The present inventive concept relates to a display apparatus and a method of driving a display panel using the display apparatus.
Generally, a display apparatus includes a display panel and a display panel driver. The display panel displays an image based on input image data. The display panel includes a plurality of gate lines, a plurality of data lines and a plurality of pixels. The display panel driver includes a gate driver, a data driver and a driving controller. The gate driver outputs gate signals to the gate lines. The data driver outputs data voltages to the data lines. The driving controller controls the gate driver and the data driver.
A video producer's logo or a broadcaster's logo may be displayed in an edge area of the display panel. Since the logo is continuously displayed in the edge area, an afterimage due to the logo may remain in the edge area.
In an embodiment of a display apparatus according to the present inventive concept, the display apparatus includes a display panel, a driving controller and a data driver. In operation, the driving controller determines a gain reducing area based on an edge load of input image data corresponding to an edge area of the display panel and compensates a grayscale value of the input image data corresponding to the gain reducing area to generate a data signal; and the data driver converts the data signal to a data voltage and outputs the data voltage to the display panel.
In an embodiment, the gain reducing area may be defined by gain reducing start points disposed at a first position and a second position in an axis.
In an embodiment, the gain reducing area may be defined by a first gain reducing start point disposed at a first position in a first axis, a second gain reducing start point disposed at a second position in the first axis, a third gain reducing start point disposed at a first position in a second axis crossing the first axis and a fourth gain reducing start point disposed at a second position in the second axis.
In an embodiment, the gain reducing area may be defined by the first to fourth gain reducing start points, a fifth gain reducing start point disposed at a first position in a third axis crossing the first axis and the second axis, a sixth gain reducing start point disposed at a second position in the third axis, a seventh gain reducing start point disposed at a first position in a fourth axis crossing the first axis, the second axis and the third axis, and an eighth gain reducing start point disposed at a second position in the fourth axis. The first axis may be parallel to a first side of the display panel, the second axis may be parallel to a second side of the display panel, the third axis may extend in a first diagonal line direction of the display panel, and the fourth axis may extend in a second diagonal line direction of the display panel.
In an embodiment, the driving controller may be configured to determine a display block having a load less than a threshold from a first end outermost display block in a first end edge area disposed at a first end portion of the axis. The driving controller may be configured to determine first continuous display blocks that have loads less than the threshold from the first end outermost display block. An innermost display block in the first continuous display blocks may be determined as the gain reducing start point at the first position of the axis.
In an embodiment, the driving controller may be configured to determine a display block having a load less than the threshold from a second end outermost display block in a second end edge area disposed at a second end portion of the axis. The driving controller may be configured to determine second continuous display blocks that have loads less than the threshold from the second end outermost display block. An innermost display block in the second continuous display blocks may be determined as the gain reducing start point at the second position of the axis.
In an embodiment, as the edge load of the input image data increases, a size of the gain reducing area may be decreased.
In an embodiment, the driving controller may be configured to determine a minimum gain applied to an outermost display block based on an edge motion amount of the input image data corresponding to a motion edge area of the display panel and to compensate the grayscale value of the input image data using the gain reducing area and the minimum gain to generate the data signal.
In an embodiment, the edge motion amount may correspond to a difference between a sum of loads of the input image data corresponding to the motion edge area in an N−1-th frame and a sum of loads of the input image data corresponding to the motion edge area in an N-th frame. N may be a positive integer greater than two.
In an embodiment, as the edge motion amount of the input image data increases, the minimum gain may be decreased.
In an embodiment, the edge area for determining the gain reducing area may be different from the motion edge area for determining the edge motion amount.
In an embodiment, the edge area may be greater than the motion edge area.
In an embodiment of a display apparatus according to the present inventive concept, the display apparatus includes a display panel, a driving controller and a data driver. In operation, the driving controller determines a minimum gain applied to an outermost display block based on an edge motion amount of input image data corresponding to a motion edge area of the display panel and compensates a grayscale value of the input image data using the minimum gain to generate a data signal; and the data driver converts the data signal to a data voltage and outputs the data voltage to the display panel.
In an embodiment, the edge motion amount may correspond to a difference between a sum of loads of the input image data corresponding to the motion edge area in an N−1-th frame and a sum of loads of the input image data corresponding to the motion edge area in an N-th frame. N is a positive integer greater than two.
In an embodiment, as the edge motion amount of the input image data increases, the minimum gain may be decreased.
In an embodiment of a method of driving a display panel according to the present inventive concept, the method includes calculating an edge load of input image data corresponding to an edge area of the display panel, determining a gain reducing area based on the edge load, compensating a grayscale value of the input image data corresponding to the gain reducing area to generate a data signal and converting the data signal to a data voltage.
In an embodiment, the gain reducing area may be defined by gain reducing start points disposed at a first position and a second position in an axis.
In an embodiment, as the edge load of the input image data increases, a size of the gain reducing area may be decreased.
In an embodiment, the method may further include calculating an edge motion amount of the input image data corresponding to a motion edge area of the display panel and determining a minimum gain applied to an outermost display block based on the edge motion amount. The grayscale value of the input image data may be compensated using the gain reducing area and the minimum gain to generate the data signal.
In an embodiment, as the edge motion amount of the input image data increases, the minimum gain may be decreased.
According to the display apparatus and the method of driving the display panel, the size of the gain reducing area may be adjusted according to the load of the input image data corresponding to the edge area of the display panel. In addition, the size of the gain reducing area may be determined based on a plurality of axes so that a shape of the gain reducing area may vary according to the load of the input image data.
In addition, the minimum gain corresponding to the outermost block of the edge area of the display panel may vary according to the amount of the motion of the input image data corresponding to the edge area.
The size of the gain reducing area and the minimum gain may be determined based on the load and the amount of the motion of the input image data corresponding to the edge area of the display panel so that the edge area of the display panel may be properly compensated. Accordingly, the afterimage due to the logo displayed in the edge area may be reduced. Thus, the display quality of the display panel may be enhanced.
The above and other features and advantages of the present inventive concept will become more apparent by describing in detailed embodiments thereof with reference to the accompanying drawings, in which:
Hereinafter, the present inventive concept will be explained in detail with reference to the accompanying drawings.
Embodiments of the present inventive concept provide a display apparatus adjusting a luminance of an edge area of a display panel according to a load and an amount of motion of input image data corresponding to the edge area. Embodiments of the present inventive concept also provide a method of driving a display panel using the display apparatus.
Referring to
For example, the driving controller 200 and the data driver 500 may be integrally formed. For example, the driving controller 200, the gamma reference voltage generator 400 and the data driver 500 may be integrally formed. A driving module including at least the driving controller 200 and the data driver 500 which are integrally formed may be called to a timing controller embedded data driver (TED).
The display panel 100 has a display region on which an image is displayed and a peripheral region adjacent to the display region.
The display panel 100 includes a plurality of gate lines GL, a plurality of data lines DL and a plurality of pixels P connected to the gate lines GL and the data lines DL. The gate lines GL extend in a first direction D1 and the data lines DL extend in a second direction D2 crossing the first direction D1.
The driving controller 200 receives input image data IMG and an input control signal CONT from an external apparatus. The input image data IMG may include red image data, green image data and blue image data. The input image data IMG may include white image data. The input image data IMG may include magenta image data, yellow image data and cyan image data. The input control signal CONT may include a master clock signal and a data enable signal. The input control signal CONT may further include a vertical synchronizing signal and a horizontal synchronizing signal.
The driving controller 200 generates a first control signal CONT1, a second control signal CONT2, a third control signal CONT3 and a data signal DATA based on the input image data IMG and the input control signal CONT.
The driving controller 200 generates the first control signal CONT1 for controlling an operation of the gate driver 300 based on the input control signal CONT, and outputs the first control signal CONT1 to the gate driver 300. The first control signal CONT1 may further include a vertical start signal and a gate clock signal.
The driving controller 200 generates the second control signal CONT2 for controlling an operation of the data driver 500 based on the input control signal CONT, and outputs the second control signal CONT2 to the data driver 500. The second control signal CONT2 may include a horizontal start signal and a load signal.
The driving controller 200 generates the data signal DATA based on the input image data IMG. The driving controller 200 outputs the data signal DATA to the data driver 500.
The driving controller 200 generates the third control signal CONT3 for controlling an operation of the gamma reference voltage generator 400 based on the input control signal CONT, and outputs the third control signal CONT3 to the gamma reference voltage generator 400.
A structure and an operation of the driving controller 200 are explained referring to
The gate driver 300 generates gate signals driving the gate lines GL in response to the first control signal CONT1 received from the driving controller 200. The gate driver 300 outputs the gate signals to the gate lines GL. For example, the gate driver 300 may sequentially output the gate signals to the gate lines GL. For example, the gate driver 300 may be mounted on the peripheral region of the display panel 100. For example, the gate driver 300 may be integrated on the peripheral region of the display panel 100.
The gamma reference voltage generator 400 generates a gamma reference voltage VGREF in response to the third control signal CONT3 received from the driving controller 200. The gamma reference voltage generator 400 provides the gamma reference voltage VGREF to the data driver 500. The gamma reference voltage VGREF has a value corresponding to a level of the data signal DATA.
In an embodiment, the gamma reference voltage generator 400 may be disposed in the driving controller 200, or in the data driver 500.
The data driver 500 receives the second control signal CONT2 and the data signal DATA from the driving controller 200, and receives the gamma reference voltages VGREF from the gamma reference voltage generator 400. The data driver 500 converts the data signal DATA into data voltages having an analog type using the gamma reference voltages VGREF. The data driver 500 outputs the data voltages to the data lines DL.
Referring to
For example, the driving controller 200 may include an edge load calculator 210 calculating the edge load of the input image data IMG corresponding to the edge area of the display panel 100, a gain reducing area determiner 220 determining the gain reducing area based on the edge load and a compensator compensating the grayscale value of the input image data IMG corresponding to the gain reducing area.
As shown in
Although the display panel 100 includes eighteen display block rows and sixteen display block columns in the present embodiment, the present inventive concept may not be limited to the number of the display block rows and the number of the display block columns.
For example, when the driving controller 200 calculates the edge load of the input image data IMG, the driving controller 200 may calculate the edge load in a unit of the display block.
In
For example, the gain reducing area may be defined by a first gain reducing start point x1 disposed at a first position in a first axis (an x-axis), a second gain reducing start point x2 disposed at a second position in the first axis (the x-axis), a third gain reducing start point y1 disposed at a first position in a second axis (a y-axis) crossing the first axis (the x-axis) and a fourth gain reducing start point y2 disposed at a second position in the second axis (the y-axis).
The size and the shape of the gain reducing area may be adjusted according to the positions of the first to fourth gain reducing start points x1, x2, y1 and y2.
For example, the gain reducing area may be defined by the first to fourth gain reducing start points x1, x2, y1 and y2, a fifth gain reducing start point z1 disposed at a first position in a third axis (a first diagonal axis) crossing the first axis (the x-axis) and the second axis (the y-axis), a sixth gain reducing start point z2 disposed at a second position in the third axis (the first diagonal axis), a seventh gain reducing start point z3 disposed at a first position in a fourth axis (a second diagonal axis) crossing the first axis (the x-axis), the second axis (the y-axis) and the third axis (the first diagonal axis), and an eighth gain reducing start point z4 disposed at a second position in the fourth axis (the second diagonal axis).
For example, the first axis may be parallel to a first side (e.g. a horizontal side) of the display panel 100. For example, the second axis may be parallel to a second side (e.g. a vertical side) of the display panel 100. For example, the third axis may extend in a first diagonal line direction of the display panel 100. For example, the fourth axis may extend in a second diagonal line direction of the display panel 100.
Referring to
The driving controller 200 may determine a display block having a load less than a threshold from a first end outermost display block (a block R9-C1) in the first end edge area OX1 disposed at the first end portion of the axis (e.g. the x-axis). The driving controller 200 may determine first continuous display blocks that have loads less than the threshold from the first end outermost display block (the block R9-C1). An innermost display block in the first continuous display blocks may be determined as a gain reducing start point in the first position of the axis. In
In
In
In
In
In
For example, the driving controller 200 may determine a display block having a load less than the threshold from the second end outermost display block (a block R9-C16) in the second end edge area OX2 disposed at the second end portion of the axis (e.g. the x-axis). The driving controller 200 may determine second continuous display blocks that have loads less than the threshold from the second end outermost display block (the block R9-C16). An innermost display block in the second continuous display blocks may be determined as a gain reducing start point in the second position of the axis.
In
Although the first gain reducing start point x1 and the second gain reducing start point x2 are determined in the ninth display block row (a central display block row), the present inventive concept may not limited thereto. The first gain reducing start point x1 and the second gain reducing start point x2 may be determined in plural display block rows (e.g. eighth, ninth and tenth display block rows or seventh, eighth, ninth, tenth and eleventh display block rows) including the ninth display block row (the central display block row).
Similarly, the third gain reducing start point y1 and the fourth gain reducing start point y2 are determined in an eighth display block column (a central display block column). Alternatively, the third gain reducing start point y1 and the fourth gain reducing start point y2 may be determined in plural display block columns (e.g. seventh, eighth and ninth display block columns or sixth, seventh, eighth, ninth and tenth display block columns) including the eighth display block column (the central display block column).
As shown in
In
In
In
In the curve CX11, the first gain reducing start point x1 may be a second display block column C2. In the curve CX12, the first gain reducing start point x1 may be a third display block column C3.
In
In the curve CX21, the second gain reducing start point x2 may be a fifteenth display block column C15. In the curve CX22, the second gain reducing start point x2 may be a fourteenth display block column C14.
In
In
According to the present embodiment, the size of the gain reducing area may be adjusted according to the load of the input image data IMG corresponding to the edge area of the display panel 100. In addition, the size of the gain reducing area may be determined based on a plurality of axes so that the shape of the gain reducing area may vary according to the load of the input image data IMG.
The size of the gain reducing area may be determined based on the load of the input image data corresponding to the edge area of the display panel 100 so that the edge area of the display panel 100 may be properly compensated. Accordingly, the afterimage due to the logo displayed in the edge area may be reduced. Thus, the display quality of the display panel 100 may be enhanced.
The display apparatus and the method of driving the display panel according to the present embodiment is substantially the same as the display apparatus and the method of driving the display panel of the previous embodiment explained referring to
Referring to
The driving controller 200 may determine a minimum gain applied to an outermost display block based on an edge motion amount of the input image data IMG corresponding to a motion edge area MEA of the display panel 100. The driving controller 200 may compensate a grayscale value of the input image data IMG using the minimum gain to generate the data signal DATA. An area considered to determine the edge motion amount may be the motion edge area MEA of the display panel 100. An area not considered to determine the edge motion amount is a central area MCA of the display panel 100 surrounded by the motion edge area MEA.
For example, the driving controller 200 may include a edge motion amount calculator 240 calculating the edge motion amount of the input image data IMG corresponding to the motion edge area MEA of the display panel 100, a minimum gain determiner 250 determining the minimum gain applied to the outermost display block based on the edge motion amount and a compensator compensating the grayscale value of the input image data IMG using the minimum gain.
Similar to the explanation in
The edge motion amount may correspond to a difference between a sum of loads of the input image data IMG corresponding to the motion edge area MEA in an N−1-th frame and a sum of loads of the input image data IMG corresponding to the motion edge area MEA in an N-th frame.
Alternatively, the edge motion amount may correspond to a sum of differences between display block loads of the input image data IMG corresponding to display blocks in the motion edge area MEA in the N−1-th frame and display block loads of the input image data IMG corresponding to the display blocks in the motion edge area MEA in the N-th frame.
As shown in
In
According to the present embodiment, the minimum gain corresponding to the outermost block of the edge area of the display panel 100 may vary according to the amount of the motion of the input image data IMG corresponding to the edge area.
The minimum gain may be determined based on the amount of the motion of the input image data IMG corresponding to the edge area of the display panel 100 so that the edge area of the display panel 100 may be properly compensated. Accordingly, the afterimage due to the logo displayed in the edge area may be reduced. Thus, the display quality of the display panel 100 may be enhanced.
The display apparatus and the method of driving the display panel according to the present embodiment is substantially the same as the display apparatus and the method of driving the display panel of the previous embodiment explained referring to
Referring to
The driving controller 200 may determine a gain reducing area based on an edge load of the input image data IMG corresponding to an edge area of the display panel 100. The driving controller 200 may compensate the grayscale value of the input image data based on the gain reducing area to generate the data signal DATA. The gain reducing area may refer to an area in which a gain less than one is applied to the grayscale value (or the luminance) of the input image data IMG to reduce the grayscale value (or the luminance) of the input image data IMG.
The driving controller 200 may determine a minimum gain applied to an outermost display block based on an edge motion amount of the input image data IMG corresponding to a motion edge area MEA of the display panel 100. The driving controller 200 may compensate a grayscale value of the input image data IMG using the minimum gain to generate the data signal DATA. An area considered to determine the edge motion amount may be the motion edge area MEA of the display panel 100. An area not considered to determine the edge motion amount is a central area MCA of the display panel 100 surrounded by the motion edge area MEA.
For example, the driving controller 200 may include an edge load calculator 210 calculating the edge load of the input image data IMG corresponding to the edge area of the display panel 100 and a gain reducing area determiner 220 determining the gain reducing area based on the edge load.
For example, the driving controller 200 may include a edge motion amount calculator 240 calculating the edge motion amount of the input image data IMG corresponding to the motion edge area MEA of the display panel 100, a minimum gain determiner 250 determining the minimum gain applied to the outermost display block based on the edge motion amount and a compensator compensating the grayscale value of the input image data IMG using the gain reducing area and the minimum gain.
In
For example, the gain reducing area may be defined by a first gain reducing start point x1 disposed at a first position in a first axis (an x-axis), a second gain reducing start point x2 disposed at a second position in the first axis (the x-axis), a third gain reducing start point y1 disposed at a first position in a second axis (a y-axis) crossing the first axis (the x-axis) and a fourth gain reducing start point y2 disposed at a second position in the second axis (the y-axis).
For example, the gain reducing area may be defined by the first to fourth gain reducing start points x1, x2, y1 and y2, a fifth gain reducing start point z1 disposed at a first position in a third axis (a first diagonal axis) crossing the first axis (the x-axis) and the second axis (the y-axis), a sixth gain reducing start point z2 disposed at a second position in the third axis (the first diagonal axis), a seventh gain reducing start point z3 disposed at a first position in a fourth axis (a second diagonal axis) crossing the first axis (the x-axis), the second axis (the y-axis) and the third axis (the first diagonal axis), and an eighth gain reducing start point z4 disposed at a second position in the fourth axis (the second diagonal axis).
Similar to the explanation in
The edge motion amount may correspond to a difference between a sum of loads of the input image data IMG corresponding to the motion edge area MEA in an N−1-th frame and a sum of loads of the input image data IMG corresponding to the motion edge area MEA in an N-th frame.
Alternatively, the edge motion amount may correspond to a sum of differences between display block loads of the input image data IMG corresponding to display blocks in the motion edge area MEA in the N−1-th frame and display block loads of the input image data IMG corresponding to the display blocks in the motion edge area MEA in the N-th frame.
As shown in
As shown in
In the present embodiment, the edge area (e.g. an area except for CFA in the display panel of
For example, the edge area (e.g. an area except for CFA in the display panel of
For example, the edge area may include four display blocks at each of both ends in the x-axis and four display blocks at each of both ends in the y-axis in
According to the present embodiment, the size of the gain reducing area may be adjusted according to the load of the input image data IMG corresponding to the edge area of the display panel 100. In addition, the size of the gain reducing area may be determined based on a plurality of axes so that a shape of the gain reducing area may vary according to the load of the input image data IMG.
In addition, the minimum gain corresponding to the outermost block of the edge area of the display panel 100 may vary according to the amount of the motion of the input image data IMG corresponding to the edge area.
The size of the gain reducing area and the minimum gain may be determined based on the load and the amount of the motion of the input image data IMG corresponding to the edge area of the display panel 100 so that the edge area of the display panel 100 may be properly compensated. Accordingly, the afterimage due to the logo displayed in the edge area may be reduced. Thus, the display quality of the display panel 100 may be enhanced.
According to the display apparatus and the method of driving the display panel in the present inventive concept, the afterimage due to the logo displayed in the edge area may be reduced so that the display quality of the display panel may be enhanced.
The foregoing embodiments are not to be construed as limiting the present inventive concepts. Those skilled in the art will appreciate that many modifications are possible without materially departing from the novel teachings and advantages of the present inventive concepts. Accordingly, the scope of the invention is defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2020-0158483 | Nov 2020 | KR | national |
This application is a continuation of U.S. patent application Ser. No. 17/445,941 filed on Aug. 25, 2021, which claims priority to and the benefit of Korean Patent Application No. 10-2020-0158483, filed on Nov. 24, 2020, in the Korean Intellectual Property Office KIPO, the entire disclosures of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
11423822 | Park | Aug 2022 | B2 |
20160104445 | Hwang et al. | Apr 2016 | A1 |
20160163287 | Ahn et al. | Jun 2016 | A1 |
20180151146 | Chang et al. | May 2018 | A1 |
20200013343 | Chiang et al. | Jan 2020 | A1 |
Number | Date | Country |
---|---|---|
2008-209885 | Sep 2008 | JP |
10-0546593 | Jan 2006 | KR |
10-0844774 | Jul 2008 | KR |
Number | Date | Country | |
---|---|---|---|
20220392389 A1 | Dec 2022 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17445941 | Aug 2021 | US |
Child | 17891861 | US |