the display pixels EM in each row are commonly connected to a single power source line VL, and are connected to a plurality of power supply lines via nodes Nz for each pixel block, at predetermined intervals (with every predetermined number of pixels−1 in the pixel block being excluded). However, the invention is not limited to this type, and the power source lines may be separated in each pixel block for every display pixel which can substantially be driven for emission by the pixel current originated from the supply voltage Vsc supplied by each power supply line.
Next, a description will be given of another example of the display panel to be used for the display apparatus according to the embodiment, and a drive control method therefor, with reference to the accompanying drawings.
In the display apparatus equipped with the display panel and the drive control method therefore (
Specifically, as shown in
In this case, the ratio of the non-display period (the ratio of inserting black) in the non-emission operation in one frame period Tfr becomes 25%. While this ratio is slightly lower than 30% which is the tentative target, a display apparatus having a relatively good display quality can be realized.
A description will now be given of specific evaluation on the degree of the voltage drop of the supply voltage in each of the display panels (
In the evaluation, the case where the two-dimensionally arrayed display pixels are grouped into three pixel blocks (three segmentations) as shown in
According to the display panel of the embodiment, it is found that the four segmentation case makes the degree of the voltage drop smaller than the three segmentation case.
It is therefore proved that in the display panel having the wide aspect ratio (16:9) (e.g., display panel having 1920 horizontal pixels×1080 vertical pixels laid out), the embodiment can surely make the length of the supply-voltage supply path shorter than the comparative example, thus suppressing the voltage drop of the supply voltage and the delay of the application timing thereof In the comparative example, the supply voltage was applied to from one end side of the power source line laid out in the lengthwise direction (row direction) of the display panel to drive each row of display pixels. In the embodiment, however, a pair of power source drivers were arranged facing each other in the short-side direction (column direction) of the display panel, the supply voltage was applied to both ends of the power supply line laid out in the column direction from each power source driver, and the supply voltage was applied to the power source line laid out in the row direction to drive each row of display pixels.
In the embodiment, the power source drivers 140A, 140B are used. Even when only one of the power source drivers 140A, 140B is used, however, the wiring distance becomes shorter than is provided in the case where the one power source driver is arranged on one of the peripheral edge portions 11d, 11e, thereby bringing about similar advantages.
Various embodiments and changes may be made thereunto without departing from the broad spirit and scope of the invention. The above-described embodiment is intended to illustrate the present invention, not to limit the scope of the present invention. The scope of the present invention is shown by the attached claims rather than the embodiment. Various modifications made within the meaning of an equivalent of the claims of the invention and within the claims are to be regarded to be in the scope of the present invention.
This application is based on Japanese Patent Application No. 2006-068992 filed on Mar. 14, 2006 and including specification, claims, drawings and summary. The disclosure of the above Japanese Patent Application is incorporated herein by reference in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
2006-068992 | Mar 2006 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
6489952 | Tanaka et al. | Dec 2002 | B1 |
20040149886 | Matsueda et al. | Aug 2004 | A1 |
20040189627 | Shirasaki et al. | Sep 2004 | A1 |
20060028408 | Kim | Feb 2006 | A1 |
20060114193 | Kwak et al. | Jun 2006 | A1 |
20060139260 | Shibusawa | Jun 2006 | A1 |
20080143648 | Ishizuka et al. | Jun 2008 | A1 |
20090289931 | Matsueda et al. | Nov 2009 | A1 |
Number | Date | Country |
---|---|---|
1716370 | Jan 2006 | CN |
2001-42822 | Feb 2001 | JP |
2004-133411 | Apr 2004 | JP |
Number | Date | Country | |
---|---|---|---|
20070216613 A1 | Sep 2007 | US |