This application claims priority from Japanese Patent Application No. 2016-216595, filed on Nov. 4, 2016, the contents of which are incorporated by reference herein in its entirety.
The present invention relates to a display apparatus.
Organic electro luminescence (EL) display apparatuses, which include self-light-emitting elements such as organic EL elements, display an image by, for example, controlling pixels including organic light-emitting diodes. The tone (gradation level) of the pixels is controlled by, for example, transistors such as thin film transistors (TFTs), as described in Japanese Patent Application Laid-open Publication No. 2016-040575.
According to an aspect, a display apparatus includes: a plurality of pixels including light-emitting elements; a video signal driver configured to apply a video voltage or an initialization voltage to the pixels based on a video signal; a scan signal driver configured to apply a scan voltage to the pixels based on the video signal; and a controller configured to control an initialization period in which the initialization voltage is applied to the pixels and a video voltage writing period in which the video voltage is applied to the pixels, in accordance with a tone of the video signal.
The following fully describes an embodiment of the present invention with reference to the accompanying drawings. The embodiment to be described below is not intended to limit the scope of the present invention. The constituent elements described below include elements that can be easily thought of by those skilled in the art and/or elements that are substantially the same. The constituent elements described below can be combined as appropriate. What is disclosed herein is merely an example. It will be apparent to those skilled in the art that various changes and modifications may be made without departing from the spirit of the present invention, and the changes and modifications are indeed encompassed within the scope of the present invention. To make the description understood more clearly, some of the accompanying drawings schematically illustrate the components in terms of, for example, the width, thickness, and shape compared to the actual state or dimensions thereof. However, such illustration is merely an example and does not limit the scope of the present invention. In the description and the accompanying drawings, like reference signs refer to like constituent elements that have been referred to in the aforementioned drawings, and the detailed description thereof may be omitted.
In this disclosure, when an element is described as being “on” another element, the element can be directly on the other element, or there can be one or more elements between the element and the other element.
A display apparatus including self-light-emitting elements may suffer from striped non-uniformity of luminance that occurs on a displayed image.
For the foregoing reasons, there is a need for a display apparatus that can reduce striped non-uniformity of luminance.
As illustrated in
The controller 11 controls the video signal driver 100 and the scan signal driver 200 in accordance with a video signal provided from, for example, an external host integrated circuit (IC), which is not illustrated. The controller 11 is included in, for example, an IC, and provides control signals to the video signal driver 100 and the scan signal driver 200 to control these drivers to operate in synchronization with each other.
The controller 11 includes a clock generator (not illustrated) that generates a reference clock. The controller 11 is configured to generate the control signals to be provided to the video signal driver 100 and the scan signal driver 200 on the basis of the reference clock generated by the clock generator.
The video signal driver 100 is an IC that generates a video voltage to be applied to the pixels 30. The scan signal driver 200 is an IC that generates a gate voltage to be applied to the TFT elements included in the pixels 30. Although the video signal driver 100 and the scan signal driver 200 are separately illustrated in
The video signal driver 100 is coupled to first video signal lines 110 and second video signal lines 120 that vertically extend in the display region 20. The first video signal line 110 is shared by the subpixels (e.g., subpixels Rpix and Gpix arranged in an odd-numbered column in the example of
The scan signal driver 200 is coupled to first scan signal lines 210, light emission control lines 220, reset lines 230, and second scan signal lines 250 that horizontally extend in the display region 20. The first scan signal line 210 is shared by the subpixels (e.g., subpixels Rpix and Bpix arranged in an odd-numbered row in the example of
The organic EL panel 10 includes a high-potential supply line 300. The electric potential of the high-potential supply line 300 is referred to as PVDD. For example, the potential difference between the high-potential supply line 300 and a low-potential supply line (e.g., a ground line), which is not illustrated, is 10 V. The high-potential supply line 300 is coupled to power lines 310. The power line 310 is shared by the subpixels (e.g., subpixels Rpix, Gpix, Bpix, and Wpix constituting one pixel 30 in the example of
The first pixel region 40a is a region defined by the first scan signal line 210, the reset line 230, the first video signal line 110 and the power line 310. The second pixel region 40b is a region defined by the reset line 230, the second scan signal line 250, the first video signal line 110, and the power line 310.
The controller 11 includes a tone detector 111 and a timing controller 112. The tone detector 111 detects a tone (gradation level) of a video signal Vdisp pixel by pixel. The timing controller 112 generates control signals on the basis of the video signal Vdisp and the tone of the video signal Vdisp that is detected by the tone detector 111 pixel by pixel. The control signals generated by the timing controller 112 include a first timing pulse LP1, a second timing pulse LP2, a third timing pulse LP3, an initialization voltage output timing control signal xasw1, a first video voltage output timing control signal xasw2-1, a second video voltage output timing control signal xasw2-2, a light emission control signal BG, and a reset control signal R. The control signals generated by the controller 11 will be described later.
The video signal driver 100 generates a first video voltage Vsig1 and a second video voltage Vsig2 on the basis of the video signal Vdisp input from the controller 11.
The video signal driver 100 includes a first initialization signal control switch 101, a second initialization signal control switch 102, a first video voltage control switch 103, and a second video voltage control switch 104.
One (first terminal) of the source and the drain of the first initialization signal control switch 101 is coupled to the first video signal line 110, and the other one (second terminal) of the source and the drain thereof is supplied with an initialization voltage Vini. The initialization voltage output timing control signal xasw1 is input to the gate (third terminal) of the first initialization signal control switch 101. In the first embodiment, the first initialization signal control switch 101 is, for example, a transistor. Applying the initialization voltage output timing control signal xasw1 to the gate of the first initialization signal control switch 101 causes the first initialization signal control switch 101 to be in a conductive state, thereby applying the initialization voltage Vini to the first video signal line 110. In the first embodiment, the initialization voltage Vini is, for example, 1.27 V.
One (first terminal) of the source and the drain of the second initialization signal control switch 102 is coupled to the second video signal line 120, and the other one (second terminal) of the source and the drain thereof is supplied with an initialization voltage Vini. The initialization voltage output timing control signal xasw1 is input to the gate (third terminal) of the second initialization signal control switch 102. In the first embodiment, the second initialization signal control switch 102 is, for example, a transistor. Applying the initialization voltage output timing control signal xasw1 to the gate of the second initialization signal control switch 102 causes the second initialization signal control switch 102 to be in a conductive state, thereby applying the initialization voltage Vini to the second video signal line 120.
One (first terminal) of the source and the drain of the first video voltage control switch 103 is coupled to the first video signal line 110, and the other one (second terminal) of the source and the drain thereof is supplied with the first video voltage Vsig1. The first video voltage output timing control signal xasw2-1 is input to the gate (third terminal) of the first video voltage control switch 103. In the first embodiment, the first video voltage control switch 103 is, for example, a transistor. Applying the first video voltage output timing control signal xasw2-1 to the gate of the first video voltage control switch 103 causes the first video voltage control switch 103 to be in a conductive state, thereby applying the first video voltage Vsig1 to the first video signal line 110. In the first embodiment, the first video voltage Vsig1 is a tone signal that varies in accordance with the video signal Vdisp and may have a value, for example, from 0 to 5 V.
One (first terminal) of the source and the drain of the second video voltage control switch 104 is coupled to the second video signal line 120, and the other one (second terminal) of the source and the drain thereof is supplied with the second video voltage Vsig2. The second video voltage output timing control signal xasw2-2 is input to the gate (third terminal) of the second video voltage control switch 104. In the first embodiment, the second video voltage control switch 104 is, for example, a transistor. Applying the second video voltage output timing control signal xasw2-2 to the gate of the second video voltage control switch 104 causes the second video voltage control switch 104 to be in a conductive state, thereby applying the second video voltage Vsig2 to the second video signal line 120. In the first embodiment, the second video voltage Vsig2 is a tone signal that varies in accordance with the video signal Vdisp and may have a value, for example, from 0 to 5 V.
The scan signal driver 200 includes a reset control switch 235.
One (first terminal) of the source and the drain of the reset control switch 235 is coupled to the reset line 230, and the other one (second terminal) of the source and the drain thereof is supplied with a reset voltage Vrst. The reset control signal RG is input to the gate (third terminal) of the reset control switch 235. In the first embodiment, the reset control switch 235 is, for example, a transistor. Applying the reset control signal RG to the gate of the reset control switch 235 causes the reset control switch 235 to be in a conductive state, thereby applying the reset voltage Vrst to the reset line 230. In the first embodiment, the reset voltage Vrst is, for example, −3 V.
The first pixel region 40a includes a pixel switch 331, a drive transistor 341, an organic light-emitting diode 371, a storage capacitor 351, and an additional capacitor 361.
One (first terminal) of the source and the drain of the pixel switch 331 is coupled to the first video signal line 110. The gate (third terminal) of the pixel switch 331 is coupled to the first scan signal line 210. In the first embodiment, the pixel switch 331 is, for example, a TFT element.
One (first terminal) of the source and the drain of the drive transistor 341 is coupled to an anode of the organic light-emitting diode 371, and the other one (second terminal) of the source and the drain thereof is coupled to the reset line 230. The gate (third terminal) of the drive transistor 341 is coupled to the other one (second terminal) of the source and the drain of the pixel switch 331. In the first embodiment, the drive transistor 341 is, for example, an n-channel transistor.
The storage capacitor 351 is coupled to between the one (first terminal) of the source and the drain of the drive transistor 341 and the gate (third terminal) thereof. The additional capacitor 361 is coupled to between the one (first terminal) of the source and the drain of the drive transistor 341 and a low-potential supply line (e.g., a ground line) or the high-potential supply line 300. The additional capacitor 361 may be provided between the one (first terminal) of the source and the drain of the drive transistor 341 and the low-potential supply line (e.g., a ground line), and another additional capacitor 361 may be provided between the one (first terminal) of the source and the drain of the drive transistor 341 and the high-potential supply line 300.
Applying a first scan voltage SG1 to the first scan signal line 210 by the scan signal driver 200 causes the pixel switch 331 to be in a conductive state. When the first video voltage Vsig1 is applied to the first video signal line 110 by the video signal driver 100 while the pixel switch 331 is in the conductive state, the first video voltage Vsig1 is applied to the gate (third terminal) of the drive transistor 341.
The drive transistor 341 controls a current value to be supplied to the organic light-emitting diode 371 in accordance with the gate voltage.
Charge accumulates in the storage capacitor 351 while the voltage is applied to the gate (third terminal) of the drive transistor 341. After the pixel switch 331 is switched to a non-conductive state, the charge accumulated in the storage capacitor 351 keeps a voltage level of the gate (third terminal) of the drive transistor 341 for a certain period, and the drive transistor 341 remains conductive for the certain period.
The additional capacitor 361, which is coupled to the one (first terminal) of the source and the drain of the drive transistor 341, serves for setting the voltage between the gate (third terminal) of the drive transistor 341 and the one (first terminal) of the source and the drain thereof in accordance with the voltage level of the first video voltage Vsig1 by using a split capacitance between the storage capacitor 351 and the additional capacitor 361. Specifically, in many cases, the additional capacitor 361 is set to store more charge than the storage capacitor 351 to provide a wide setting range of the voltage between the gate (third terminal) of the drive transistor 341 and the one (first terminal) of the source and the drain thereof.
A cathode of the organic light-emitting diode 371 is coupled to a low-potential supply line (e.g., a ground line). Switching the light emission control switch 31 to a conductive state while the drive transistor 341 is in a conductive state causes a current to flow through the organic light-emitting diode 371 in accordance with the gate voltage of the drive transistor 341, thereby causing the organic light-emitting diode 371 to emit light.
The second pixel region 40b includes a pixel switch 333, a drive transistor 343, an organic light-emitting diode 373, a storage capacitor 353, and an additional capacitor 363.
One (first terminal) of the source and the drain of the pixel switch 333 is coupled to the first video signal line 110. The gate (third terminal) of the pixel switch 333 is coupled to the second scan signal line 250. In the first embodiment, the pixel switch 333 is, for example, a TFT element.
One (first terminal) of the source and the drain of the drive transistor 343 is coupled to an anode of the organic light-emitting diode 373, and the other one (second terminal) of the source and the drain thereof is coupled to the reset line 230. The gate (third terminal) of the drive transistor 343 is coupled to the other one (second terminal) of the source and the drain of the pixel switch 333. In the first embodiment, the drive transistor 343 is, for example, an n-channel transistor.
The storage capacitor 353 is coupled to between the one (first terminal) of the source and the drain of the drive transistor 343 and the gate (third terminal) thereof. The additional capacitor 363 is coupled to between the one (first terminal) of the source and the drain of the drive transistor 343 and a low-potential supply line (e.g., a ground line) or the high-potential supply line 300. The additional capacitor 363 may be provided between the one (first terminal) of the source and the drain of the drive transistor 343 and the low-potential supply line (e.g., a ground line), and another additional capacitor 363 may be provided between the one (first terminal) of the source and the drain of the drive transistor 343 and the high-potential supply line 300.
Applying a second scan voltage SG2 to the second scan signal line 250 by the scan signal driver 200 causes the pixel switch 333 to be in a conductive state. When the first video voltage Vsig1 is applied to the first video signal line 110 by the video signal driver 100 while the pixel switch 333 is in a conductive state, the first video voltage Vsig1 is applied to the gate (third terminal) of the drive transistor 343.
The drive transistor 343 controls a current value to be supplied to the organic light-emitting diode 373 in accordance with the gate voltage.
Charge accumulates in the storage capacitor 353 while the voltage is applied to the gate (third terminal) of the drive transistor 343. After the pixel switch 333 is switched to a non-conductive state, the charge accumulated in the storage capacitor 353 keeps a voltage level of the gate (third terminal) of the drive transistor 343 for a certain period, and the drive transistor 343 remains conductive for the certain period.
The additional capacitor 363, which is coupled to the one (first terminal) of the source and the drain of the drive transistor 343, serves for setting the voltage between the gate (third terminal) of the drive transistor 343 and the one (first terminal) of the source and the drain thereof in accordance with the voltage level of the first video voltage Vsig1 by using a split capacitance between the storage capacitor 353 and the additional capacitor 363. Specifically, in many cases, the additional capacitor 363 is set to store more charge than the storage capacitor 353 to provide a wide setting range of the voltage between the gate (third terminal) of the drive transistor 343 and the one (first terminal) of the source and the drain thereof.
A cathode of the organic light-emitting diode 373 is coupled to a low-potential supply line (e.g., a ground line). Switching the light emission control switch 31 to a conductive state while the drive transistor 343 is in a conductive state causes a current to flow through the organic light-emitting diode 373 in accordance with the gate voltage of the drive transistor 343, thereby causing the organic light-emitting diode 373 to emit light.
The third pixel region 40c includes a pixel switch 332, a drive transistor 342, an organic light-emitting diode 372, a storage capacitor 352, and an additional capacitor 362.
One (first terminal) of the source and the drain of the pixel switch 332 is coupled to the second video signal line 120. The gate (third terminal) of the pixel switch 332 is coupled to the first scan signal line 210. In the first embodiment, the pixel switch 332 is, for example, a TFT element.
One (first terminal) of the source and the drain of the drive transistor 342 is coupled to an anode of the organic light-emitting diode 372, and the other one (second terminal) of the source and the drain thereof is coupled to the reset line 230. The gate (third terminal) of the drive transistor 342 is coupled to the other one (second terminal) of the source and the drain of the pixel switch 332. In the first embodiment, the drive transistor 342 is, for example, an n-channel transistor.
The storage capacitor 352 is coupled to between the one (first terminal) of the source and the drain of the drive transistor 342 and the gate (third terminal) thereof. The additional capacitor 362 is coupled to between the one (first terminal) of the source and the drain of the drive transistor 342 and a low-potential supply line (e.g., a ground line) or the high-potential supply line 300. The additional capacitor 362 may be provided between the one (first terminal) of the source and the drain of the drive transistor 342 and the low-potential supply line (e.g., a ground line), and another additional capacitor 363 may be provided between the one (first terminal) of the source and the drain of the drive transistor 342 and the high-potential supply line 300.
Applying a first scan voltage SG1 to the first scan signal line 210 by the scan signal driver 200 causes the pixel switch 332 to be in a conductive state. When the second video voltage Vsig2 is applied to the second video signal line 120 by the video signal driver 100 while the pixel switch 332 is in a conductive state, the second video voltage Vsig2 is applied to the gate (third terminal) of the drive transistor 342.
The drive transistor 342 controls a current value to be supplied to the organic light-emitting diode 372 in accordance with the gate voltage.
Charge accumulates in the storage capacitor 352 while the voltage is applied to the gate (third terminal) of the drive transistor 342. After the pixel switch 332 is switched to a non-conductive state, the charge accumulated in the storage capacitor 352 keeps a voltage level of the gate (third terminal) of the drive transistor 342 for a certain period, and the drive transistor 342 remains conductive for the certain period.
The additional capacitor 362, which is coupled to the one (first terminal) of the source and the drain of the drive transistor 342, serves for setting the voltage between the gate (third terminal) of the drive transistor 342 and the one (first terminal) of the source and the drain thereof in accordance with the voltage level of the second video voltage Vsig2 by using a split capacitance between the storage capacitor 352 and the additional capacitor 362. Specifically, in many cases, the additional capacitor 362 is set to store more charge than the storage capacitor 352 to provide a wide setting range of the voltage between the gate (third terminal) of the drive transistor 342 and the one (first terminal) of the source and the drain thereof.
A cathode of the organic light-emitting diode 372 is coupled to a low-potential supply line (e.g., a ground line). Switching the light emission control switch 31 to a conductive state while the drive transistor 342 is in a conductive state causes a current to flow through the organic light-emitting diode 372 in accordance with the gate voltage of the drive transistor 342, thereby causing the organic light-emitting diode 372 to emit light.
The fourth pixel region 40d includes a pixel switch 334, a drive transistor 344, an organic light-emitting diode 374, a storage capacitor 354, and an additional capacitor 364.
One (first terminal) of the source and the drain of the pixel switch 334 is coupled to the second video signal line 120. In the first embodiment, the pixel switch 334 is, for example, a TFT element.
One (first terminal) of the source and the drain of the drive transistor 344 is coupled to an anode of the organic light-emitting diode 374, and the other one (second terminal) of the source and the drain thereof is coupled to the reset line 230. The gate (third terminal) of the drive transistor 344 is coupled to the other one (second terminal) of the source and the drain of the pixel switch 334. In the first embodiment, the drive transistor 344 is, for example, an n-channel transistor.
The storage capacitor 354 is coupled to between the one (first terminal) of the source and the drain of the drive transistor 344 and the gate (third terminal) thereof. The additional capacitor 364 is coupled to between the one (first terminal) of the source and the drain of the drive transistor 344 and a low-potential supply line (e.g., a ground line) or the high-potential supply line 300. The additional capacitor 364 may be provided between the one (first terminal) of the source and the drain of the drive transistor 344 and the low-potential supply line (e.g., a ground line), and another additional capacitor 364 may be provided between the one (first terminal) of the source and the drain of the drive transistor 342 and the high-potential supply line 300.
Applying a second scan voltage SG2 to the second scan signal line 250 by the scan signal driver 200 causes the pixel switch 334 to be in a conductive state. When the second video voltage Vsig2 is applied to the second video signal line 120 by the video signal driver 100 while the pixel switch 334 is in a conductive state, the second video voltage Vsig2 is applied to the gate (third terminal) of the drive transistor 344.
The drive transistor 344 controls a current value to be supplied to the organic light-emitting diode 374 in accordance with the gate voltage.
Charge accumulates in the storage capacitor 354 while the voltage is applied to the gate (third terminal) of the drive transistor 344. After the pixel switch 334 is switched to a non-conductive state, the charge accumulated in the storage capacitor 354 keeps a voltage level of the gate (third terminal) of the drive transistor 344 for a certain period, and the drive transistor 344 remains conductive for the certain period.
The additional capacitor 364, which is coupled to the one (first terminal) of the source and the drain of the drive transistor 344, serves for setting the voltage between the gate (third terminal) of the drive transistor 344 and the one (first terminal) of the source and the drain thereof in accordance with the voltage level of the second video voltage Vsig2 by using a split capacitance between the storage capacitor 354 and the additional capacitor 364. Specifically, in many cases, the additional capacitor 364 is set to store more charge than the storage capacitor 354 to provide a wide setting range of the voltage between the gate (third terminal) of the drive transistor 344 and the one (first terminal) of the source and the drain thereof.
A cathode of the organic light-emitting diode 374 is coupled to a low-potential supply line (e.g., a ground line). Switching the light emission control switch 31 to a conductive state while the drive transistor 344 is in a conductive state causes a current to flow through the organic light-emitting diode 374 in accordance with the gate voltage of the drive transistor 344, thereby causing the organic light-emitting diode 374 to emit light.
The light emission control switch 31 controls the electrical coupling between the power line 310 and the other one (second terminal) of the source and the drain of each of the drive transistors 341, 342, 343, and 344. In the first embodiment, the light emission control switch 31 is, for example, an n-channel transistor. The gate (third terminal) of the light emission control switch 31 is coupled to the light emission control line 220. Applying the light emission control signal BG to the light emission control line 220 by the scan signal driver 200 causes the light emission control switch 31 to be in a conductive state.
When the light emission control switch 31 is in a non-conductive state and the reset control switch 235 is in a conductive state, the other one (second terminal) of the source and the drain of each of the drive transistors 341, 342, 343, and 344 is coupled to the reset line 230. The reset voltage Vrst may be the potential of the low-potential supply line (e.g., a ground line).
The equivalent circuit illustrated in
For the first initialization signal control switch 101, the second initialization signal control switch 102, the first video voltage control switch 103, the second video voltage control switch 104, the reset control switch 235, the pixel switches 331, 332, 333, and 334, the drive transistors 341, 342, 343, and 344, and the light emission control switch 31 described above, whether the source or the drain corresponds to the first or the second terminal is determined as appropriate in accordance with the circuit configurations of the video signal driver 100, the scan signal driver 200, the first pixel region 40a, the second pixel region 40b, the third pixel region 40c, and the fourth pixel region 40d.
The following describes a detailed operation of the display apparatus 1 according to the first embodiment.
In the timing chart illustrated in
In
The display apparatus 1 according to the first embodiment displays an image by performing raster scanning. In the first embodiment, a plurality of pixel rows constituting the display region 20 of the organic EL panel 10 are selected in order from the first row, and the first video voltage Vsig1 and the second video voltage Vsig2 are written in the pixels 30 of the selected row to cause the pixels 30 to emit light. This operation is repeated for each video signal Vdisp representing one frame. The writing operation according to the first embodiment is divided into a reset operation, an offset canceling operation, and a video voltage writing operation.
In the display apparatus 1 according to the first embodiment, the reset operation, the offset canceling operation, and the video voltage writing operation are performed for each pixel row in two horizontal periods (2H). In the example of
In the example of
First, the reset operation is described.
At time t11 in the first horizontal period, the logic of the light emission control signal BG is switched from “H” to “L”. Subsequently at time t12, the logic of the reset control signal RG is switched from “L” to “H”, which causes the reset control switch 235 to be in a conductive state to supply the reset voltage Vrst to the reset line 230. The reset voltage Vrst is then applied to the other one (second terminal) of the source and the drain of each of the drive transistors 341, 342, 343, and 344. At the same time, the logic of the initialization voltage output timing control signal xasw1 is controlled to switch from “L” to “H” in synchronization with the reset control signal RG, which causes the first initialization signal control switch 101 and the second initialization signal control switch 102 to be in a conductive state. The video signal driver 100 then begins to load data of the initialization voltage Vini and supplies the initialization voltage Vini to the first video signal line 110 and the second video signal line 120.
Subsequently at time t13, the logic of the first scan voltage SG1 and the logic of the second scan voltage SG2 are switched from “L” to “H”, which causes the pixel switches 331, 332, 333, and 334 to be in a conductive state. The initialization voltage Vini is then applied to the gates (third terminals) of the drive transistors 341, 342, 343, and 344 via the corresponding pixel switches 331, 332, 333, and 334.
With this process, the potentials of the gates (third terminal) of the drive transistors 341, 342, 343, and 344 are set to a potential corresponding to the initialization voltage Vini. Switching the drive transistors 341, 342, 343, and 344 to the conductive state resets the potential of the one (first terminal) of the source and the drain of each of the drive transistors 341, 342, 343, and 344 to the potential corresponding to the reset voltage Vrst, and the voltage across each of the storage capacitors 351, 352, 353, and 354 is set to a voltage corresponding to (Vini−Vrst). The voltage to be applied to the organic light-emitting diodes 371, 372, 373, and 374 becomes a voltage corresponding to (Vrst−GND). The reset voltage Vrst is set such that the voltage to be applied to the organic light-emitting diodes 371, 372, 373, and 374 is equal to or lower than a light emission threshold voltage (light emission start voltage) of the organic light-emitting diodes 371, 372, 373, and 374. The light emission threshold voltage is, for example, a voltage at which a current begins to flow through the organic light-emitting diodes 371, 372, 373, and 374, that is, a forward voltage drop. The initialization voltage Vini can be set to, for example, 1.27 V. The reset voltage Vrst can be set to, for example, −3 V.
At time t14, the logic of the first scan voltage SG1 and the logic of the second scan voltage SG2 are switched from “H” to “L”, which causes the pixel switches 331, 332, 333, and 334 to be in a non-conductive state, and the reset operation is ended. Subsequently at time t15, the logic of the initialization voltage output timing control signal xasw1 is switched from “H” to “L”, which causes the first initialization signal control switch 101 and the second initialization signal control switch 102 to be in a non-conductive state, and the video signal driver 100 stops loading the data of the initialization voltage Vini. In the following description, a period from time t13 to time t14 in the first period of the first horizontal period is referred to as a “reset period”.
Described next is the offset canceling operation.
At time t18 in the second horizontal period, the logic of the reset control signal RG is switched from “H” to “L”. Subsequently at time t19, the logic of the light emission control signal BG is switched from “L” to “H”, which causes the light emission control switch 31 to be in a conductive state such that the power voltage PVDD is supplied to the reset line 230. The power voltage PVDD is then applied to the other one (second terminal) of the source and the drain of each of the drive transistors 341, 342, 343, and 344. At the same time, the logic of the initialization voltage output timing control signal xasw1 is switched from “L” to “H” in synchronization with the light emission control signal BG, which causes the first initialization signal control switch 101 and the second initialization signal control switch 102 to be in a conductive state. The video signal driver 100 then begins to load the data of the initialization voltage Vini and supplies the initialization voltage Vini to the first video signal line 110 and the second video signal line 120.
Subsequently at time t20, the logic of the first scan voltage SG1 and the logic of the second scan voltage SG2 are switched from “L” to “H”, which causes the pixel switches 331, 332, 333, and 334 to be in a conductive state. The initialization voltage Vini is then applied to the gates (third terminals) of the drive transistors 341, 342, 343, and 344 via the corresponding pixel switches 331, 332, 333, and 334.
With this process, the potentials of the gates (third terminals) of the drive transistors 341, 342, 343, and 344 are fixed to a potential corresponding to the initialization voltage Vini. The light emission control switch 31 is in the conductive state, and thus a current flows from the power line 310 to the drive transistors 341, 342, 343, and 344, thereby increasing the potential of the one (first terminal) of the source and the drain of each of the drive transistors 341, 342, 343, and 344 from the reset voltage Vrst that has been written in the reset operation. When the potential of the one (first terminal) of the source and the drain reaches to a voltage (Vini−Vth) that is lower than the potential of the gate (third terminal) by the threshold voltage Vth of the pixel switches 331, 332, 333, and 334, the pixel switches 331, 332, 333, and 334 are switched to a non-conductive state, and the potential of the one (first terminal) of the source and the drain is fixed to the voltage (Vini−Vth). Thus, the voltage across each of the storage capacitors 351, 352, 353, and 354 is set to a voltage corresponding to the threshold voltage Vth. Based on this state, a voltage corresponding to the video voltage (the first video voltage Vsig1 and the second video voltage Vsig2) is written in the storage capacitors 351, 352, 353, and 354 in a video voltage writing operation to be described later. With this process, the effects caused by the differences in threshold voltages Vth of the drive transistors 341, 342, 343, and 344 among pixels can be eliminated from the current flowing to the organic light-emitting diodes 371, 372, 373, and 374 in the light emitting operation.
At time t21, the logic of the first scan voltage SG1 and the logic of the second scan voltage SG2 are switched from “H” to “L”, which causes the pixel switches 331, 332, 333, and 334 to be in a non-conductive state, and the offset canceling operation is ended. Subsequently at time t22, the logic of the initialization voltage output timing control signal xasw1 is switched from “H” to “L”, which causes the first initialization signal control switch 101 and the second initialization signal control switch 102 to be in a non-conductive state, and the video signal driver 100 stops loading the data of the initialization voltage Vini. In the following description, the period from time t20 to time t21 in the first period of the second horizontal period is referred to as an “offset canceling period”.
Described next is the video voltage writing operation.
In the second period and the third period of the second horizontal period, the logic of the reset control signal RG remains “L” and the logic of the light emission control signal BG remains “H” as in the offset canceling period.
At time t24 in the second horizontal period, the logic of the first video voltage output timing control signal xasw2-1 and the logic of the second video voltage output timing control signal xasw2-2 are switched from “L” to “H”, which causes the first video voltage control switch 103 and the second video voltage control switch 104 to be in a conductive state. Accordingly, the first video voltage Vsig1 is supplied to the first video signal line 110, and the second video voltage Vsig2 is supplied to the second video signal line 120. Subsequently at time t25, the logic of the first scan voltage SG1 is switched from “L” to “H”, which causes the pixel switches 331 and 332 to be in a conductive state. With this process, the potential of the gate (third terminal) of the drive transistor 341 increases from a potential corresponding to the initialization voltage Vini to a potential corresponding to the first video voltage Vsig1, and the potential of the gate (third terminal) of the drive transistor 342 increases from a potential corresponding to the initialization voltage Vini to a potential corresponding to the second video voltage Vsig2.
At time t26, the logic of the first scan voltage SG1 is switched from “H” to “L”, which causes the pixel switches 331 and 332 to be in a non-conductive state, and the video voltage writing operation in the second period of the second horizontal period is ended. Hereinafter, the video voltage writing operation in the second period of the second horizontal period may be referred to as a “first video voltage writing operation”. Subsequently at time t27, the logic of the first video voltage output timing control signal xasw2-1 and the logic of the second video voltage output timing control signal xasw2-2 are switched from “H” to “L”, which causes the video signal driver 100 to stop loading the data of the first video voltage Vsig1 and the second video voltage Vsig2. In the following description, the period from time t25 to time t26 in the second period of the second horizontal period is referred to as a “first video voltage writing period”. In the first video voltage writing period, the first video voltage Vsig1 is written in the subpixel Rpix, and the second video voltage Vsig2 is written in the subpixel Bpix.
At time t29 in the second horizontal period, the logic of the first video voltage output timing control signal xasw2-1 and the logic of the second video voltage output timing control signal xasw2-2 are switched from “L” to “H”, which causes the first video voltage control switch 103 and the second video voltage control switch 104 to be in a conductive state. Accordingly, the first video voltage Vsig1 is supplied to the first video signal line 110, and the second video voltage Vsig2 is supplied to the second video signal line 120. Subsequently at time t30, the logic of the second scan voltage SG2 is switched from “L” to “H”, which causes the pixel switches 333 and 334 to be in a conductive state. With this process, the potential of the gate (third terminal) of the drive transistor 343 increases from a potential corresponding to the initialization voltage Vini to a potential corresponding to the first video voltage Vsig1, and the potential of the gate (third terminal) of the drive transistor 344 increases from a potential corresponding to the initialization voltage Vini to a potential corresponding to the second video voltage Vsig2.
At time t31, the logic of the second scan voltage SG2 is switched from “H” to “L”, which causes the pixel switches 333 and 334 to be in a non-conductive state, and the video voltage writing operation in the third period of the second horizontal period is ended. Hereinafter, the video voltage writing operation in the third period of the second horizontal period may be referred to as a “second video voltage writing operation”. Subsequently at time t32, the logic of the first video voltage output timing control signal xasw2-1 and the logic of the second video voltage output timing control signal xasw2-2 are switched from “H” to “L”, which causes the video signal driver 100 to stop loading the data of the first video voltage Vsig1 and the second video voltage Vsig2. In the following description, the period from time t30 to time t31 in the third period of the second horizontal period is referred to as a “second video voltage writing period”. In the second video voltage writing period, the first video voltage Vsig1 is written in the subpixel Gpix, and the second video voltage Vsig2 is written in the subpixel Wpix.
The organic light-emitting diodes 371, 372, 373, and 374 emit light during a period from the first and the second video voltage writing periods until time t11 in the first horizontal period of a subsequent frame at which the logic of the light emission control signal BG is switched from “H” to “L”.
The display apparatus 1 according to the first embodiment performs the display operation of a one-frame video signal Vdisp such that the reset operation, the offset canceling operation, and the video voltage writing operation described above are performed for each pixel row in order by being staggered by one horizontal period (1H).
The following describes striped non-uniformity of luminance that occurs on a displayed image on the organic EL panel 10 including organic EL elements as light-emitting elements.
As described above, the first embodiment deals with the organic EL panel 10 that is manufactured by applying the annealing process to the array process. In the annealing process, a silicon thin film is irradiated with a line beam for crystallization. In this process, irradiation speed of the line beam varies periodically, which may result in striped non-uniformity of luminance on the displayed image. The non-uniformity of irradiation in the annealing process may cause performance of the TFTs on a substrate to be nonuniform from region to region, which may be a possible cause of this striped non-uniformity of luminance on the displayed image.
The inventor of the present disclosure has found that the striped non-uniformity of luminance, which is caused by the non-uniformity of line beam irradiation in the annealing process, is viewed differently depending on the tone of the video signal. The inventor has found that the striped non-uniformity of luminance on a displayed image is viewed differently depending on the duration of an initialization period (first period) in the series of operations including the initialization operation, the writing operation of the first video voltage Vsig1, and the writing operation of the second video voltage Vsig2. More specifically, setting the initialization period (first period) to be short when the tone of the video signal Vdisp is relatively high reduces the striped non-uniformity of luminance on a displayed image; whereas setting the initialization period (first period) to be long when the tone of the video signal Vdisp is relatively low reduces the striped non-uniformity of luminance on a displayed image.
As illustrated in
In the first embodiment, when the tone (the voltage level of the first video voltage Vsig1 and the second video voltage Vsig2) of the video signal Vdisp is higher than the tone of the video signal Vdisp in the example of
In the first embodiment, when the tone (the voltage level of the first video voltage Vsig1 and the second video voltage Vsig2) of the video signal Vdisp is lower than the tone of the video signal Vdisp in the example of
It is considered that changing the proportion of the reset period and the offset canceling period to the first video voltage writing period and the second video voltage writing period in two horizontal periods (2H), that is, changing the proportion of the first period to the second and the third periods in one horizontal period (1H) in accordance with the tone of the video signal Vdisp, eliminates the differences in performance of the TFTs caused by non-uniformity of line beam irradiation in the annealing process.
The following describes the controller 11 of the display apparatus 1 according to the first embodiment. In the following description, the aforementioned reset period and offset canceling period are each referred to as an “initialization period”, and the first video voltage writing period and the second video voltage writing period are each referred to as a “video voltage writing period”.
As illustrated in
As illustrated in the modifications of
To reduce the striped non-uniformity of luminance that is caused by the non-uniformity of line beam irradiation in the annealing process, the examples of the method of setting the initialization period in accordance with the tone of each pixel are described. However, these examples are described for illustrative purposes only, and thus, the method of setting the initialization period in accordance with the tone of each pixel is not intended to limit the scope of the present invention.
The controller 11 according to the first embodiment includes a configuration capable of setting the initialization period in accordance with the tone of the video signal by using the conversion table or the conversion formula that can achieve characteristics such as the characteristics illustrated in
As illustrated in
As illustrated in the modifications of
To reduce the striped non-uniformity of luminance that is caused by the non-uniformity of line beam irradiation in the annealing process, the examples of the method of setting the video voltage writing period in accordance with the tone of each pixel are described. However, these examples are described for illustrative purposes only, and thus, the method of setting the video voltage writing period in accordance with the tone of each pixel is not intended to limit the scope of the present invention.
The controller 11 according to the first embodiment includes a configuration capable of setting the video voltage writing period in accordance with the tone of the video signal by using the conversion table or the conversion formula that can achieve characteristics such as the characteristics illustrated in
Thus, the display apparatus according to the first embodiment can eliminate the striped non-uniformity of luminance that is caused by the non-uniformity of line beam irradiation in the annealing process by controlling the initialization period and the video voltage writing period in accordance with the tone of the video signal, the initialization period being a period in which the initialization voltage Vini is applied to the pixels, the video voltage writing period being a period in which the first video voltage Vsig1 (second video voltage Vsig2) is applied to the pixels.
The configuration of the embodiment above is applied to the display apparatus in which the pixels each include four subpixels. The configuration of the embodiment above can be applied to an apparatus in which the reset operation and the writing operation are performed pixel by pixel, for example. The embodiment above is applicable to any configuration that performs initialization before writing.
In the embodiment above, the tone of each pixel is detected and used for setting the duration of the initialization period or the video voltage writing period. In some embodiments, the display region 20 may be divided into a plurality of regions, the average of tone values may be calculated for each divided region, and the initialization period and/or the video voltage writing period may be set for each divided region in accordance with the average of the tone values. For example, the duration of the initialization period and/or the video voltage writing period may be set differently between a relatively high tone region and a relatively low tone region for each frame.
In the embodiment above, the controller 11 sets the initialization period and/or the video voltage writing period in accordance with the tone of each pixel. In some embodiments, the initialization period and/or the video voltage writing period may be set by an observer through the operation of an input unit (not illustrated) when the observer visually identifies the striped non-uniformity of luminance that is caused by the non-uniformity of line beam irradiation in the annealing process.
As described above, the display apparatus 1 according to the embodiment above is configured to control the initialization period and the video voltage writing period in accordance with the tone of the video signal, thereby reducing the striped non-uniformity of luminance that is caused by the non-uniformity of line beam irradiation in the annealing process, the initialization period being a period in which the initialization voltage Vini is applied to the pixels, and the video voltage writing period being a period in which the video voltage (the first video voltage Vsig1, the second video voltage Vsig2) is applied to the pixels.
It is preferred that the video voltage writing period is made to be longer when the video signal has a tone higher than a certain threshold than the period when the video signal has a tone equal to or lower than the threshold.
It is preferred that the initialization period is made to be longer when the video signal has a tone lower than a certain threshold than the period when the video signal has a tone equal to or higher than the threshold.
It is preferred that the initialization period is shortened as the video signal has a higher tone.
It is preferred that the video voltage writing period is extended as the video signal has a higher tone.
According to the embodiment above, the display apparatus 1 that can reduce the striped non-uniformity of luminance that is caused by the annealing process can be provided.
Although, in the embodiment above, each of the pixels 30 is configured by the four subpixels Rpix, Gpix, Bpix, and Wpix, the configuration of the pixels 30 is not limited to this. For example, each of the pixels 30 may be configured by three subpixels that emit light in luminescent colors of red (R), green (G), and blue (B). The luminescent colors of the subpixels are not limited to these particular examples.
In the embodiment above, the reset period and the offset canceling period in which the initialization voltage Vini is applied to the pixels are referred to as the “initialization period”, and the “initialization period” is controlled in accordance with the tone of the video signal. In some embodiments, the “initialization period” may include only the reset period without including the offset canceling period, and the “initialization period” may be controlled in accordance with the tone of the video signal. In some embodiments, the “initialization period” may include only the offset canceling period without including the reset period, and the “initialization period” may be controlled in accordance with the tone of the video signal.
As illustrated in
The constituent elements described in the embodiment above may be combined as appropriate. It should be appreciated that, in addition to the operational effects according to the aspects of the embodiment above, other operational effects that are apparent from the description above or that can be easily considered by those skilled in the art are provided by the present invention.
Number | Date | Country | Kind |
---|---|---|---|
2016-216595 | Nov 2016 | JP | national |