This application claims priority from and the benefit of Korean Patent Application No. 10-2013-0127432, filed on Oct. 24, 2013, which is hereby incorporated by reference for all purposes as if fully set forth herein.
1. Field
Exemplary embodiments of the present invention relate to a display device and a driving method thereof.
2. Discussion of the Background
As a flat panel display device, a liquid crystal display device may realize full color using a space division scheme. For this, a liquid crystal display panel may include red, green, and blue color filters that are iteratively arranged to correspond to each sub pixel in a one-to-one manner. A unit combination of red, green, and blue color filters may form a minimum unit for color realization, and full color may be implemented through a transmissivity difference between sub pixels of the liquid crystal display panel and a color combination of red, green, and blue color filters. The red, green, and blue color filters may be disposed at different spaces within the liquid crystal display panel. This may be referred to as a space division scheme.
By comparison, a time division scheme (or, a field sequential scheme) may implement a full color with high transmissivity and a low manufacturing cost. With the time division scheme, the liquid crystal display panel may not include a color filter, and red, green, and blue light sources may be disposed on the rear of the liquid crystal display panel to emit red, green, and blue color lights. Also, a unit frame may be divided into three sub-frames in time, and the red, green, and blue light sources may be on every sub frame such that red, green, and blue color images are sequentially realized. Thus, a viewer may recognize a full-color image such that red, green, and blue color images are mixed as a result of physiological visual sensation.
A conventional time division type liquid crystal display device may be advantageous in reducing manufacturing costs and improving transmissivity. On the other hand, a color breakup phenomenon in which red, green, and blue color images are separately recognized for an instant, resulting from eye blinking or the movement of either picture or viewer, may appear.
The above information disclosed in this Background section is only for enhancement of understanding of the background of the invention and, therefore, it may contain information that does not constitute prior art.
Exemplary embodiments of the present invention provide a display device capable of providing full color on a display panel using a time/space division scheme.
Exemplary embodiments of the present invention also provide a method of driving a display device in which turn-on times of first and second light sources of a backlight unit may be adjusted according to a color characteristic of an image being displayed.
Additional features of the invention will be set forth in the description which follows, and in part will become apparent from the description, or may be learned from practice of the invention.
An exemplary embodiment of the present invention discloses a display device including a display panel; a display panel driving unit configured to convert an image signal provided from an external device into a data signal such that an image is displayed on the display panel, and to output a first light control signal and a second light control signal; and a backlight unit configured to provide the display panel with a first color light and a second color light different from the first color light in response to the first light control signal and the second control signal. The display panel driving unit is further configured to determine a pulse width of each of the first light control signal and the second light control signal according to a color characteristic of the image signal.
An exemplary embodiment of the present invention also discloses a method of driving a display device, the method including receiving an image signal; determining a pulse width of each of first light source control signals and second light source control signals according to a color characteristic of the image signal; and providing a first color light and a second color light during a time period corresponding to a pulse width of each of the first light source control signals and the second light source control signals.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are intended to provide further explanation of the invention as claimed.
The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification, illustrate exemplary embodiments of the invention, and together with the description serve to explain the principles of the invention.
The invention is described more fully hereinafter with reference to the accompanying drawings, in which exemplary embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the exemplary embodiments set forth herein. Rather, these exemplary embodiments are provided so that this disclosure is thorough, and will fully convey the scope of the invention to those skilled in the art. In the drawings, the size and relative sizes of elements may be exaggerated for clarity. Like reference numerals in the drawings denote like elements.
It will be understood that, although the terms “first”, “second”, “third”, etc., may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms are only used to distinguish one element, component, region, layer or section from another region, layer or section. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the inventive concept.
Spatially relative terms, such as “beneath”, “below”, “lower”, “under”, “above”, “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” or “under” other elements or features would then be oriented “above” the other elements or features. Thus, the exemplary terms “below” and “under” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly. In addition, it will also be understood that when a layer is referred to as being “between” two layers, it can be the only layer between the two layers, or one or more intervening layers may also be present.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the inventive concept. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items. Also, the term “exemplary” is intended to refer to an example or illustration.
It will be understood that when an element or layer is referred to as being “on”, “connected to”, “coupled to”, or “adjacent to” another element or layer, it can be directly on, connected, coupled, or adjacent to the other element or layer, or intervening elements or layers may be present. In contrast, when an element is referred to as being “directly on,” “directly connected to”, “directly coupled to”, or “immediately adjacent to” another element or layer, there are no intervening elements or layers present. It will be understood that for the purposes of this disclosure, “at least one of X, Y, and Z” can be construed as X only, Y only, Z only, or any combination of two or more items X, Y, and Z (e.g., XYZ, XYY, YZ, ZZ).
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this inventive concept belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and/or the present specification and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
Referring to
The display panel 110 may include gate lines GL1 to GLn extending along a first direction X1, data lines DL1 to DLm crossing the gate lines GL1 to GLn and extending along a second direction X2, and sub pixels SPX respectively arranged at intersections of the gate lines GL1 to GLn and the data lines DL1 to DLm. Here, n and m may be natural numbers not equal to 0. The gate lines GL1 to GLn and the data lines DL1 to DLm may be isolated from one another.
Each sub pixel SPX may have a switching transistor TR connected to a corresponding data line and a corresponding gate line, and a crystal capacitor CLC connected thereto.
The sub pixels SPX may each have the same structure. For ease of description, a single sub pixel will be described. The switching transistor TR of the sub pixel SPX may have a gate electrode connected to a gate line GL1 of the gate lines GL1 to GLn, a source electrode connected to a data line DL1 of the data lines DL1 to DLm, and a drain electrode connected to a first end of the crystal capacitor CLC. A second end of the crystal capacitor CLC may be connected to a common voltage. The switching transistor TR may be a thin film transistor.
The timing controller 120 may receive an image signal RGB and control signals CTRL for controlling a display of the image signal RGB from an external device. For example, the control signals CTRL may include a vertical synchronization signal, a horizontal synchronization signal, a main clock signal, a data enable signal, etc. Based on the control signals CTRL, the timing controller 120 may provide the data driver 140 with a first control signal CONT1 and a data signal DATA, obtained by processing the image signal RGB to be suitable for an operation condition of the display panel 110, and a second control signal CONT2 transmitted to the gate driver 130. The first control signal CONT1 may include a horizontal synchronization start signal, a clock signal, and a line latch signal, and the second control signal CONT2 may include a vertical synchronization start signal, an output enable signal, and a gate pulse signal. The timing controller 120 may output first light source control signals YCTRL1 to YCTRL8 and second light source control signals BCTRL1 to BCTRL8 to control the backlight unit 150.
The data driver 140 may output gradation voltages for driving the data lines DL1 to DLm according to the data signal DATA and the first control signal CONT1 from the timing controller 120.
The gate driver 130 may drive the gate lines GL1 to GLn in response to the second control signal CONT2 from the timing controller 120. The gate driver 130 may include one or more gate driver ICs. The gate driver 130 may be implemented by not only the gate driver ICs, but also circuits using ASG (Amorphous Silicon Gate) using an amorphous Silicon Thin Film Transistor (a-Si TFT), an oxide semiconductor, a crystalline semiconductor, a polycrystalline semiconductor, etc.
When a gate-on voltage is applied to a gate line by gate driver 130, a row of switching transistors connected to the gate line may be turned on. At this time, the data driver 140 may provide the data lines DL1 to DLm with gradation voltages corresponding to a data signal DATA. The gradation voltages provided to the data lines DL1 to DLm may be applied to corresponding sub pixels through turn-on of the switching transistors. Here, a time period in which switching transistors in a row are turned on, that is, periods of an output enable signal and a gate pulse signal, may be referred to as a 1-horizontal period or 1H.
The backlight unit 150 may be disposed on the rear of the display panel 110, and may provide a light from the rear of the display panel 110. The backlight unit 150 may include a light source formed of a plurality of light-emitting diodes (not shown). In this case, the light-emitting diodes may be arranged on a printed circuit board in a stripe shape along one direction or in a matrix shape.
Referring to
A backlight unit 150 may include a first light source 151 for generating a first color light Ly, and a second light source 152 for generating a second color light Lb. A unit frame F may be temporally divided into a first sub frame SF1 and a second sub frame SF2. During a period of the first sub frame SF1, the first light source 151 of the backlight unit 150 may be driven. That is, during a period of the first sub frame SF1, the first color light Ly may be provided to the display panel 110. Afterwards, during a period of the second sub frame SF2, the second light source 152 of the backlight unit 150 may be driven such that the second color light Lb is provided to the display panel 110. If a frequency of the unit frame F is 60 Hz, each of the first sub frame SF1 and the second sub frame SF2 may have a frequency of 120 Hz.
In exemplary embodiments, the first color light Ly from the first light source 151 may be yellow, and the second color light Lb from the second light source 152 may be blue. If the first color light Ly is yellow, the first color light Ly may include red and green light components.
Thus, a red light component of the first color light Ly generated from the backlight unit 150 during a period of the first sub frame SF1 may pass through the first color filter R to be displayed as a red image. A green light component of the first color light Ly may pass through the second color filter G to be displayed as a green image. Also, the first color light Ly may pass through the open portion W to be displayed as a yellow image.
Afterwards, the second color light Lb generated from the backlight unit 150 during a period of the second sub frame SF2 may pass through the open portion W to be displayed as a blue image.
As described above, the open portion W may be prepared to provide a space capable of displaying a yellow image during a period of the first sub frame SF1, and a blue image during a period of the second sub frame SF2. A white may be recognized by displaying a yellow image and a blue image alternately in the time division manner. Therefore, the open portion W may eliminate a color breakup phenomenon generated as a result of time division, with a resulting improvement in luminance. A size of the open portion W may be selected to provide proper transmissivity, considering luminance and the color of a target frame.
Full color may be realized through a time/space division scheme by displaying a red image and a green image through the space division scheme using the first color filter R and the second color filter G, and alternately displaying a yellow image and a blue image through the time division scheme.
Referring to
Referring to
Referring to
Referring to
Each of the light source blocks LBK1 to LBK8 may include a first light source string YS, including first light sources 151 connected in series and a second light source string BS including second light sources 152 connected in series.
First light source strings YS in the light source blocks LBK1 to LBK8 may be supplied with first light source voltages YVDD1 to YVDD8 from the backlight controller 155, and second light source strings BS in the light source blocks LBK1 to LBK8 may be supplied with second light source voltage BVDD1 to BVDD8 from the backlight controller 155.
Referring to
As illustrated in
In
Referring to
Referring to
The image analyzer 224 may output a first frequency signal RH corresponding to the frequency of each gradation of a red color, a second frequency signal GH corresponding to the frequency of each gradation of a green color, and a third frequency signal BH corresponding to the frequency of each gradation of a blue color, where the red, green, and blue colors are included in each of the image groups RGBG1 to RGBG8 from the image splitter 222.
The backlight control signal generator 226 may determine an image type of each of the image groups RGBG1 to RGBG8 based on the first frequency signal RH, the second frequency signal GH, and the third frequency signal BH, and may output first light source control signals YCTRL1 to YCTRL8 and second light source control signals BCTRL1 to BCTRL8 corresponding to the determined image type. The backlight control signal generator 226 may output a first luminance compensation signal YC and a second luminance compensation signal BC corresponding to the determined image type.
Referring to
The backlight control unit 220 shown in
Referring to
The following Table 1 shows a case where the backlight control unit 220 operates in the first mode. In the following tables 1, 2, 3, and 4, ‘R’ may indicate a red color, ‘G’ may indicate a green color, ‘B’ may indicate a blue color, ‘Y’ may indicate a yellow color, and ‘CBU’ may indicate color breakup.
When an image type of the image group RGBG1 is one of SDD2 to SDD15, the backlight control signal generator 226 may output a first mode of first light control signal YCTRL1 and second light control signal BCTRL1 shown in
During an active period ty11 of the first light control signal YCTRL1, a first light source voltage YVDD1 may be supplied to a first light source string YS shown in
For example, in the event that an image type of the image group RGBG1 is determined to be ‘SDD5’ through the backlight control signal generator 226, the active period tb12 of the second light control signal BCTRL1 may decrease, and the active period ty11 of the first light control signal YCTRL1 may increase. The active period tb12 of the second light control signal BCTRL1 and the active period ty11 of the first light control signal YCTRL1 may increase or decrease from an initial setup time of a default state. An increment or decrement of the active period tb12 of the second light control signal BCTRL1 and the active period ty11 of the first light control signal YCTRL1 may be optimally determined at a test level of a fabricating process of a display device 100.
The following Table 2 shows a case where the backlight control unit 220 operates in the second mode.
Referring to
During the second mode, the backlight control signal generator 226 may change widths of active periods ty11 and ty12 of the first light control signal YCTRL1 and widths of active periods tb11 and tb12 of the second light control signal BCTRL1, respectively. For example, in the event that the backlight control signal generator 226 shown in
A color breakup phenomenon may be reduced by increasing or decreasing the active period ty11 of the first light control signal YCTRL1 and the active period tb12 of the second light control signal BCTRL1 according to a color characteristic of an image signal RGB.
The following Table 3 shows a case where the backlight control unit 220 operates at the third mode.
Referring to
During the third mode, the backlight control signal generator 226 may change the widths of active periods ty11 and ty12 of the first light control signal YCTRL1 and a width of an active period tb12 of the second light control signal BCTRL1, respectively. For example, in the event that the backlight control signal generator 226 shown in
The following table 3 shows a case where the backlight control unit 220 operates in the fourth mode.
Referring to
During the fourth mode, the backlight control signal generator 226 may change a width of the active period ty11 of the first light control signal YCTRL1 and the widths of the active periods tb11 and tb12 of the second light control signal BCTRL1, respectively. For example, in the event that the backlight control signal generator 226 shown in
Referring to
Referring to
As illustrated in
The first light control signal YCTRL1 generated by the backlight control signal generator 226 may be activated within a portion of a period corresponding to a first sub frame SF1, and the second light control signal BCTRL1 may be activated within a portion of a period corresponding to a second sub frame SF2. The backlight control signal generator 226 may reduce the power consumed by a backlight unit 150 by making the active period ty11 of the first light control signal YCTRL1 become shorter than that of the default state. The backlight control signal generator 226 may output a first luminance compensation signal YC and a second luminance compensation signal BC corresponding to the image type of ‘SDD4’ thus determined. In exemplary embodiments, the backlight control signal generator 226 may output the first luminance compensation signal YC and the second luminance compensation signal BC to compensate for the active period ty11 of the first light control signal YCTRL1 thus shortened. In response to the first luminance compensation signal YC and the second luminance compensation signal BC from the backlight control unit 220, the luminance compensation unit 210 may output a data signal DATA such that luminance becomes brighter at the first sub frame SF1 and the second sub frame SF2. For example, if the active period ty11 of the first light control signal YCTRL1 is shorter than that of the default state, that is, if a gradation value of the data signal DATA in the first sub frame SF1 being provided to a crystal capacitor CLC (refer to
As illustrated in
The first light control signal YCTRL1 generated by the backlight control signal generator 226 may be activated within a portion of a period corresponding to the first sub frame SF1, and the second light control signal BCTRL1 may be activated within a portion of a period corresponding to the first sub frame SF1 and within a portion of a period corresponding to the second sub frame SF2. As the second light control signal BCTRL1 is activated with respect to the first sub frame SF1 and the second sub frame SF2, under the control of the backlight control signal generator 226, such that active periods tb11 and tb12 of the second light control signal BCTRL1 are shorter than those of the default state, a color breakup phenomenon may be minimized such that a color of the first sub frame SF1 and a color of the second sub frame SF2 are seen independently.
Referring to
The first light control signal YCTRL1 generated by the backlight control signal generator 226 may be activated within a portion of a period corresponding to the first sub frame SF1, and the second light control signal BCTRL1 may be activated within a portion of a period corresponding to the second sub frame SF2. The backlight control signal generator 226 may improve a red color and a green color by making the active period ty11 of the first light control signal YCTRL1 become longer than that of the default state, and the active period tb11 of the second light control signal BCTRL1 become shorter than that of the default state. The backlight control signal generator 226 may output the first luminance compensation signal YC and the second luminance compensation signal BC to compensate for the shortened active period tb11 of the second light control signal BCTRL1. In response to the first luminance compensation signal YC and the second luminance compensation signal BC from the backlight control unit 220, the luminance compensation unit 210 may output the data signal DATA such that luminance of the pixel C becomes brighter.
As in
Referring to
Referring to
As illustrated in
Referring to
Referring to
Referring to
Referring to
As illustrated in
Referring to
Referring to
Referring to
The backlight unit 150 shown in
Referring to
Referring to
Each of the light source blocks LBK11 to LBK18 may include a first light source string YS1 including first light sources 151 connected in series and a second light source string BS1 including second light sources 152 connected in series.
First light source strings YS1 in the light source blocks LBK11 to LBK18 may be supplied with first light source voltages YVDD1 to YVDD8 from the backlight controller 165, and second light source strings BS1 in the light source blocks LBK11 to LBK18 may be supplied with second light source voltage BVDD1 to BVDD8 from the backlight controller 165.
The timing controller 120 shown in
In step S440, referring to
In step S410, a backlight control unit 220 may determine pulse widths of first light source control signals YCLTRL1 to YCTRL8 and second light source control signals BCTRL1 to BCTRL8 according to a color characteristic of an image signal RGG. In step S420, a backlight unit 150 (refer to
Referring to
In step S412, the image analyzer 224 may analyze color characteristics of the image groups RGBG1 to RGBG8 to output first to third frequency signals RH, GH, and BH. After sequentially analyzing color characteristics of the image groups RGBG1 to RGBG8, the image analyzer 224 may output the first to third frequency signals RH, GH, and BH corresponding to a color characteristic of the image group RGBG1, and may output the first to third frequency signals RH, GH, and BH corresponding to a color characteristic of the image group RGBG2. First to third frequency signals RH, GH, and BH corresponding to a color characteristic of each of the image groups RGBG1 to RGBG8 may be generated in the same manner as described above.
In step S413, a backlight control signal generator 226 may determine an image type of each of the image groups RGBG1 to RGBG8 based on the first to third frequency signals RH, GH, and BH. In step S414, the backlight control signal generator 226 may set a pulse width of each of first light source control signals YCLTRL1 to YCTRL8 and the second light source control signals BCTRL1 to BCTRL8 to a pulse width corresponding to the determined image type.
The backlight control signal generator 226 may output a first luminance compensation signal YC and a second luminance compensation signal BC corresponding to the decoded image type. A luminance compensation unit 210 (refer to
The exemplary embodiments of the present invention make it possible to realize full color on a display panel using a time/space division scheme. Also, the exemplary embodiments of the present invention permit adjustment of turn-on times of first and second light sources of a backlight unit according to a color characteristic of an image being displayed. In particular, the display panel may be divided into a plurality of display blocks, and the backlight unit may be divided into a plurality of light source blocks to correspond to the plurality of display blocks. The turn-on times of the first and second light sources in a light source block may be adjusted according to a color characteristic of an image being displayed within each display block. Thus, the quality of an image being displayed on a display panel may be improved.
It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit or scope of the invention. Thus, it is intended that the present invention cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
10-2013-0127432 | Oct 2013 | KR | national |