1. Field of the Invention
The present invention relates to a display apparatus having a function of a touch screen, and more particularly, to a display apparatus which performs a function of a touch screen by detecting light generated by a light emission mechanism.
2. Description of the Related Art
Touch screen displays are increasingly used in a number of different applications ranging from personal mobile devices to larger display devices used for giving presentations to an audience.
One type of touch screen display uses a plurality of photodiodes and a plurality of light emitting diodes (LEDs). The photodiodes and the sensors are arranged on opposite sides of the display screen, such that each photodiode detects light generated by the corresponding LED. When a particular location on the display screen is touched, it blocks the light from the LED from reaching the corresponding photodiode, such that the touched position can be identified. This type of touch sensing scheme may be used in flat panel displays, such as a liquid crystal display (LCD) and a plasma display device, as well as a cathode ray tube (CRT) display.
In such touch screen displays, as the resolution increases, the number of photodiodes and LEDs must also increase. The increased number of photodiodes and LEDs typically leads to increased heat generation, increased cost and increased power consumption. Therefore, it is desirable to provide a display having a touch screen function that does not require as much increase to heat generation, cost or power consumption as the resolution increases.
The present invention provides a display apparatus having a touch screen function. Such touch screen display may be manufactured at low costs because costs related to installing a separate light source are not incurred by implementing a touch screen function by using infrared light which is obtained according to a light emission mechanism.
In an exemplary embodiment according to the present invention, a display device including a display panel is provided. The display panel includes: a first region including a plurality of display cells for displaying an image; and a second region at least partly surrounding the first region, the second region including a plurality of light generation cells for generating light, different from the image, to be detected for touch position sensing; and a pair of cameras located at or near a periphery of the display panel, aligned with respective crossing directions across the display panel, and oriented to detect the light generated by the light generation cells.
The pair of cameras may be located at respective corners of the display panel. The light generated by the light generation cells may be infrared light. Each of the display cells may include a phosphor therein, and none of the light generation cells may have a phosphor therein.
The cameras may be oriented at a downward angle with respect to a display surface of the display panel suitable for detecting the light generated by the light generation cells. The cameras may be oriented to focus in a direction parallel to a display surface of the display panel.
The display panel may further include a plurality of dummy cells located along an outer periphery of the second region. Each of the dummy cells may include only one of a scan electrode or a common electrode. The dummy cells may not include address electrodes.
The display panel may further include a plurality of dummy cells between the first region and the second region. The dummy cells may not include address electrodes.
At least one of the light generation cells may have a width that is wider than that of the display cells. The display panel may further include a plurality of common electrodes, a plurality of scan electrodes and a plurality of address electrodes crossing the common electrodes and the scan electrodes, an address electrode among the address electrodes corresponding to the at least one of the light generation cells having a width that is wider than that of the address electrodes corresponding to the display cells.
The display device may further include another camera located at or near the periphery of the display panel, aligned with a crossing direction across the display panel that is different from the crossing directions of the pair of cameras, and oriented to detect the light generated by the light generation cells.
The display device may further include a second pair of cameras located at or near the periphery of the display panel, aligned with different crossing directions across the display panel from the crossing directions of the pair of cameras, and oriented to detect the light generated by the light generation cells. The crossing directions may be diagonal directions of the display panel.
The display device may further include at least one mirror for directing the light generated by the light generation cells toward the pair of cameras. The at least one mirror may include a transmissive/reflective mirror configured to reflect the infrared light while passing through visible light.
The at least one mirror may include a material selected from the group consisting of oxidized titanium, oxidized silicon, and combinations thereof. The at least one mirror may include polished stainless steel.
The at least one mirror may be mounted on a base located at a periphery of the display panel.
The at least one mirror may have a sloped face for directing the generated light toward the pair of cameras. The display device may further include at least one convex prism, the convex prism adjacent to the sloped face, so as to converge the generated light to the cameras.
The at least one mirror may have a concave face for converging the generated light toward the cameras. The at least one mirror may be located along the periphery of the display panel.
The display device may further include an infrared light blocking filter on the first region. The display device may further include an infrared transmission filter in front of at least one of the cameras.
In another exemplary embodiment according to the present invention, a method of sensing a touch position of an object on a display device is provided. The display device includes a display panel, a first camera and a second camera, the display panel including a first region having a plurality of display cells for displaying an image, a second region at least partly surrounding the first region and including a plurality of light generation cells for generating light, different from the image, to be detected for touch position sensing. The method includes: detecting the generated light with the first camera aligned with a first direction across the display panel; detecting the generated light with the second camera aligned with a second direction across the display panel, the second direction crossing the first direction; and determining the touch position of the object by comparing detection signals of the first and second cameras.
In another exemplary embodiment according to the present invention, a plasma display device including a display panel is provided. The display panel includes: a first substrate; a second substrate spaced from and facing the first substrate; and a plurality of barrier ribs between the first and second substrates, the barrier ribs defining a plurality of display cells on a display region for displaying an image and a plurality of light generation cells on a non-display region for generating light that is different from the image; and a pair of cameras located at or near a periphery of the display panel, aligned with respective diagonal directions of the display panel, and oriented to detect the light generated by the light generation cells.
The plasma display device may further include: a front case and a rear case containing the display panel, wherein the front case has a portion covering the non-display region.
The pair of cameras may be located at respective corners of the display panel. The display device may further include an infrared light blocking filter on the display region. The light generated by the light generation cells may be infrared light. The display device may further include an infrared transmission filter located in front of at least one of the cameras.
The above and other features of the present invention will become more apparent by describing in detail exemplary embodiments thereof with reference to the attached drawings in which:
The present invention will now be described more fully with reference to the accompanying drawings, in which exemplary embodiments of the invention are shown. Like reference numerals in the drawings denote like elements.
A substantially rectangular display area P for displaying an image is located at the center of the display panel 100, and a plurality of display cells DSs are located in the display area P. Infrared radiation cells TSs are arranged in x and y directions within a non-display area NP which is formed along vertical and horizontal edge portions (i.e., along the outer periphery) of the display panel 100. In other words, the infrared radiation cells TSs are located in the non-display area NP, which is located along the periphery of the display area P. The infrared radiation cells TSs may also be referred to as light generation cells.
Hence, the infrared radiation cells TSs are arranged in a shape of a band so as to partially or completely surround the display area P. For example, the infrared radiation cells TSs may be arranged along right and left edge portions and a bottom edge portion of the display panel 100. As can be seen in the enlarged view inside a circle of a portion of the display panel 100, there are 3 infrared radiation cells TSs in each row, however, the present invention is not limited thereto. By way of example, the number of infrared radiation cells TSs may be selected from 3 to 15 in various different embodiments.
In the embodiment illustrated in
Each of the display cells DSs, which is a minimum light-emission unit for displaying an image, displays a designated color in response to plasma discharges. Adjacent display cells DSs that display different colors (e.g., red (R), green (G) and blue (B) colors) constitute a pixel, which corresponds to a dot on a screen of the display apparatus. The display cells DSs include electrodes, each pair of which generates discharges, and are turned on a predetermined number of times in response to a controlled signal, thereby accomplishing gradation of an image.
In the display apparatus illustrated in
The first and second detection cameras C1 and C2 receive light (e.g., infrared light) generated by the infrared radiation cells TSs. This way, when the light generated by the infrared radiation cells TSs are blocked by an object, such as a finger, the cameras C1 and C2 detect such blockage of light as light blocking signals (or blocked light signals).
As illustrated in
The first detection camera C1, which is located at or near the upper left corner (or a first corner) R1 of the display panel 100, may be tilted a predetermined angle in a diagonal direction so as to face a fourth corner R4. The second detection camera C2, which is located at or near the upper right corner (or a second corner) R2 of the display panel 100, may be tilted a predetermined angle in a diagonal direction so as to face a third corner R3.
The first and second detection cameras C1 and C2 may be line cameras in which optoelectronic devices, such as charge coupled device (CCD) or complementary metal oxide semiconductor (CMOS) image sensors, are arranged in a row, or area cameras in which optoelectronic devices are arranged two-dimensionally. Infrared transmission filters 150 for passing light only at an infrared band may be arranged in front of the first and second detection cameras C1 and C2. The infrared transmission filters 150 filter out noise components so as to pass light only at infrared bands, and transmit the infrared light to the first and second detection cameras C1 and C2.
In a touch screen structure including the infrared radiation cells TSs as a light source and a detection camera C as a light receiving unit, the infrared radiation cells TSs emit the infrared light IR, and the detection camera C is tilted a predetermined angle θ toward the surface of the display panel 100 so as to focus on (or face) the non-display area NP in a diagonal direction. The tilt angle θ in one embodiment may be selected such that the camera C is able to capture the infrared light IR generated by the infrared radiation cells TSs while substantially avoiding detecting light generated by the display cells DS. The tilt angle θ may vary depending on such factors of the size of the display panel and the number of the infrared radiation cells TSs in each row.
When an external object B such as a finger or a pen contacts an arbitrary location on the display area P, a path through which the detection camera C receives light is interrupted (or blocked) while receiving IR radiation generated in the non-display area NP, and concurrently a portion whose light intensity rapidly decreases in a captured image is detected. By way of example, an accurate touched location can be determined by detecting portions having rapidly-dropping light intensity from captured images obtained by the first and second detection cameras C1 and C2.
Since the display cells DSs on the display area P also emit the infrared light IR due to the plasma discharge, an infrared blocking filter 130 is installed in front of the display area P in order to prevent the detection camera C from capturing the infrared light IR generated by the display cells DSs. However, as long as an angle at which the detection camera C is oriented to face the non-display area NP is precisely adjusted so as not to receive light from inside of the display area P, the infrared blocking filter 130 may not be needed or installed.
In the embodiment shown in
The address electrodes 122 generate addressing discharges in cooperation with the scan electrodes 113, thereby selecting cells DSs and TSs which are to generate discharges. The display cells DSs that constitute the display area P may be turned on different numbers of times so as to conform to a brightness distribution (that is, gray levels) of an image to be displayed. However, the infrared radiation cells TSs, may be turned on by an identical number of times. That way, uniform amount of light can be generated from all of the infrared radiation cells TSs, which is desirable in the described embodiment. In addition, in order to secure a sufficient amount of light, the infrared radiation cells TSs may be turned on in all sub-fields obtained by time division. In a display panel where the common electrodes 112 and the scan electrodes 113 cross each other, the address electrodes 122 may be omitted, and the common electrodes (i.e., sustain electrodes) may serve as the address electrodes.
The display cells DSs are coated with phosphors 125. The phosphors 125 absorb ultraviolet rays generated due to discharges and convert the ultraviolet rays to visible light. For example, the phosphors 125 may be roughly classified into R, G, and B phosphors according to colors of radiated light. The infrared radiation cells TSs serving as a light source may not need the phosphors 125. More specifically, since the infrared radiation cells TSs are used to radiate infrared light IR, the infrared radiation cells TSs do not need visible light for image display. Moreover, if visible light is detected from the non-display area NP, the visible light is recognized as a noise component of an image, thereby degrading the quality of display. Accordingly, the infrared radiation cells TSs may not need the phosphors 125. However, even if the infrared radiation cells TSs were coated with the phosphors 125, they may effectively serve as a light source.
A discharge gas is injected between the front substrate 111 and the rear substrate 121. The discharge gas, for example, may be a multi-component gas that includes xenon (Xe), which can create appropriate infrared and ultraviolet rays through discharge excitation, and may include krypton (Kr), helium (He), neon (Ne), etc. in a predetermined volume ratio. For example, in a process of being ionized in reaction with a discharge voltage applied between the common electrodes 112 and the scan electrodes 113, the Xe sequentially generates infrared rays and ultraviolet rays in predetermined wavelength bands while the level of the Xe is being transitioned between multiple energy levels. These series of discharge processes occur in both display cells DSs and infrared radiation cells TSs which contain the discharge gas. However, since the display cells DSs and the infrared radiation cells TSs are designed to perform different functions, the display cells DSs are used to generate visible light for image display from the ultraviolet rays generated due to discharges, and the infrared radiation cells TSs emit the infrared rays due to the discharge to be used as detection light for a touch screen function.
Due to the arrangement of the infrared radiation cells TSs along the four edge portions of the display panel 100 and the installation of the first, second, third, and fourth detection cameras C1, C2, C3, and C4 at the corners R1, R2, R3, and R4, the first, second, third, and fourth detection cameras C1, C2, C3, and C4 have no dead angles. A combination of images obtained by the first, second, third, and fourth detection cameras C1, C2, C3, and C4 enables a more precise touch location to be detected. In order to perform a multi-touch function of concurrently detecting at least two touch inputs, at least three detection cameras may be required. Thus, the present embodiment of
Referring to
A wide infrared radiation cell TS′, which is not partitioned by barrier ribs to have a large discharge space is formed on the non-display area NP. The display cells DSs, forming the display area P, are separated from one another by the barrier ribs 124 and are thus not affected by discharge interference or optical interference, thereby constituting independent light-emission units. The infrared radiation cell TS′ on the non-display area NP is not partitioned by any barrier ribs and thus has a wide discharge space, thereby the intensity of light generated by the infrared radiation cell TS′ is improved (or increased).
In one embodiment, a single wide infrared radiation cell TS′ is formed along the horizontal and vertical sides (or edge portions) of the display panel 200 without any partition by the barrier ribs. In other embodiments, the barrier ribs extending in the x direction partition the infrared radiation cells TS's such that a single column of radiation cells TS's is formed at each vertical side of the display panel 200. Further, the infrared radiation cells TS's along the horizontal side (or horizontal sides) of the display panel 200 may be partitioned by the barrier ribs extending in the y direction (see
Referring to
Referring to
The dummy cells MSs are not designed to generate discharges but to provide a margin in consideration of a process error possibly generated during the manufacture of the display panel 100. Alternatively, in other embodiments, the dummy cells MSs may include only one of but not both the common electrodes 112 and the scan electrodes 113.
The display panel 500 is different from the display panel 100 of
The display apparatus of
Referring to
A substantially rectangular display area P which includes a plurality of display cells DSs for displaying an image is located at the center of the display panel 100. Infrared radiation cells TSs are arranged on a non-display area NP which partially surrounds (i.e., surrounds at 3 of the 4 sides or edges) the display area P. The display cells DSs constitute the display area P and generate visible light for displaying an image. The infrared radiation cells TSs are arranged on the non-display area NP and serve as a light source which supplies infrared light IR generated due to discharges.
In the present embodiment, a reflection mirror M1 is installed at the non-display area NP. The reflection mirror M1 is arranged on the paths of light emitted by the infrared radiation cells TSs and reflects infrared light IR emitted from the non-display area NP toward the display area P so that the reflected infrared light IR can be applied to the first and second detection cameras C1 and C2 through and over the display area P. In one embodiment, the reflection mirror M1 is made of polished steel. In other embodiments, the reflection mirror M1 may include a base/support and a relatively thin mirror fixed (or attached) to the base/support to provide a reflection surface.
The infrared light IR propagating across the display area P is converted to a light blocking signal (i.e., a blocked light signal) when light intensity significantly drops at the touched location Q on the display area P. The light blocking signal is received by the first and second detection cameras C1 and C2. The reflection mirror M1 may have a flat reflection surface and be inclined a predetermined angle which is suitable to redirect the lights output from the infrared radiation cells TSs toward the display area P. The reflection mirror M1 may be installed at a location that does not block visible light emitted from the display area P.
The first and second detection cameras C1 and C2, for receiving light blocking signals, are arranged at different corners of the display panel 100. As illustrated in
If there are no touch inputs on the display area P, as illustrated in
As illustrated in
By way of example, in one embodiment, when two detection cameras (e.g., C1 and C2) are used and there are 60 frames (or images) per second being displayed, the cameras may alternately capture IR images. Hence, in this case, each camera would capture an IR image every 1/30 second. In other embodiments, both cameras (or more cameras when used) may concurrently capture each frame of the IR images.
As shown in
To determine the touched position based on the scan location of the light blocking signals in the first and second detection cameras C1 and C2, in one embodiment, a look up table (LUT) may be used. For example, the look up table may have the scan locations of the light blocking signals detected by the first and second detection cameras C1 and C2 as inputs and has the position (e.g., x and/or y coordinates or column and/or row information of the pixel) as an output.
The common electrodes 112, the scan electrodes 113, and the address electrodes 122 may be formed both within and outside the display area P. By using the common electrodes 112, the scan electrodes 113, and the address electrodes 122, the display cells DSs on the display area P and the infrared radiation cells TSs on the non-display area NP generate appropriate discharges. However, phosphors 125 may be formed within the display cells DSs that display an image, and phosphors 125 may not be formed within the infrared radiation cells TSs.
A reflection mirror M1 is installed at the non-display area NP. The reflection mirror M1 reflects infrared light IR emitted upward from the non-display area NP and changes the path of the infrared light IR so as to be parallel to the surface of the display area P, so that the infrared light IR can cross over the display area P and be applied to a detection camera C. At this time, the infrared light IR crossing over the display area P is interrupted by a touch of an external object (e.g., finger) on the display area P and converted into a light blocking signal (or blocked light signal). The light blocking signal is then applied to the detection camera C.
As illustrated in
The convex prism L allows the infrared light IR emitted upward from the infrared radiation cells TSs to converge onto the detection camera C instead of diverging, thereby increasing light intensity captured by the detection camera C. In order to increase the intensity of the infrared light IR generated by the infrared radiation cells TSs, the number of discharges or a discharge intensity which is directly related to power consumption of the display panel 100 typically needs to be increased. Thus, an optical method using the convex prism L is used in this embodiment.
The concave reflection surface S2 reflects infrared light IR emitted upward from the infrared radiation cells TSs toward the display area P. More specifically, the concave reflection surface S2 allows the infrared light IR propagating over the display area P to converge onto the detection camera C instead of diverging, by improving the straight advancement of reflected light or transforming the reflected light into convergent light. Thus, the concave reflection surface S2 increases light intensity captured by the detection camera C. In the described embodiment of the present embodiment, light intensity enough to detect a location can be secured without power consumption of the display panel 100, by increasing the light intensity captured by the detection camera C according to an optical method using a concave mirror.
The display apparatus of
A display apparatus according to exemplary embodiments of the present invention performs a touch screen function by using infrared light generated according to a light emission mechanism. Thus, costs typically required to install a light emitting display (LED) array as a light source are not required, and a precise touch screen having a high resolution equivalent to the resolution of an image can be provided.
While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope of the present invention as defined by the following claims and their equivalents.
This application claims priority to and the benefit of U.S. Provisional Patent Application No. 61/061,067 filed Jun. 12, 2008, the entire content of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5764223 | Chang et al. | Jun 1998 | A |
6828959 | Takekawa et al. | Dec 2004 | B2 |
6947032 | Morrison et al. | Sep 2005 | B2 |
6972401 | Akitt et al. | Dec 2005 | B2 |
7456824 | Yoshimura | Nov 2008 | B2 |
7538759 | Newton | May 2009 | B2 |
8149221 | Newton | Apr 2012 | B2 |
8310411 | Yim | Nov 2012 | B2 |
20040178729 | Kim et al. | Sep 2004 | A1 |
20040201351 | Woo et al. | Oct 2004 | A1 |
20060091802 | Hong et al. | May 2006 | A1 |
20060209047 | Jeong | Sep 2006 | A1 |
20090066671 | Kweon et al. | Mar 2009 | A1 |
Number | Date | Country |
---|---|---|
2000-200148 | Jul 2000 | JP |
10-0804815 | Feb 2008 | KR |
100804815 | Feb 2008 | KR |
WO 2005109396 | Nov 2005 | WO |
Entry |
---|
Korean Patent Abstracts, Publication 100804815 B1, Published Feb. 12, 2008, for Kweon, et al. |
Patent Abstracts of Japan, Publication No. 2000-200148, dated Jul. 18, 2000, in the name of Yoshio Koizumi et al. |
Korean Patent Abstracts, Publication No. 100804815 B1, dated Feb. 12, 2008, in the name of Chul Kweon et al. |
English machine translation of Japanese Publication 2000-200148, dated Jul. 18, 2000, previously filed in an IDS dated Mar. 11, 2009, 44 pages. |
SIPO Office action dated Nov. 2, 2012, for corresponding Chinese Patent application 200910140677.4, (12 pages). |
Number | Date | Country | |
---|---|---|---|
20090309844 A1 | Dec 2009 | US |
Number | Date | Country | |
---|---|---|---|
61061067 | Jun 2008 | US |