This application claims the priority benefit of Taiwan application serial no. 106146637, filed on Dec. 29, 2017. The entirety of the above-mentioned patent application is hereby incorporated by reference herein and made a part of this specification.
The disclosure relates to a display apparatus and particularly relates to a display apparatus and a driving method of a display panel of the display apparatus.
In general, a display usually exhibits a display effect of a wide viewing angle so as to provide a screen for a plurality of viewers. However, in certain circumstances, for example, when confidential information is being viewed, or a password is being entered, the display effect of a wide viewing angle makes confidential information vulnerable to onlookers and causes the leakage of confidential information. Therefore, in order to prevent prying eyes, the display apparatus shall have an anti-peep feature.
The disclosure provides a display apparatus capable of performing an anti-peep function and a driving method of a display panel of the display apparatus.
The display apparatus according to an embodiment of the disclosure includes a display panel and a common voltage setting circuit. The display panel has a plurality of pixels and a plurality of common electrode lines and receives a plurality of pixel voltages. Each of the pixels is coupled to the corresponding common electrode line, and receives the corresponding pixel voltage. The common voltage setting circuit is coupled to the common electrode lines. The common voltage having a normal voltage level is supplied to the common electrode lines during a first frame period. The common voltage having a complementary high voltage level or a complementary low voltage level is supplied to the common electrode lines during a second frame period. The normal voltage level, the complementary high voltage level and the complementary low voltage level are different from one another, and each of the pixels receives the same pixel voltage during the first frame period and the second frame period.
In the driving method of a display panel according to an embodiment of the disclosure, the display panel has a plurality of common electrode lines and a plurality of pixels and receives a plurality of pixel voltages. Each of the pixels is coupled to the corresponding common electrode line and receives the corresponding pixel voltage. The driving method includes the following steps: A common voltage having a normal voltage level is supplied to the common electrode lines during a first frame period. The common voltage having a complementary high voltage level or a complementary low voltage level is supplied to the common electrode lines during a second frame period. The normal voltage level, the complementary high voltage level and the complementary low voltage level are different from one another, and each of the pixels receives the same pixel voltage during the first frame period and the second frame period.
In view of the foregoing, in terms of the display apparatus and the driving method of the display panel of the display apparatus according to the embodiments of the disclosure, the common voltage having the normal voltage level is supplied to the common electrode lines of the display panel during the first frame period, the common voltage having the complementary high voltage level or the complementary low voltage level is supplied to the common electrode lines during the second frame period, and the pixel receives the same pixel voltage during the first frame period and the second frame period. In this regard, a viewer on either side of the display panel sees only a grayscale screen of a certain range or a single-grayscale screen. That is, the viewer on either side of the display panel cannot see the screen normally. In that case, the display apparatus provides the anti-peep function.
In order to make the aforementioned and other features and advantages of the disclosure comprehensible, several exemplary embodiments accompanied with figures are described in detail below.
The accompanying drawings are included to provide a further understanding of the disclosure, and are incorporated in and constitute a part of this specification. The drawings illustrate embodiments of the disclosure and, together with the description, serve to explain the principles of the disclosure.
Reference will now be made in detail to the present preferred embodiments of the disclosure, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers are used in the drawings and the description to refer to the same or like parts.
The timing controller 110 controls the source driver 120 to supply a plurality of pixel voltages VP1 to VPn to the display panel 140 according to the received image signal Simage, wherein n is a positive integer. The timing controller 110 controls the gate driver 130 to supply a plurality of scan signals G1 to Gm to the display panel 140, wherein m is a positive integer. The timing controller 110 controls the backlight module 150 to supply a display light BL to the display panel 140. Moreover, the timing controller 110 controls the common voltage setting circuit 160 to supply common voltages having a normal voltage level VcomN, a complementary high voltage level VcomH and a complementary low voltage level VcomL that are different from one another to the display panel 140.
The display panel 140 includes a plurality of pixels PX, a plurality of data lines 141, a plurality of scan lines 143 and a plurality of common electrode lines 145. The data line 141 is coupled to the source driver 120 to receive the pixel voltages VP1 to VPn respectively. The scan line 143 is coupled to the scan driver 130 to receive scan signals G1 to Gm respectively. The common electrode line 145 is coupled to the common voltage setting circuit 160 to receive the common voltage having one of the normal voltage level VcomN, the complementary high voltage level VcomH and the complementary low voltage level VcomL.
Each of the pixels PX is coupled to the corresponding data line 141, the corresponding scan line 143 and the corresponding common electrode line 145 respectively to receive a corresponding pixel voltage (such as VP1 to VPn), a corresponding scan signal (such as G1 to Gm) and a corresponding common voltage.
During a writing period PW1 of the first frame period F1, the common voltage has the normal voltage level VcomN, so a voltage difference between the pixel electrode of the pixel PX and the common electrode is V1-VcomN. During a writing period PW2 of the second frame period F2, the common voltage has the complementary high voltage level VcomH. If the complementary high voltage level VcomH corresponds to the highest gamma voltage, that is, the pixel voltage VP of the positive polarity is generally between the complementary high voltage level VcomH and the normal voltage level VcomN, or the complementary high voltage level VcomH is greater than or equal to the normal voltage level VcomN and any grayscale pixel voltage VP, a voltage difference between the pixel electrode of the pixel PX and the common electrode is VcomH-V1.
Next, the source driver 120 supplies the pixel voltage VP of a negative polarity (relative to the normal voltage level VcomN) such as a voltage V2 in
Through the above operation, a viewer on the front mainly sees an image generated according to backlight having the first distribution curve OP1, while a viewer on the side sees an image generated according to backlight having the complementary distribution curve OP1C. For this reason, the viewer on the side of the display panel 140 may see only a grayscale screen of a certain range (such as grayscale values of 120-130) or a signale-grayscale screen (such as a grayscale value of 125). For this reason, switching the common voltage into one of the normal voltage level VcomN, the complementary high voltage level VcomH and the complementary low voltage level VcomL alternately makes the viewer on the side unable to see the screen normally. In that case, the display apparatus 100 provides an anti-peep function.
In other words, when the pixel PX coupled to each of the common electrode lines 145 is written with the pixel voltage VP of the positive polarity respectively, each of the common electrode lines 145 receives the common voltage having the normal voltage level VcomN during the first frame period (such as the first frame period F1), and the display light BL of the backlight module 150 exhibits a normal light field to allow each of the pixels PX to exhibit a normal display image according to the corresponding received pixel voltage VP and the normal voltage level VcomN. During the second frame period (such as the second frame period F2) following shortly the first frame period, each of the common electrode lines 145 receives the common voltage having the complementary high voltage level VcomH, and the display light BL of the backlight module 150 exhibits a viewing angle control (VAC) light field to allow each of the pixels PX corresponding to the common voltage in an alternating state to exhibit complementary images of complementary colors at specific angles.
When the pixel PX coupled to each of the common electrode lines 145 is written with the pixel voltage VP of the negative polarity, each of the common electrode lines 145 receives the common voltage having the normal voltage level VcomN during the first frame period (such as the third frame period F3), and during the second frame period following shortly, each of the common electrode lines 145 receives the common voltage having the complementary low voltage level VcomL.
In the above embodiment, the common voltage setting circuit 160 supplies the common voltage switched to one of the normal voltage level VcomN, the complementary high voltage level VcomH and the complementary low voltage level VcomL alternately to enable the display apparatus 100 to perform the anti-peep function. Therefore, when a user intends to switch off the anti-peep function, the function of setting up alternate voltages by the common voltage setting circuit 160 is switched off (that is, the common voltage is merely set as the normal voltage level VcomN).
Based on the above, from front views, by adjusting light emitted by the backlight module 150 through the pixel PX, the user may see the normal display image. With the viewing angle of the user shifting toward the two ends, the user cannot see the normal display image clearly, and at angles from 0 to θA degree, and θB to 180 degrees, the user sees only a specific grayscale screen. In other words, the angles from 0 to θA degree, and from θB and 180 degrees provide effective anti-peep regions AG1 and AG2 with desired anti-peep effects.
In other words, during the second frame period F2 and the fourth frame period F4, before each of the pixel voltages VP is written into the corresponding pixel PX, the common voltage received by the corresponding common electrode line 145_x is switched from the normal voltage level VcomN to the complementary high voltage level VcomH or the complementary low voltage level VcomL. Moreover, after each of the pixel voltages VP is written into the corresponding pixel PX, the common voltage received by the corresponding common electrode line 145_x is switched from the complementary high voltage level VcomH or the complementary low voltage level VcomL to the normal voltage level VcomN.
Based on the above, in the case of a desired operation, during the second frame period F2 and the fourth frame period F4 in
In the embodiment, a voltage level is switched through the former scan signal G(x−1) and the later scan signal G(x+1), but in other embodiments, the voltage level may be switched through the former two scan signals G(x−2) and the later two scan signals G(x+2). The operation depends on circuit design, but the embodiment of the disclosure is not limited thereto.
In addition, in the embodiment, the common electrode line 145 of the display panel 140 is switched to the complementary high voltage level VcomH or the complementary low voltage level VcomL row by row. Therefore, in some embodiments, the normal voltage level VcomN, the complementary high voltage level VcomH or the complementary low voltage level VcomL may be transmitted to the corresponding common electrode line 145 by a shift register. The complementary high voltage level VcomH and the complementary low voltage level VcomL may be determined based on a polar signal (not shown) received by the display apparatus 100, but the embodiment of the disclosure is not limited thereto.
In other words, in the case of a desired operation, during the second frame period F2 and the fourth frame period F4 in
In the embodiment, the backlight module 150 is configured to provide the display light BL for the pixel PX written with the pixel voltages VP1 to VPn while each of the pixel voltages VP1 to VPn is written into the corresponding pixel PX, so the display panel 140 may exhibit an image. However, considering liquid crystal response time, the display light BL may be provided after the pixel voltages VP1 to VPn are written into the corresponding pixel PX for a liquid crystal response time.
For instance, if the backlight module 150 is to provide the single display light BL, the backlight module 150 may provide the display light BL after all the pixels PX are written with the pixel voltages VP1 to VPn for a liquid crystal response time. Alternatively, if the backlight module 150 is to provide the plurality of display lights BL, that is, the display panel 140 may provide the display light BL strip by strip or group by group, the backlight module 150 may provide the display light BL for each row or group (such as PG1 to PGk) after all the pixels PX in each row or group (such as PG1 to PGk) are written with the pixel voltages VP1 to VPn for a liquid crystal response time.
Based on the above, a provided time for providing the display light BL to the pixel PX may be less than or equal to a writing time required to write the pixel voltages VP1 to VPn into each row, each group (such as PG1 to PGk), or all of the pixels PX subtracted from a time length of a single frame period (such as the first frame period F1, the second frame period F2, the third frame period F3 or the fourth frame period F4).
In the embodiment above, the common electrode line 145 of the display panel 140 may be switched to the complementary high voltage level VcomH or the complementary low voltage level VcomL row by row or group by group. However, according to an embodiment of the disclosure, all the common electrode lines 145 may be switched to the complementary high voltage level VcomH or the complementary low voltage level VcomL in the meanwhile, so the embodiment of the disclosure is not limited thereto.
In view of the above, in the display apparatus and the driving method of the display panel of the display apparatus according to the embodiments of the disclosure, the common voltage having the normal voltage level is supplied to the common electrode line of the display panel during the first frame period, the common voltage having the complementary high voltage level or the complementary low voltage level is supplied to the common electrode line during the second frame period, and the pixel receives the same pixel voltage during the first frame period and the second frame period. For this reason, the viewer on the side of the display panel may see only the grayscale screen of a certain range or the single-grayscale screen. That is, the viewer on the side cannot see the screen normally. In that case, the display apparatus provides the anti-peep function.
It will be apparent to those skilled in the art that various modifications and variations can be made to the structure of the present disclosure without departing from the scope or spirit of the disclosure. In view of the foregoing, it is intended that the present disclosure cover modifications and variations of this disclosure provided they fall within the scope of the following claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
106146637 A | Dec 2017 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
8248336 | Hwang et al. | Aug 2012 | B2 |
8654159 | Hwang et al. | Feb 2014 | B2 |
20040239667 | Takahashi | Dec 2004 | A1 |
20080094332 | Tseng | Apr 2008 | A1 |
20080136804 | Lee | Jun 2008 | A1 |
20110115778 | Yang | May 2011 | A1 |
20120154467 | Hwang | Jun 2012 | A1 |
20120242641 | Lee | Sep 2012 | A1 |
20130257701 | Wang et al. | Oct 2013 | A1 |
20150042238 | Chuang | Feb 2015 | A1 |
20150138059 | Large et al. | May 2015 | A1 |
20150187291 | Jang | Jul 2015 | A1 |
20150193625 | Sumi | Jul 2015 | A1 |
20180096662 | Lee | Apr 2018 | A1 |
20190278117 | Chung | Sep 2019 | A1 |
Number | Date | Country |
---|---|---|
102540599 | Jul 2012 | CN |
102608818 | Jul 2012 | CN |
106448601 | Feb 2017 | CN |
Number | Date | Country | |
---|---|---|---|
20190206351 A1 | Jul 2019 | US |