The present invention relates to a display apparatus comprising a display panel with display pixels arranged in matrix, and a display drive circuit for selecting the display pixels to be impressed with a gray scale voltage, or in particular to a display apparatus employing liquid crystal, organic EL or plasma and a display drive circuit therefor.
According to JP-A-6-161390 (laid open Jun. 7, 1994), a liquid crystal material is sealed between each of a plurality of pixel electrodes and a corresponding one of opposed electrodes, and the pixel electrodes are each connected with a switching transistor. A scanning signal for turning on/off the switching transistor is applied from a scanning signal supply circuit through a scanning signal line to the switching transistor. An image signal is supplied from an image signal supply circuit through an image signal line and the switching transistor to each pixel electrode. The scanning signal on an adjacent scanning signal line is supplied to the pixel electrode through an additional capacitor. Further, a compensation voltage is applied before and after the voltage level of the scanning signal for turning on the switching transistor. In other words, according to the disclosure of JP-A-6-161390, the off voltage of the scanning signal is changed during the non-overlap period of the scanning signal.
On the other hand, JP-A-11-64821 (laid open Mar. 5, 1993) discloses:
a display panel including an array substrate, an opposed substrate arranged in opposed relation to the array substrate and a light modulation layer held between the array substrate and the opposed substrate, the array substrate having a plurality of signal lines, a plurality of scanning lines and a plurality of pixel electrodes, the signal lines and the scanning lines being arranged to intersect each other, the pixel electrodes being each arranged in the neighborhood of a corresponding one of the intersections between a corresponding one of the signal lines and a corresponding one of the scanning lines through a corresponding one of a plurality of switch elements;
signal line drive means for supplying a video signal voltage to the signal lines; and
scanning line drive means for supplying the scanning lines with scanning pulses having a first voltage for turning on the switch elements and a second voltage for turning off the switch elements;
wherein a pixel electrode connected to one of the scanning lines through a switch element electrically forms a capacitor with another scanning line through a dielectric layer, and the turn-on period of the switch element of a given scanning line is not substantially in superposed relation with the turn-on period of another switch element.
Further, JP-A-10-221676 (laid open Aug. 21, 1998) discloses a plurality of V scanners connected with a plurality of gate lines arranged in rows, a plurality of H scanners connected with a plurality of signal lines arranged in columns and a plurality of pixel units arranged at the intersections, respectively, between the gate lines and the signal lines;
wherein the V scanners are divided into first V scanners connected to the odd-number gate lines, respectively, and second V scanners connected to the even-number gate lines, respectively,
wherein the nth gate line of the first V scanners is connected in series with a NAND circuit and a buffer circuit, with the unconnected input terminal of the NAND circuit being connected to the end terminal of the (n−1)th gate line of the second V scanners through an inverter circuit, while the nth gate line of the second V scanners is connected in series with a NAND circuit and a buffer circuit, with the unconnected input terminal of the NAND circuit being connected to the end terminal of the (n−1)th gate line of the first V scanners through an inverter circuit, thereby preventing the gate lines from being selected in overlapped relation, and
wherein a selective pulse is supplied to every other gate through the buffer circuits and the NAND circuits connected to the first and second V scanners so that adjacent gate pulses are not overlapped with each other.
One scanning period is set by a line pulse, and one frame period is set as the product of one scanning period and the number of drive lines. The gate pulse applies a gate line select voltage to the first line in synchronism with the trailing edge of the line pulse when the frame pulse is at high level. After that, the gate pulse is applied to subsequent lines sequentially in synchronism with the line pulse. In the case where the output of the gate driver is used for a panel configured of an additional capacitor Cadd, for example, the black display brightness of normally black liquid crystal increases, thereby sometimes making it impossible to obtain the proper contrast. This abnormal increase in display brightness is attributable to the fact that the liquid panel is configured of a Cadd. The pixel electrodes are each connected to the gate line in the preceding stage through a Cadd. When a high-level voltage is applied to the gate line in the preceding stage, the pixel electrode is changed to high-voltage side through the Cadd, resulting in a correspondingly abnormal increase in display brightness.
None of the conventional techniques described above, however, takes note of the abnormal increase in display brightness with a reduced contrast.
An object of the present invention is to provide a display apparatus and a display drive circuit with an improved contrast.
Another object of the invention is to provide a display apparatus and a display drive circuit with a reduced power consumption.
The voltage fluctuation of the pixel electrodes due to the gate pulse may be reduced by a method for reducing the amplitude of the gate pulse or a method for reducing the pulse width of the gate pulse. In view of the fact that the former method involves a voltage required for turning on/off a TFT, the gate pulse width of the latter method has been employed by the invention.
In order to achieve these objects, according to this invention, there is provided a display apparatus and a display drive circuit, wherein a non-overlap period can be set for outputting a non-select voltage to the pixels for at least two lines of the display panel during one horizontal period. In other words, a period with the non-select signal level of the gate pulse signal during which the pixels are not selected is set in one horizontal period. In this way, the contrast can be improved.
Also, in order to achieve the objects described above, according to this invention, there is provided a display apparatus and a display drive circuit, wherein the frequency of the gate pulse signal is relatively increased during a display area-related period in which the display data are displayed, while the frequency of the gate pulse signal is relatively decreased for a non-display area-related period in which the display data are not displayed.
Other objects, features and advantages of the invention will become apparent from the following description of the embodiments of the invention taken in conjunction with the accompanying drawings.
In the gate line drive circuit according to the invention, therefore, the gate pulse width is reduced while at the same time making it possible to adjust the pulse width.
Based on the frame pulse signal 806 and the line pulse signal 805 input thereto, the scan data generating circuit 802 generates a timing of application of a gate line select voltage. In the case under consideration, the gate line select voltage is applied to the head line in synchronism with the trailing edge of the line pulse signal 805 when the frame pulse signal is at high level. After that, the gate line select voltage is applied to the next and subsequent lines sequentially in synchronism with the line pulse signal 805. The high-level width of the output scan data is equal to one horizontal period.
The equation 1 described below is calculated with the scan data A output from the scan data generating circuit 802 and the pulse width signal 807B input from an external source thereby to generate a gate pulse C.
C=A*B (1)
The level shifter 803 shifts the level from the operating power Vcc-GND of a logic circuit to the operating power VGH-VGL of the gate line drive unit 804.
The gate line drive unit 804 is supplied with the signal changed by the level shifter 803, and buffers and outputs the select voltage VGH and the non-select voltage VGL supplied from the power supply circuit 4. The gate pulse signal becomes the select voltage VGH at high level, and the non-select voltage VGL at low level, or vice versa. The select voltage VGH and the non-select voltage VGL each desirably have a constant amplitude. The period during which the select voltage VGH is turned off is equal to the period during which the non-select voltage VGL is turned on.
Due to the configuration and operation described above, the liquid crystal gate driver 2 according to the first embodiment of the invention can reduce the gate pulse width below one horizontal period, so that the voltage applied to the liquid crystal assumes an effective value nearer to the ideal value. Also, the gate pulse width can be adjusted by changing the high-level width of the pulse width signal applied from an external source. As a result, the proper contrast can be achieved as intended by the invention.
A gate line drive circuit according to a second embodiment of the invention will be explained with reference to
Numeral 808 designates a reference clock signal, numeral 809 information on a non-overlap period during which the select voltages for all the gate lines turn off, numeral 810 a non-overlap period generating unit for generating a non-overlap period waveform, and numeral 811 a register for storing the non-overlap period information 809. In place of the non-overlap period, the non-overlap timing (the timing of the gate pulse fall) may be set in a register. Also, in place of the non-overlap period, the time length may be set for which a select voltage is applied in one horizontal period.
The gate driver 2 is supplied with the reference clock signal 808, the line pulse signal 805, the frame pulse signal 807 and the non-overlap period information 809. The non-overlap period is defined by the number of reference clocks, and therefore the non-overlap period information 809 is a designated number of reference clocks.
The non-overlap period information 809 input from an external source is first stored in the register 811. The number of the reference clocks indicating the non-overlap period information 809 thus stored is used by the non-overlap period generating unit 810. In other words, the non-overlap period information 809 represents the number of reference clocks for determining the non-overlap period.
The non-overlap period generating unit 810 generates a non-overlap period waveform E based on the reference clocks and the number of the reference clocks constituting the non-overlap period information 809. This waveform E is a signal including Vcc indicating the non-overlap period 809 and GND indicating the other period. The scan data D output from the scan data generating circuit 802 and the output E of the non-overlap period generating unit are used to carry out the calculation of the following equation 2, thereby producing a target gate pulse F.
F=D*Ē (2)
The level shifter 803 changes the level of the gate pulse F from the operating power Vcc-GND for the logic circuit to the operating power VGH-VGL for the gate line drive unit 804.
The gate line drive unit 804 is supplied with a signal converted by the level shifter 803, and buffers and outputs the select voltage VGH and the non-select voltage VGL supplied from the power supply circuit 4.
Next, the operation of the non-overlap period generating unit 810 will be explained in more detail.
The reference clocks 808 are counted by the counter 1101 to produce a count a, which is compared with the number m of the clocks during a set non-overlap period. In the case where m is not smaller than a, the signal Vcc indicating the non-overlap period is output, and in the case where m is smaller than a, the signal GND is output. As understood from the time chart of the input/output signal of the non-overlap period generating unit 810 shown in
The scan data A has a high-level width equal to one horizontal period, and changes from low to high level in one frame pulse period. The pulse width signal B has a high-level width shorter than one horizontal period, and changes from low to high level in one horizontal period. The gate pulse C also has a high-level width shorter than one horizontal period and changes from low to high level in on frame period. The timing of this gate pulse C changing to high level lags one horizontal period behind that of the gate pulse C in the preceding stage.
The timing chart of the frame pulse signal 806, the line pulse signal 805, the output of the scan data generating circuit, the output of the non-overlap period generating unit, the gate pulse and the voltage applied to the liquid crystal are summarily shown in
With the configuration and the operation described above, in the liquid crystal gate driver 2 according to the second embodiment of the invention, the effective value of the voltage applied to the liquid crystal can be set nearer to the ideal value by arbitrarily changing the gate pulse width by setting the number of reference clocks appropriately during the non-overlap period. In this way, the proper contrast can be achieved as intended by the invention. Next, the gate line drive circuit according to a third embodiment of the invention will be explained with reference to
The conventional liquid crystal drive unit has the function called the partial display by partial LCD drive for displaying only a part of the panel. If the whole screen is scanned in partial display mode, however, power is wasted by scanning the non-display area.
In view of this, as shown in
First,
Numeral 1604 designates a partial LCD drive function information for partial display, numeral 1605 a non-scan timing generating unit for generating a non-scan timing for partial display, and numeral 1606 a register for storing the partial LCD drive function information 1604.
The gate driver 2 is supplied with the frame pulse signal 806, the line pulse signal 805 and the partial LCD drive function information 1604. The partial LCD drive function information 1604 includes a start line SS and an end line SE of the display area, and a scanning rate SCN of the non-display area (n=SCN). In the description that follows, the scanning rate is assumed to be once for every n frames.
The partial LCD drive function information 1604 input from an external source is stored in the register 1606. The data on the start line SS and the end line SE of the display area and the scanning rate n of the non-display area constituting the partial LCD drive function information 1604 thus stored are used in the non-scan timing generating unit 1605. The content of the register 1606 is desirably rewritten (reset) in the case where the partial LCD drive function information 1604 is stored therein.
The non-scan timing generating unit 1605 is supplied with the frame pulse signal 806, the line pulse signal 805, the start line SS and the end line SE of the display area and the scanning rate n. First, the non-scan timing generating unit 1605 generates a non-display line signal G including GND indicating a display line and Vcc indicating a non-display line from the line pulse signal 805 and the display area data on the one hand, and a non-display scan signal H including Vcc indicating a frame for scanning the non-display area and GND indicating a frame for not scanning the non-display area from the frame signal 806 and the scanning rate n (scanning once per every n frames) on the other hand. The non-display line signal G and the non-display scan signal H are used to carry out the calculation of the following equation 3, so that a non-scan timing signal I is output with the scan period of GND and the non-scan period of Vcc.
I=G*H (3)
Further, the calculation of equation 3 described above is carried out using the non-display area waveform G and the non-display area scan signal H thereby to generate the non-scan timing waveform I from a non-scan timing generating unit 1605.
As an example,
Also, the equation 4 below is calculated using the non-scan timing waveform I and the scan data J, thereby producing a gate pulse K for the gate drive circuit 1601.
K=J*Ī (4)
The frame pulse, the line pulse, the output of the scan data generating circuit, the output of the non-scan timing generating unit and the gate pulse are collectively shown in the timing chart of
With the configuration and operation described above, the liquid crystal gate driver 2 according to the third embodiment of the invention reduces the scanning rate of the non-display area. The power consumption by charge/discharge of the gate lines can be reduced, for example, by scanning once for every several frames. The reduced power consumption intended for by the invention can thus be achieved.
The embodiments of the invention described above can be combined to realize the proper contrast and lower power consumption.
The registers 809 and 1604 are incorporated in the non-volatile memory of the CPU. The CPU reads the values of the registers from the non-volatile memory, and sets them in the registers 809 and 1604, respectively.
The gate driver 2 according to an embodiment of the invention makes it possible to set a non-overlap period for adjusting the high-level width of the scanning signal, while defining and adjusting the same period by the number of reference clocks. As a result, the effective value of the voltage applied to the liquid crystal is less subjected to fluctuations and brought nearer to an ideal value, thereby producing the proper contrast. Further, the partial LCD drive function can set and adjust the scanning rate of the non-display area. By reducing the scanning rate this way, the gate lines of the non-display area are charged/discharged less frequently, thereby reducing the power consumption.
The embodiments of the invention are most suitable for driving a small-sized liquid crystal panel having a small number of lines. Nevertheless, a similar effect can be obtained in applications to a middle or large liquid crystal panel.
According to this invention, the contrast of the display image can be improved by securing the proper gate pulse width.
Also, according to this invention, the number of times the gate lines of the non-display area are charged/discharged is reduced, thereby reducing the power consumption of the liquid crystal drive unit.
It should be further understood by those skilled in the art that the foregoing description has been made on embodiments of the invention and that various changes and modifications may be made without departing from the spirit of the invention and the scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2001-171887 | Jun 2001 | JP | national |
This is a continuation of U.S. application Ser. No. 10/161,637, filed Jun. 5, 2002 now U.S. Pat. No. 7,006,082, which relates to and claims priority from Japanese Patent Application No. 2001-171887, filed on Jun. 7, 2001. The entirety of the contents and subject matter of all of the above is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5412397 | Kanatani et al. | May 1995 | A |
5424753 | Kitagawa et al. | Jun 1995 | A |
5448260 | Zenda et al. | Sep 1995 | A |
5710571 | Kuo | Jan 1998 | A |
5796379 | Enomoto et al. | Aug 1998 | A |
5796391 | Chiu et al. | Aug 1998 | A |
5963188 | Kim | Oct 1999 | A |
5977941 | Katoh et al. | Nov 1999 | A |
6219018 | Matsumoto | Apr 2001 | B1 |
6232945 | Moriyama et al. | May 2001 | B1 |
6522319 | Yamazaki | Feb 2003 | B1 |
20010043178 | Okuzono et al. | Nov 2001 | A1 |
Number | Date | Country |
---|---|---|
1262761 | Aug 2000 | CN |
04-247491 | Sep 1992 | JP |
6-161390 | Jun 1994 | JP |
09-005775 | Jan 1997 | JP |
10-221676 | Aug 1998 | JP |
10-333629 | Dec 1998 | JP |
11-64821 | Mar 1999 | JP |
2000-035560 | Feb 2000 | JP |
2001-215469 | Aug 2001 | JP |
Number | Date | Country | |
---|---|---|---|
20060125763 A1 | Jun 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10161637 | Jun 2002 | US |
Child | 11339673 | US |