Display apparatus, control support system, and display method

Information

  • Patent Grant
  • 9233761
  • Patent Number
    9,233,761
  • Date Filed
    Friday, June 24, 2011
    13 years ago
  • Date Issued
    Tuesday, January 12, 2016
    8 years ago
Abstract
A flight path maker (FPM) and a target attitude relative to air display are displayed on a primary flight display (PFD), which is an integrated indicator. The target attitude relative to air display is a mark indicating a target attitude relative to air representing a target angle-of-attack and a target sideslip angle of the aircraft to achieve a target flight path. The PFD displays the relative difference between the FPM and the target attitude relative to air display and shows that the aircraft is flying in the target traveling direction when the FPM matches (is superposed on) the target attitude relative to air display. Thus, controlling with higher trackability than controlling performed based on a target attitude relative to ground is enabled.
Description
TECHNICAL FIELD

The present invention relates to a display apparatus, a control support system, and a display method.


BACKGROUND ART

An airplane is conventionally provided with an ILS (instrument landing system) and a TIS (tunnel in the sky) for obtaining the deviation angle and the relative position of the target flight path from the airplane. The deviation angle and the relative position obtained with the ILS and the TIS are displayed on a PFD (primary flight display) or an ADI (attitude direction indicator), which is a display apparatus for displaying the flying situation of the aircraft, thereby assisting the pilot of the airplane to perform control for tracking the target flight path.



FIG. 7 shows an example conventional PFD 100. The PFD 100 shown in FIG. 7 shows ILS displays 102 and FD (flight director) command and bar displays 104, together with airplane reference symbols 101 that indicate the aircraft, which is an airplane.


The ILS displays 102 indicate the deviation angle (ILS display 102A) of the aircraft from a localizer and the deviation angle (ILS display 102B) of the aircraft from a glide slope. The example in FIG. 7 shows that the target flight path is located at the left side of the aircraft.


The FD-command and bar displays 104 indicate attitude (pitch angle and bank angle) commands for the aircraft for tracking the target flight path. Note that, in the example of FIG. 7, a bank-angle command display 104A gives an instruction to bank the aircraft left, and a pitch-angle command display 104B gives an instruction to lower the pitch of the aircraft.


Furthermore, PTL 1 discloses a flight-path display apparatus in which, when the display position of the flight path of the airplane is located outside the display range of an image combining panel included in a head-up display device, a target mark indicating the direction from the display range center of the image combining panel toward the flight path is displayed on the image combining panel. Note that the above-described flight path is composed of a plurality of path marks, and the path marks are inclined according to the attitude of the airframe estimated when the airframe is displayed on the path marks.


CITATION LIST
Patent Literature

{PTL 1} Japanese Unexamined Patent Application, Publication No. Hei 11-268696


SUMMARY OF INVENTION
Technical Problem

However, with the ILS, the TIS, and the flight-path display apparatus described in PTL 1, the pilot can recognize the deviation angle and the relative position of the aircraft with respect to the target flight path of the aircraft but cannot grasp how to control the aircraft to track the target flight path.


Furthermore, the FD-command and bar displays 104 are marks indicating the target pitch angle and the target bank angle (the target pitch angle and the target bank angle are also collectively referred to as “target attitude relative to ground”), which are required for the aircraft to track the target flight path. The pitch angle and the bank angle of the aircraft do not indicate the traveling direction of the aircraft itself but indicate the direction of the nose thereof, and the direction of the nose thereof does not necessarily match the traveling direction. Thus, the FD-command and bar displays 104 merely indicate the attitude relative to ground, which is indirect information required to achieve the direction in which the aircraft should travel. The same applies to the ILS, the TIS, and the flight-path display apparatus described in PTL 1, and, with the PFD 100 shown in FIG. 7, the pilot cannot clearly recognize the traveling direction of the aircraft, in some cases.


Therefore, the PFD 100 shown in FIG. 7 and the flight-path display apparatus described in PTL 1 have a problem in that overcontrol or undercontrol is caused during control for tracking the target flight path.


The present invention has been made in view of such circumstances, and an object thereof is to provide an airplane display apparatus, control support system, and display method that enable controlling with higher trackability than airplane controlling performed based on the target attitude relative to ground.


Solution to Problem

According to a first aspect, the present invention provides a display apparatus that displays a flying situation of an airplane, which is an aircraft, wherein the display apparatus displays a relative difference between a target attitude relative to air, representing a target angle-of-attack and a target sideslip angle of the aircraft to achieve a target flight path, and a current attitude relative to air, representing a current angle-of-attack and a current sideslip angle of the aircraft.


According to the above-described aspect, the display apparatus, which displays the flying situation of the airplane, which is the aircraft, displays the relative difference between the target attitude relative to air, representing the target angle-of-attack and the target sideslip angle of the aircraft to achieve the target flight path, and the current attitude relative to air, representing the current angle-of-attack and the current sideslip angle of the aircraft.


If the airplane is controlled based on the target attitude relative to ground (the direction of the nose) indicated by the target pitch angle and the target bank angle, overcontrol or undercontrol is caused during control for tracking the target flight path, in some cases, because the attitude relative to ground does not indicate the traveling direction of the airplane.


However, the attitude relative to air indicates the traveling direction of the airplane. Thus, in the present invention, the target traveling direction is indicated in the form of the target attitude relative to air, and the relative difference between the target attitude relative to air and the current attitude relative to air is displayed, thereby enabling controlling with higher trackability than airplane controlling performed based on the target attitude relative to ground. In particular, for example, when all control surfaces become inoperative, and control for tracking the target flight path is performed with engine thrust alone, it is difficult for the pilot to judge adequate control levels because of the slow response and slow movement of the aircraft. However, according to the present invention, even when control for tracking the target flight path is performed with engine thrust alone, the pilot can perform the tracking control of the aircraft with greater precision.


Furthermore, in the above-described first aspect, it is preferred that the target angle-of-attack be derived by subtracting an angle between a horizontal plane and a target traveling direction from a current pitch angle of the aircraft; and the target sideslip angle be derived by subtracting a current direction angle of the aircraft from an direction angle of the target traveling direction.


According to the above-described aspect, the target angle-of-attack is derived by subtracting the angle between the horizontal plane and the target traveling direction from the current pitch angle of the aircraft, and the target sideslip angle is derived by subtracting the current direction angle of the aircraft from the direction angle of the target traveling direction. The current pitch angle of the aircraft and the current direction angle of the aircraft are information obtained from existing sensors provided in the airplane, which is the aircraft, and the angle between the horizontal plane and the target traveling direction and the direction angle of the target traveling direction are information obtained through automatic control. According to the present invention, it is possible to easily derive the target angle-of-attack and the target sideslip angle.


Furthermore, in the above-described first aspect, it is preferred that a first mark corresponding to the target attitude relative to air and a second mark corresponding to the current attitude relative to air be displayed.


According to the above-described aspect, the first mark corresponding to the target attitude relative to air and the second mark corresponding to the current attitude relative to air are displayed on the display apparatus. Therefore, the pilot can easily recognize the target attitude relative to air and the current attitude relative to air of the aircraft. According to the present invention, the convenience of the pilot can be improved.


Furthermore, in the above-described first aspect, it is preferred that the relative positions of the first mark and the second mark be displayed while being changed according to the relative difference between the target attitude relative to air and the current attitude relative to air.


According to the above-described aspect, the relative positions of the first mark and the second mark are displayed while being changed according to the relative difference between the target attitude relative to air and the current attitude relative to air. Thus, as the aircraft approaches the target traveling direction, the first mark and the second mark come close to each other, and the first mark and the second mark are superposed when the aircraft is flying in the target traveling direction. Therefore, the pilot can easily make the aircraft achieve the target flight path. According to the present invention, the convenience of the pilot can be improved.


Furthermore, in the above-described first aspect, it is preferred that the target flight path be derived based on a current position of the aircraft and a target position that the aircraft should reach.


The current position of the aircraft is obtained by using a GPS (global positioning system) sensor, for example, and the target position is derived by a computer installed in the aircraft, for example.


For example, tracking control using a target flight path that is indicated based on radio waves output from the glide slope antenna and the localizer antenna, which are airport installations, i.e., tracking control using the ILS, allows only for guiding the aircraft for landing from an area near the airport.


However, tracking control using a target flight path that is generated based on the current position of the aircraft and the target position that the aircraft should reach allows for control the aircraft to an airport (target position) from an area where the ILS is not available, for example, in the event of an emergency descent from high altitude or a change in direction angle when a fault occurs in the aircraft.


According to a second aspect, the present invention provides a control support system including: a display apparatus that displays a relative difference between a target attitude relative to air, representing a target angle-of-attack and a target sideslip angle of an aircraft to achieve a target flight path, and a current attitude relative to air, representing a current angle-of-attack and a current sideslip angle of the aircraft; and a control device that is provided with a target angle-of-attack deriving unit for deriving the target angle-of-attack by subtracting an angle between a horizontal plane and a target traveling direction from a current pitch angle of the aircraft and a target sideslip angle deriving unit for deriving the target sideslip angle by subtracting a current direction angle of the aircraft from an direction angle of the target traveling direction and that controls the display apparatus so as to display the relative difference between the current attitude relative to air and the target attitude relative to air, which represents the derived target angle-of-attack and target sideslip angle.


According to the above-described aspect, the target traveling direction is derived in the form of the target attitude relative to air, and the display apparatus displays the relative difference between the target attitude relative to air and the current attitude relative to air, thereby enabling controlling with higher trackability than airplane controlling performed based on the target attitude relative to ground.


According to a third aspect, the present invention provides a display method of displaying, on a display apparatus, a flying situation of an airplane, which is an aircraft, the method including displaying, on the display apparatus, a relative difference between a target attitude relative to air, representing a target angle-of-attack and a target sideslip angle of the aircraft to achieve a target flight path, and a current attitude relative to air, representing a current angle-of-attack and a current sideslip angle of the aircraft.


According to the above-described aspect, the target traveling direction is derived in the form of the target attitude relative to air, and the display apparatus displays the relative difference between the target attitude relative to air and the current attitude relative to air, thereby enabling controlling with higher trackability than airplane controlling performed based on the target attitude relative to ground.


Advantageous Effects of Invention

The present invention provides the advantage that controlling with higher trackability than airplane controlling performed based on the target attitude relative to ground is enabled.





BRIEF DESCRIPTION OF DRAWINGS


FIG. 1 is a schematic view showing an example PFD according to an embodiment of the present invention.



FIG. 2 shows schematic views for explaining a target attitude relative to air display displayed on the PFD according to the embodiment of the present invention, where FIG. 2(a) shows an example PFD, FIG. 2(b-1) shows the relationship between the aircraft and a target flight path, corresponding to the target attitude relative to air display displayed on the PFD in FIG. 2(a), FIG. 2(b-2) is a top view corresponding to FIG. 2(b-1), and FIG. 2(b-3) is a side view corresponding to FIG. 2(b-1).



FIG. 3 is a functional block diagram showing the electrical configuration of a control support system according to the embodiment of the present invention.



FIG. 4 is a schematic view for explaining how to derive a target angle-of-attack according to the embodiment of the present invention.



FIG. 5 is a schematic view for explaining how to derive a target sideslip angle according to the embodiment of the present invention.



FIG. 6 shows schematic views showing changes in the display on the PFD according to the embodiment of the present invention until the target flight path of the airplane is achieved, where FIG. 6(a) shows a state in which the aircraft is flying in a traveling direction that deviates from a target traveling direction, FIG. 6(b) shows a state in which the aircraft is flying in the target traveling direction, and FIG. 6(c) shows a state in which the aircraft has continued to fly such that the target attitude relative to air display and an FPM are superposed.



FIG. 7 is a schematic view showing an example conventional PFD.





DESCRIPTION OF EMBODIMENTS

A display apparatus, a control support system, and a display method according to an embodiment of the present invention will be described below with reference to the drawings.



FIG. 1 shows an example PFD 10 that is a display apparatus according to this embodiment, for displaying the flying situation of an airplane, which is an aircraft.


The PFD 10 is an integrated indicator and includes airplane reference symbols 12, an airspeed indicator 14 that indicates the airspeed of the aircraft, an altimeter 16 that indicates the altitude of the aircraft, a pitch indicator 18 that indicates the pitch angle of the aircraft, ILS displays (ILS displays 20A and 20B), and a vertical speed indicator 22 that indicates the vertical speed of the aircraft.


Furthermore, an FPM (flight path marker) 30, which is a mark used for assisting a pilot to control the aircraft, and a target attitude relative to air display 32 are displayed on the PFD 10 of this embodiment.


The FPM 30 is a mark indicating the current attitude relative to air, which represents the current angle-of-attack of the aircraft (angle between projection of the traveling direction of the aircraft onto the airframe symmetry plane and the axis) and the current sideslip angle thereof (angle between the traveling direction of the aircraft and the airframe symmetry plane), in other words, a mark indicating the traveling direction of the aircraft. Note that, if the angle-of-attack of the aircraft is large or if the sideslip angle of the aircraft is large, the traveling direction of the aircraft does not match the direction of the nose of the aircraft. Therefore, the FPM 30 indicating the traveling direction of the aircraft is displayed on the PFD 10, thereby making it possible for the pilot to easily recognize the current traveling direction of the aircraft.


On the other hand, the target attitude relative to air display 32 is a mark indicating a target attitude relative to air that represents a target angle-of-attack and a target sideslip angle of the aircraft to achieve the target flight path.



FIG. 2 shows views showing the positional relationship among the FPM 30 and the target attitude relative to air display 32, which are displayed on the PFD 10, the aircraft 40, which is the airplane, and the target flight path.



FIG. 2(
b-1) is a view showing the relationship between the aircraft 40 and the target flight path, corresponding to the target attitude relative to air display 32 displayed on the PFD 10 shown in FIG. 2(a), when the aircraft 40 flying in the traveling direction is viewed from the back thereof.


On the other hand, FIG. 2(b-2) is a top view corresponding to FIG. 2(b-1), and FIG. 2(b-3) is a side view corresponding to FIG. 2(b-1). In FIGS. 2(b-2) and (b-3), the solid line A extending from the center of gravity of the aircraft 40 indicates the traveling direction of the aircraft 40 corresponding to the FPM 30, and the dashed line B extending therefrom indicates the target traveling direction of the aircraft 40 corresponding to the target attitude relative to air display 32.


The PFD 10 of this embodiment displays the relative difference between the FPM 30 and the target attitude relative to air display 32. Specifically, when the FPM 30 matches (is superposed on) the target attitude relative to air display 32, the aircraft is flying in the target traveling direction.



FIG. 3 is a functional block diagram of a control support system 52 that includes a control device 50 for causing the PFD 10 of this embodiment to display various data items. Note that, among the functions of the control device 50, FIG. 3 shows only functions required to cause the PFD 10 to display the target attitude relative to air display 32. Specifically, the control device 50 has, besides the function for causing the PFD 10 to display the target attitude relative to air display 32, functions for causing it to display the airplane reference symbols 12, the airspeed indicator 14, the altimeter 16, the pitch indicator 18, the ILS displays 20, the FPM 30, and the vertical speed indicator 22.


The control device 50 includes a target angle-of-attack calculating section 54, a target sideslip angle calculating section 56, and a display control section 58.


Note that the control device 50 is connected to a sensor section 60 and an autopilot section 62 and receives various types of information therefrom.


The sensor section 60 is provided with various sensors to measure the altitude and the speed of the aircraft 40, the deviation angle of the aircraft 40 with respect to the target flight path, and the direction angle and the pitch angle of the aircraft 40.


The autopilot section 62 generates various types of information required for automatic control of the aircraft 40, based on information about the altitude of the aircraft 40, the speed thereof, and the deviation angle thereof with respect to the target flight path, which is received from the sensor section 60, such that the aircraft 40 can fly in the target flight path displayed based on radio waves output from a glide slope antenna and a localizer antenna of an ILS.


The target angle-of-attack calculating section 54 derives the target angle-of-attack by subtracting an angle between the horizontal plane and the target traveling direction from the current pitch angle of the aircraft 40.


A description will be given of how to derive a target angle-of-attack a with reference to a side view of the aircraft 40 shown in FIG. 4.


As shown in FIG. 4, the angle between the direction of the nose of the aircraft 40 and the horizontal plane corresponds to the current pitch angle θ of the aircraft 40. Note that the pitch angle θ is measured by the sensor section 60. On the other hand, a path angle γ between the horizontal plane and the target traveling direction is derived in the autopilot section 62 based on the target flight path indicated by the ILS and is output to the target angle-of-attack calculating section 54 as a path angle command γcmd indicating the path angle γ.


The target angle-of-attack calculating section 54 calculates a target angle-of-attack command αcmd indicating the target angle-of-attack a, as shown in Equation (1), and outputs it to the display control section 58.

{Equation 1}
αcmd=θ−γcmd  (1)


Note that Equation (1) is a simple derivation equation, and Equations (2) to (4) are used in order to more rigorously derive the target angle-of-attack command αcmd.









{

Equation





2

}












α
cmd

=

arctan
(

A
B

)





(
2
)






{

Equation





3

}











A
=


cos






ϕ
·
sin







θ
·
cos







γ
cmd


-

cos






ϕ
·
cos







θ
·
sin







γ
cmd







(
3
)






{

Equation





4

}











B
=


cos






θ
·
cos







γ
cmd


+

sin






θ
·
sin







γ
cmd







(
4
)







Note that φ indicates a bank angle of the aircraft 40, and, when the bank angle φ is 0 (zero), Equation (2) is equivalent to Equation (1).


On the other hand, the target sideslip angle calculating section 56 derives the target sideslip angle by subtracting the current direction angle of the aircraft from the direction angle of the target traveling direction.


A description will be given of how to derive a target sideslip angle β with reference to a top view of the aircraft 40 shown in FIG. 5.


As shown in FIG. 5, the angle between the direction of the nose of the aircraft 40 and a reference direction (for example, north (N)) corresponds to the current direction angle ψ of the aircraft 40. Note that the current direction angle ψ is measured by the sensor section 60. On the other hand, an direction angle Ψ of the target traveling direction, which is the angle between the reference direction and the target traveling direction, is derived in the autopilot section 62 based on the target flight path indicated by the ILS and is output to the target sideslip angle calculating section 56 as an direction angle command Ψcmd indicating the direction angle Ψ of the target traveling direction.


The target sideslip angle calculating section 56 calculates a target sideslip angle command βcmd indicating the target sideslip angle β, as shown in Equation (5), and outputs it to the display control section 58.

{Equation 5}
βcmdcmd−ψ  (5)


Note that Equation (5) is a simple derivation equation, and Equations (6) to (9) are used in order to more rigorously derive the target sideslip angle command βcmd.









{

Equation





6

}












β
cmd

=

arctan
(


C
+
D

E

)





(
6
)






{

Equation





7

}











C
=



(


sin






ϕ
·
sin







θ
·
cos






ψ

-

cos






ϕ
·
sin






ψ


)

·
cos







Ψ
cmd






(
7
)






{

Equation





8

}











D
=



(


sin






ϕ
·
sin







θ
·
sin






ψ

+

cos






ϕ
·
cos






ψ


)

·
sin







Ψ
cmd






(
8
)






{

Equation





9

}











E
=


cos






θ
·
cos







ψ
·
cos







Ψ
cmd


+

cos






θ
·
sin







ψ
·
sin







Ψ
cmd







(
9
)







Note that, when the pitch angle θ and the bank angle φ are 0 (zero), Equation (6) is equivalent to Equation (5).


The display control section 58 derives a display position of the target attitude relative to air display 32 on the PFD 10, corresponding to the target angle-of-attack command αcmd output from the target angle-of-attack calculating section 54 and the target sideslip angle command βcmd output from the target angle calculating section 56, and controls the PFD 10 so as to display the target attitude relative to air display 32 at the derived display position.


Note that, in this embodiment, the path angle command γcmd and the direction angle command Ψcmd are derived in the autopilot section 62; however, this does not mean that the target attitude relative to air display 32 is displayed on the PFD 10 only when automatic control is used. When automatic control is not used, the path angle command γcmd and the direction angle command Ψcmd are also derived in the autopilot section 62, the target attitude relative to air display 32 is displayed on the PFD 10, and the pilot uses the target attitude relative to air display 32 as a reference for controlling the aircraft. Furthermore, when automatic control is used, the path angle command γcmd and the direction angle command Ψcmd may be derived in the autopilot section 62, and the target attitude relative to air display 32 may be displayed on the PFD 10.



FIG. 6 shows changes in the display on the PFD 10 until the aircraft 40 achieves the target flight path.



FIG. 6(
a) shows a state in which the target attitude relative to air display 32 and the FPM 30 are displayed at different positions on the PFD 10 because the aircraft 40 is flying in a traveling direction that deviates from the target traveling direction. Therefore, the pilot controls the aircraft 40 so that the target attitude relative to air display 32 and the FPM 30 become superposed. As a result, the target attitude relative to air display 32 and the FPM 30 gradually come close to each other. When the target attitude relative to air display 32 and the FPM 30 are superposed, as shown in FIG. 6(b), the aircraft 40 is flying in the target traveling direction. Then, after the aircraft 40 continues to fly with the target attitude relative to air display 32 and the FPM 30 superposed, the FPM 30 and the target attitude relative to air display 32 move toward the center of the PFD 10, as shown in FIG. 6(c), and the ILS displays 20 also gradually move toward the center of the PFD 10.


As described above, the PFD 10 of this embodiment, which displays the flying situation of the aircraft 40, displays the relative difference between the target attitude relative to air, which represents the target angle-of-attack a and the target sideslip angle β of the aircraft 40 to achieve the target flight path, and the current attitude relative to air, which represents the current angle-of-attack and the current sideslip angle of the aircraft 40; therefore, controlling with higher trackability than airplane controlling performed based on the target attitude relative to ground is enabled.


In particular, for example, when all control surfaces become inoperative, and control for tracking the target flight path is performed with engine thrust alone, it is difficult for the pilot to judge adequate control levels because of the slow response and slow movement of the aircraft. However, with the PFD 10 of this embodiment, even when control for tracking the target flight path is performed with engine thrust alone, the pilot can perform the tracking control of the aircraft 40 with greater precision.


Furthermore, according to this embodiment, the target angle-of-attack a is derived by subtracting the angle between the horizontal plane and the target traveling direction from the current pitch angle of the aircraft 40, and the target sideslip angle β is derived by subtracting the current direction angle of the aircraft 40 from the direction angle of the target traveling direction. The current pitch angle of the aircraft 40 and the current direction angle of the aircraft 40 are information obtained from the existing sensor section 60 provided in the airplane, which is the aircraft 40, and the angle between the horizontal plane and the target traveling direction and the direction angle of the target traveling direction are information obtained through automatic control. Therefore, according to this embodiment, it is possible to easily derive the target angle-of-attack and the target sideslip angle.


Although the present invention has been described above using the above-described embodiment, the technical scope of the present invention is not limited to the range described in the above-described embodiment. Various modifications and improvements can be added to the above-described embodiment without departing from the scope of the invention, and embodiments to which such modifications and improvements are added are also encompassed in the technical scope of the present invention.


For example, in the above-described embodiment, a description has been given of a case where a target flight path that is displayed based on radio waves output from the glide slope antenna and the localizer, which are airport installations, is tracked; however, the present invention is not limited thereto, and a target flight path that is generated based on the current position of the aircraft 40 and the target position that the aircraft 40 should reach may be tracked.


More specifically, a positional information acquisition sensor (for example, GPS sensor) for measuring the current position (latitude, longitude, and altitude) of the aircraft 40 is installed in the aircraft 40, and a target flight path is derived by a computer installed in the aircraft 40 based on the current position of the aircraft 40, which is measured by the positional information acquisition sensor, and is stored in a storage section.


Note that the above-mentioned computer derives a target position (target airport) that the aircraft 40 should reach, from various conditions, e.g., the amount of remaining fuel in the aircraft 40; the reachable distance based on the remaining fuel; if a fault (for example, a fault in which all control surfaces become inoperative during a cruise flight, and it is necessary to steer the aircraft 40 to an airport with engine thrust alone) occurs in the aircraft 40, the maximum radius and minimum radius of circle allowed according to the fault state; the runway length of a candidate airport for landing at; and weather (wind, rain, cloud cover, visibility, etc.) around the candidate airport for landing at. Then, the computer derives the optimum flight path from the position of the aircraft 40 to the target airport and sets the derived optimum flight path as the target flight path. Note that the target position need not be derived by the computer but may be specified by the pilot.


Note that the computer may derive a target flight path at predetermined intervals and update the current target flight path with the derived target flight path in the storage section.


Then, the autopilot section 62 generates controlling commands that include the path angle command γcmd and the direction angle command Ψcmd based on the information indicating the relative position or the deviation angle of the aircraft 40 with respect to the target flight path stored in the storage section.


Thus, for example, tracking control using a target flight path that is displayed based on radio waves output from the glide slope antenna and the localizer antenna, which are airport installations, i.e., tracking control using the ILS, allows only for guiding the aircraft for landing from an area near the airport; however, tracking control using a target flight path that is generated based on the current position of the aircraft 40 and the target position that the aircraft 40 should reach allows for steering of the aircraft to an airport (target position) from an area where the ILS is not available, for example, in the event of an emergency descent from high altitude or a change in direction angle when a fault occurs in the aircraft 40.


Furthermore, in the above-described embodiment, a description has been given of a case where the ILS displays 20 are displayed on the PFD 10 together with the FPM 30 and the target attitude relative to air display 32; however, the present invention is not limited thereto. A configuration in which the ILS displays 20 are not displayed on the PFD 10, a configuration in which FD-command and bar displays are displayed on the PFD 10 together with the ILS displays 20, or a configuration in which another display for assisting the pilot in controlling the aircraft may be used.


Furthermore, in the above-described embodiment, a description has been given of a case where the PFD 10 is used as the display apparatus; however, the present invention is not limited thereto, and another means, such as an ADI, can be used as the display apparatus.


REFERENCE SIGNS LIST




  • 10 PFD


  • 30 FPM


  • 32 target attitude relative to air display


  • 40 aircraft (airplane)


  • 50 control device


Claims
  • 1. A control support system including a sensor section that measures current information about flight in an airplane, which is an aircraft, an autopilot section that derives required information such that the aircraft can fly in a target flight path, and a display apparatus that displays a flying situation of the aircraft, the control support system comprising: a controller including: a target angle-of-attack deriving section that derives a target angle-of-attack of the aircraft to achieve the target flight path on the basis of a pitch angle measured by the sensor section and a path angle which is an angle between a horizontal plane and a target traveling direction of the aircraft and which is derived by the autopilot section;a target sideslip angle deriving section that derives a target sideslip angle of the aircraft to achieve the target flight path on the basis of a direction angle measured by the sensor section and a direction angle of the target traveling direction derived by the autopilot section; anda display control section that causes the display apparatus to display a relative difference between a target attitude relative to air, representing the target angle-of-attack that has been derived and the target sideslip angle that has been derived, and a current attitude relative to air, representing a current angle-of-attack and a current sideslip angle of the aircraft.
  • 2. The control support system according to claim 1, wherein the target angle-of-attack deriving section derives the target angle-of-attack by subtracting the path angle derived by the autopilot section from the pitch angle measured by the sensor section, andthe target sideslip angle deriving section derives the target sideslip angle by subtracting the direction angle measured by the sensor section from the direction angle of the target traveling direction derived by the autopilot section.
  • 3. The control support system according to claim 1, wherein the display control section causes the display apparatus to display a first mark corresponding to the target attitude relative to air and a second mark corresponding to the current attitude relative to air.
  • 4. The control support system according to claim 3, wherein the display control section causes the display apparatus to display relative positions of the first mark and the second mark while being changed according to the relative difference between the target attitude relative to air and the current attitude relative to air.
  • 5. The control support system according claim 1, further comprising: a positional information acquisition sensor that measures a current position of the aircraft; anda computer that derives the target flight path based on the measured current position of the aircraft.
  • 6. The control support system according claim 5, wherein the computer derives a target position that the aircraft should reach based on the measured current position and a predetermined condition, andthe target flight path derived by the computer is an optimum flight path from the aircraft to the derived target position.
  • 7. The control support system according claim 6, wherein the predetermined condition is a reachable distance of the aircraft based on remaining fuel of the aircraft.
  • 8. A control support method in a control support system comprising a sensor section that measures current information about flight in an airplane, which is an aircraft, an autopilot section that derives required information such that the aircraft can fly in a target flight path, and a display apparatus that displays a flying situation of the aircraft, the control support method comprising: deriving a target angle-of-attack of the aircraft to achieve the target flight path on the basis of a pitch angle measured by the sensor section and a path angle which is an angle between a horizontal plane and a target traveling direction of the aircraft and which is derived by the autopilot section;deriving a target sideslip angle of the aircraft to achieve the target flight path on the basis of a direction angle measured by the sensor section and a direction angle of the target traveling direction derived by the autopilot section; andcausing the display apparatus to display a relative difference between a target attitude relative to air, representing the target angle-of-attack that has been derived and the target sideslip angle that has been derived, and a current attitude relative to air, representing a current angle-of-attack and a current sideslip angle of the aircraft.
Priority Claims (1)
Number Date Country Kind
2010-151220 Jul 2010 JP national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/JP2011/064539 6/24/2011 WO 00 12/21/2012
Publishing Document Publishing Date Country Kind
WO2012/002276 1/5/2012 WO A
US Referenced Citations (58)
Number Name Date Kind
3930610 Hache Jan 1976 A
4230290 Townsend et al. Oct 1980 A
4507657 Bates Mar 1985 A
5382954 Kennedy et al. Jan 1995 A
5420582 Kubbat et al. May 1995 A
5526265 Nakhla Jun 1996 A
5590853 Greene Jan 1997 A
6057786 Briffe et al. May 2000 A
6177888 Cabot Jan 2001 B1
6253166 Whitmore Jun 2001 B1
6255965 D'Orso Jul 2001 B1
6272404 Amano et al. Aug 2001 B1
6273370 Colgren Aug 2001 B1
6317059 Purpus et al. Nov 2001 B1
6539290 Vos Mar 2003 B1
6751529 Fouche Jun 2004 B1
7010398 Wilkins et al. Mar 2006 B2
7347090 Childers et al. Mar 2008 B1
7616130 Astruc et al. Nov 2009 B2
7724155 Anderson et al. May 2010 B1
7894950 Williamson Feb 2011 B2
7952493 Wyatt et al. May 2011 B2
8219264 Blake Jul 2012 B1
8321077 Garcia-Llama Nov 2012 B1
8344911 Wenger et al. Jan 2013 B1
8421649 Marstall et al. Apr 2013 B2
8761970 McIntyre Jun 2014 B2
20010039467 Katz et al. Nov 2001 A1
20050012642 Sacle Jan 2005 A1
20050143871 Boorman et al. Jun 2005 A1
20050206533 Rogers et al. Sep 2005 A1
20060164262 Wyatt et al. Jul 2006 A1
20070080828 He Apr 2007 A1
20070085705 He et al. Apr 2007 A1
20070179684 He Aug 2007 A1
20090069959 Horvath et al. Mar 2009 A1
20090087029 Coleman et al. Apr 2009 A1
20090173789 Howard Jul 2009 A1
20090207048 He et al. Aug 2009 A1
20090259402 Gates et al. Oct 2009 A1
20090295602 Cernasov et al. Dec 2009 A1
20100100260 McIntyre et al. Apr 2010 A1
20100131126 He et al. May 2010 A1
20100141482 Wyatt et al. Jun 2010 A1
20100185345 Chiesa Jul 2010 A1
20100194602 Engels et al. Aug 2010 A1
20100274444 Williamson et al. Oct 2010 A1
20100318336 Falangas Dec 2010 A1
20110118912 Shuster May 2011 A1
20110205090 Marstall et al. Aug 2011 A1
20120004793 Block Jan 2012 A1
20120179307 Boorman et al. Jul 2012 A1
20120212350 Magnell Aug 2012 A1
20120299753 Thoreen Nov 2012 A1
20120303184 Gerthoffert et al. Nov 2012 A1
20130060405 Komatsuzaki Mar 2013 A1
20150084792 Barth Mar 2015 A1
20150234388 Yamasaki Aug 2015 A1
Foreign Referenced Citations (10)
Number Date Country
63-503093 Nov 1988 JP
4-67200 Jun 1992 JP
2832249 Dec 1998 JP
2923509 Jul 1999 JP
2939234 Aug 1999 JP
11-268696 Oct 1999 JP
11-271101 Oct 1999 JP
2002-267488 Sep 2002 JP
3558278 Aug 2004 JP
39960 Aug 2004 RU
Non-Patent Literature Citations (12)
Entry
FY 2009, “Advanced aircraft Technology Development Center contract research report”, ISSN 1880-3660, Mar. 2010.
International Search Report issued Sep. 27, 2011 in corresponding International (PCT) Application No. PCT/JP2011/064539.
Written Opinion of the International Searching Authority issued Sep. 27, 2011 in corresponding International (PCT) Application No. PCT/JP2011/064539.
“Research for Enhancement of Competitiveness of the Plane Industry Progress Report No. 2202”; published Mar. 2011 (with English abstract).
Iijima, et al.; “Pilot Workload Assessment for Curved Approach by Tunnel-in-the-Sky Display”; International Association of Traffic and Safety Sciences; vol. 26, No. 2; pp. 111-119; Feb. 2001 (with English abstract).
“Technical Memorandum of National Aerospace Laboratory”; National Aerospace Laboratory of Japan; TM-764; Jun. 2002 (with English abstract).
The EADI.
Russian Office Action issued May 30, 2014 in corresponding Russian Application No. 2012153788 with English translation.
“Aviation”, Moscow, The Great Russian Encyclopedia, 1994, “Heading, ground, speed, axis system, sideslip, pitch, angle of attack”, respectively on pp. 301, 462, 520, 521, 554, 600.
Japanese Office Action issued Apr. 30, 2014 in corresponding Japanese Patent Application No. 2010-151220 with English translation.
Chinese Notice of Allowance issued Mar. 30, 2015 in corresponding Chinese Patent Application No. 201180031445.0 with explanation of relevance.
Notice of Allowance issued Oct. 6, 2015 in corresponding Canadian Application No. 2,803,810.
Related Publications (1)
Number Date Country
20130096738 A1 Apr 2013 US