The present application claims priority under 35 U. S. C. §119 to Japanese Patent Application No. 2014-133010, filed Jun. 27, 2014. The contents of this application are incorporated herein by reference in their entirety.
1. Technical Field
The present disclosure relates to a display apparatus.
2. Description of Related Art
When a plurality of LEDs (light emitting elements) are driven simultaneously at an identical timing, the output voltage of the power supply temporarily drops due to an abrupt change in current, which unables lighting of the LEDs (light emitting elements) with a predetermined brightness until the output voltage is re-stabilized. Accordingly, there has been provided an LED drive apparatus (display apparatus) in which a plurality of LEDs (light emitting elements) are driven in order (i.e., driven with a delay time), as described in JP2008-91311A for example.
According to one aspect of the present invention, a display apparatus includes a plurality of light emitting elements, at least one common line, a power supply, a plurality of drive lines, and a controller. The at least one common line is connected to first ends of the plurality of light emitting elements. The power supply is to supply voltage to the plurality of light emitting elements. The plurality of drive lines are connected to second ends of the plurality of light emitting elements. The controller is to execute delay control on lighting possible periods in which the plurality of light emitting elements are to light in unit delay control periods so that an order of delaying the lighting possible periods in a single unit delay control period among the unit delay control periods is different from an order of delaying the lighting possible periods in any one of the unit delay control periods other than the single unit delay control period.
A more complete appreciation of the invention and many of the attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings.
The embodiments will now be described with reference to the accompanying drawings, wherein like reference numerals designate corresponding or identical elements throughout the various drawings.
In the following, the description will be given in more detail.
As the plurality of light emitting elements, for example the plurality of LEDs 1 to 18 shown in
The common lines COM1 to COM3 are connected to one ends of the plurality of LEDs 1 to 18. The plurality of LEDs 1 to 18 may be connected to the common lines COM1 to COM3 in a common anode configuration as shown in
The power supply V supplies voltage to the plurality of LEDs 1 to 18. In the case where two or more common lines are employed, the power supply V may be provided for each of the common lines COM1 to COM3 , but the power supply V may be shared by two or more common lines COM1 to COM3 as shown in
The plurality of drive lines SEG1 to SEG6 are connected to other ends of the plurality of LEDs 1 to 18. For the drive lines SEG1 to SEG6, a copper foil or the like (e.g., part of the interconnection of the printed circuit board) may be employed.
The control unit CNTL2 executes a delay control on lighting possible periods of the plurality of LEDs 1 to 18 in a unit delay control section D. The control unit CNTL2 has an operation unit P2 and switches SW21 to SW26. The switches SW21 to SW26 are connected to the plurality of drive lines SEG1 to SEG6, respectively. The delay control is a timing control executed by the operation unit P2 of the control unit CNTL2. When the control unit CNTL2 turns on a certain LED, the control unit CNTL2 actually energizes the LED in a lighting possible period of the LED assigned by delay control (timing control), thereby turning on the LED. Note that, as will be described later, the control unit CNTL2 can execute delay control (timing control) not only by assigning lighting possible periods (the periods represented by solid lines and hatched areas in
The lighting possible period refers to the period in which an LED can be caused to light. In the present embodiment, the period in which the control unit CNTL2 can turn ON the switches SW21 to SW26 corresponds to the lighting possible period. More specifically, the period in which the control unit CNTL2 can turn ON the switch SW21 corresponds to the lighting possible period of the LEDs 1, 7, and 13; the period in which the control unit CNTL2 can turn ON the switch SW22 corresponds to the lighting possible period of the LEDs 2, 8, and 14; the period in which the control unit CNTL2 can turn ON the switch SW23 corresponds to the lighting possible period of the LEDs 3, 9, and 15; the period in which the control unit CNTL2 can turn ON the switch SW24 corresponds to the lighting possible period of the LEDs 4, 10, and 16; the period in which the control unit CNTL2 can turn ON the switch SW25 corresponds to the lighting possible period of the LEDs 5, 11, and 17; and the period in which the control unit CNTL2 can turn ON the switch SW26 corresponds to the lighting possible period of the LEDs 6, 12, and 18. Note that, the foregoing is merely an example. Here, for example as shown in
As described above, the control unit CNTL2 can execute delay control (timing control) by assigning lighting possible periods not only to lighting-target LEDs (see the periods represented by solid lines and hatched areas in
Each lighting possible period in an unit delay control period is set shorter than the length of the unit delay control section D. The length of a lighting possible period in a single unit delay control section D may be identical to that of a lighting possible period in each of other unit delay control sections D, or may be different from that of a lighting possible period in any one of other unit delay control sections D. Note that, by setting the length of a lighting possible period in a single unit delay control section D to be different from that of a lighting possible period in any one of other unit delay control sections D, the lighting possible periods can be modulated (i.e., subjected to grayscale weighting).
The lighting period refers to the period in which an LED actually turns on in a lighting possible period. For example, the case where energizing is started from the beginning of a lighting possible period, the lighting period refers to the time period from the beginning of the lighting possible period to the end of the energizing within the lighting possible period. By the aforementioned modulation (grayscale weighting) of the lighting possible periods or PWM control (Pulse Width Modulation) of the lighting periods, a contrast of light and shade can be generated to lighting of the LEDs 1 to 18.
The unit delay control section D is the section serving as the unit of delay control, and a series of displays (e.g., “HOLD”) is structured by a plurality of unit delay control sections D. The information presented by such a series of displays is not particularly limited. For example, such a series of displays may or may not convey a literal meaning. Further, the number of letters or symbols structuring a series of displays is not limited (though the present embodiment shows the mode in which such a series of displays is structured by the four letters “HOLD”, it is merely an example as stated above). The number of the unit delay control sections D structuring a series of displays is not particularly limited. For example, two or more unit delay control sections D may be assigned to “H” in a series of displays “HOLD”. Such a plurality of unit delay control sections D structuring a series of displays may be identical or different among each other in length. When the display apparatus 1 has completed the showing of a series of displays, the display apparatus 1 may repeatedly show the same series of displays, or may show other series of displays. Alternatively, the display apparatus 1 may end the operation.
The length of a delay time is not particularly limited. The delay time refers to the difference between the beginning time point of one lighting possible period and the beginning time point of the following lighting possible period. A transient response recovery time of the power supply V refers to the time that is taken until the output voltage of the power supply V recovers to a determined value when the load state of the power supply V has sharply changed.
Note that, it is particularly preferable that the delay time is equal to or shorter than the transient response recovery time of the power supply V. This is because when delay control is executed with the delay time equal to or shorter than the transient response recovery time, the delay time of the LEDs 1 to 18 becomes shorter, whereby the lighting possible period of the LEDs 1 to 18 becomes longer as described in “Reason Why Shorter Delay Time Increases Lighting Possible Period of LEDs” below, thus enabling the LEDs 1 to 18 to emit light with high luminance.
Here is an example. When the unit delay control section is 400 ns and the lighting possible period is assigned to all the 18 pieces of LEDs with a delay time of 10 ns, the length of the 18th lighting possible period becomes 230 ns (230 ns=400 ns−10 ns×17) at the maximum. However, with a delay time of 20 ns, the length of the 18th lighting possible period becomes 60 ns (60 ns=400 ns−20 ns×17) at the maximum. As can be seen from this example, in the present embodiment, the shorter the delay time, the longer the lighting possible period of the LEDs can be. Note that, when no delay control is executed, the delay time becomes 0 ns. Applying this to the specific example above, the length of the 18th lighting possible period becomes 400 ns (400 ns=400 ns−0 ns×17) at the maximum.
The order of delaying of the lighting possible periods in a single unit delay control section D is different from the order of delaying in any one of other unit delay control sections D. Thus, a uniform voltage distribution among the plurality of LEDs 1 to 18 throughout a plurality of unit delay control sections D can be obtained. In particular, in the case where delay control is executed with the delay time equal to or shorter than the transient response recovery time, the LEDs 1 to 18 are supplied with the output voltage of various values equal to or smaller than a determined value. In this case, conventionally, variations in brightness among the LEDs 1 to 18 are prominent. On the other hand, when the order of delaying is varied as described above, variations in voltage among the LEDs 1 to 18 are reduced when the plurality of unit delay control sections D are recognized as a whole, and variations in brightness among the plurality of LEDs 1 to 18 become not noticeable (or the variations become indistinctive, while they may be noticeable). For example, in a display apparatus in which delay control is executed with a delay time of 10 ns over three light emitting elements A, B, and C, the first light emitting element A is turned on at 0 ns; the second light emitting element B is turned on at 10 ns; and the third light emitting element C is turned on at 20 ns. In this case, if the transient response recovery time is 20 ns, the output voltage of the power supply V will drop simultaneously at the beginning of voltage supply to the first light emitting element A and will not recover to the original value for the following 20 ns. Accordingly, the first light emitting element A and the second light emitting element B cannot be supplied with the output voltage of a determined value. However, varying the order of delaying as described above, the order of delaying of the first unit delay control section D1 is A→B→C, the order of delaying of the second unit delay control section D2 being B→C→A, and the order of delaying of the third unit delay control section D3 being C→A→B. Thus, when the three unit delay control sections D 1 to D3 are recognized as a whole, the three light emitting elements A, B, and C are treated equally, and the three light emitting elements A, B, and C are supplied with similar output voltage.
As the operation unit P2 of the control unit CNTL2, an FPGA (Field Programmable Gate Array), a microcomputer, or the combination thereof can be employed. Further, as the switches SW21 to SW26 of the control unit CNTL2, NPN transistors, N-channel FETs (Field Effect Transistors) or the like can be employed.
As has been described above, with the display apparatus 1 according to the first embodiment, the voltage supplied to the plurality of LEDs 1 to 18 can be equalized throughout the plurality of unit delay control sections D. Accordingly, it becomes possible to turn on the plurality of LEDs 1 to 18 with uniform brightness appearance. In particular, in the case where delay control is executed with a delay time equal to or shorter than the transient response recovery time, conventionally variations in brightness among the LEDs 1 to 18 are substantially prominent. On the other hand, with the display apparatus 1 according to the first embodiment, variations in voltage among the LEDs 1 to 18 are reduced when the plurality of unit delay control sections D are recognized as a whole. Thus, variations in brightness among LEDs 1 to 18 become not noticeable (or the variations become indistinctive, while they may be noticeable).
The order of delaying of the lighting possible periods is varied in the unit delay control sections D1 to D12 and in the unit delay control sections D13 to D24, except for the lighting possible periods (SW21, SW26) of the non lighting-target LEDs 1, 6, 7, 12, 13, and 18. That is, delay control is executed in the unit delay control sections D1 to D3 in order of the lighting possible period (SW22)→the lighting possible period (SW23)→the lighting possible period (SW24)→the lighting possible period (SW25); delay control is executed in the unit delay control sections D4 to D6 in order of the lighting possible period (SW23)→the lighting possible period (SW24)→the lighting possible period (SW25)→the lighting possible period (SW22); delay control is executed in the unit delay control sections D7 to D9 in order of the lighting possible period (SW24) the lighting possible period (SW25)→the lighting possible period (SW22)→the lighting possible period (SW23); and delay control is executed in the unit delay control sections D10 to D12 in order of the lighting possible period (SW25)→the lighting possible period (SW22)→the lighting possible period (SW23)→the lighting possible period (SW24). Further, delay control is executed in the unit delay control sections D13 to D15 in order of the lighting possible period (SW25)→the lighting possible period (SW24)→the lighting possible period (SW23)→the lighting possible period (SW22); delay control is executed in the unit delay control sections D16 to D18 in order of the lighting possible period (SW24)→the lighting possible period (SW23)→the lighting possible period (SW22)→the lighting possible period (SW25); delay control is executed in the unit delay control sections D19 to D21 in order of the lighting possible period (SW23)→the lighting possible period (SW22)→the lighting possible period (SW25)→the lighting possible period (SW24); and delay control is executed in the unit delay control sections D22 to D24 in order of the lighting possible period (SW22)→the lighting possible period (SW25)→the lighting possible period (SW24)→the lighting possible period (SW23). The order of delaying may be varied similarly between the unit delay control sections D1 to D12 displaying the letter “H” and in the unit delay control sections D13 to D24 displaying the letter “O”. Alternatively, the order of delaying may be varied differently between them as shown in
According to the first exemplary operation described above, it becomes possible to turn on the plurality of LEDs 1 to 18 with uniform brightness appearance.
In the second exemplary operation, being different from the first exemplary operation, at least two unit delay control sections D become continuous for one common line. For example, in the first exemplary operation, SW11 turns ON in the unit delay control section D1 and voltage is applied to the common line COM1; SW12 turns ON in the unit delay control section D2 and voltage is applied to the common line COM2; SW13 turns ON in the unit delay control section D3 and voltage is applied to the common line COM3. On the other hand, in the second exemplary operation, SW11 turns ON in two unit delay control sections D1 and D2 and voltage is applied to the common line COM1; SW12 turns ON in two unit delay control sections D3 and D4 and voltage is applied to the common line COM2; and SW13 turns ON in two unit delay control sections D5 and D6 and voltage is applied to the common line COM3.
The length of the lighting possible periods or that of the unit delay control sections D may be or may not be identical to one another. Note that, while
The order of delaying of the lighting possible periods is varied in the unit delay control sections D1 to 24 and in the unit delay control sections D25 to D48, except for the lighting possible periods (SW21, SW26) of the non lighting-targets LED 1, 6, 7, 12, 13, and 18. Specifically, delay control is executed in the unit delay control sections D1 to D6 in the order of delaying of the lighting possible period (SW22)→the lighting possible period (SW23)→the lighting possible period (SW24)→the lighting possible period (SW25); delay control is executed in the unit delay control sections D7 to D12 in the order of delaying of the lighting possible period (SW23)→the lighting possible period (SW24)→the lighting possible period (SW25)→the lighting possible period (SW22); delay control is executed in the unit delay control sections D13 to D18 in the order of delaying of the lighting possible period (SW24)→the lighting possible period (SW25)→the lighting possible period (SW22)→the lighting possible period (SW23); and delay control is executed in the unit delay control sections D19 to D24 in the order of delaying of the lighting possible period (SW25)→the lighting possible period (SW22)→the lighting possible period (SW23)→the lighting possible period (SW24).
According to the second exemplary operation described above also, similarly to the first exemplary operation, it becomes possible to turn on the plurality of LEDs 1 to 18 with uniform brightness appearance.
In the third exemplary operation, being different from the first exemplary operation in which each light emitting element lights with different delay times, a group made of a combination of two or more light emitting elements is set, and the two or more light emitting elements belonging to the identical group are subjected to delay control with the same delay time. Specifically, in the unit delay control sections D1 to D9 in which the letter “O” is displayed, it is assumed that the LEDs 1, 7, and 13 (SW21) and the LEDs 2, 8, and 14 (SW22) belong to group A; the LEDs 3, 9, and 15 (SW23) and the LEDs 4, 10, and 16 (SW24) belong to group B; and that the LEDs 5, 11, and 17 (SW25) and the LEDs 6, 12, and 18 (SW26) belong to group C. Then, in the unit delay control sections D1 to D3, delay control is executed in order of group A (SW21, SW22)→group B (SW23, SW24)→group C (SW25, SW26); in the unit delay control sections D4 to D6, delay control is executed in order of group B (SW23, SW24)→group C (SW25, SW26)→group A (SW21, SW22); and delay control is executed in the unit delay control sections D7 to D9 in order of group C (SW25, SW26)→group A (SW21, SW22)→group B (SW23, SW24). Further, in the unit delay control sections D10 to D18 in which the letter “L” is displayed, it is assumed that the LEDs 1, 7, and 13 (SW21) and the LEDs 4, 10, and 16 (SW24) belong to group A; the LEDs 2, 8, and 14 (SW22) and the LEDs 5, 11, and 17 (SW25) belong to group B; and the LEDs 3, 9, and 15 (SW23) and the LEDs 6, 12, and 18 (SW26) belong to group C. Then, in the unit delay control sections D10 to D12, delay control is executed in order of group A (SW21, SW24)→group B (SW22, SW25)→group C (SW23, SW26); delay control is executed in the unit delay control sections D13 to D15 in order of group B (SW22, SW25)→group C (SW23, SW26)→group A (SW21, SW24); and delay control is executed in the unit delay control sections D16 to D18 in order of group C (SW23, SW26)→group A (SW21, SW24)→group B (SW22, SW25).
According to the third exemplary operation described above also, similarly to the first exemplary operation, it becomes possible to turn on the plurality of LEDs 1 to 18 with uniform brightness appearance.
In the fourth exemplary operation, being different from the third exemplary operation in which the number of the unit delay control sections D structuring a series of displays is smaller than the factorial of n (where n is the number of the LEDs 1 to 18 or the number of groups), the number of the unit delay control sections D structuring a series of displays is equal to the factorial of n (where n is the number of the LEDs 1 to 18 or the number of groups), and the order of delaying is different for each unit delay control section D.
Specifically, in the unit delay control sections D1 to D6 in which the letter “L” is displayed, it is assumed that the LEDs 1, 7, and 13 (SW21), the LEDs 2, 8, and 14 (SW22), and the LEDs 3, 9, and 15 (SW23) belong to group A; and that the LEDs 4, 10, and 16 (SW24), the LEDs 5, 11, and 17 (SW25), and the LEDs 6, 12, and 18 (SW26) belong to group B. Then, in the unit delay control sections D1 to D3, delay control is executed in order of group A (SW21, SW22, SW23)→group B (SW24, SW25, SW26); and in the unit delay control sections D4 to D6, delay control is executed in order of group B (SW24, SW25, SW26)→group A (SW21, SW22, SW23). Further, in the unit delay control section D7 to D24 in which the letter “D” is displayed, it is assumed that the LEDs 1, 7, and 13 (SW21) and the LEDs 2, 8, and 14 (SW22) belong to group A; that the LEDs 3, 9, and 15 (SW23) and the LEDs 4, 10, and 16 (SW24) belong to group B; and that the LEDs 5, 11, and 17 (SW25) and the LEDs 6, 12, and 18 (SW26) belong to group C. Then, in the unit delay control sections D7 to D9, delay control is executed in order of group A (SW21, SW22)→group B (SW23, SW24)→group C (SW25, SW26); in the unit delay control sections D10 to D12, delay control is executed in order of group A (SW21, SW22)→group C (SW25, SW26)→group B (SW23,SW24); in the unit delay control sections D13 to D15, delay control is executed in order of group B (SW23, SW24)→group C (SW25, SW26)→group A (SW21, SW22); in the unit delay control sections D16 to D18, delay control is executed in order of group B (SW23, SW24)→group A (SW21, SW22)→group C (SW25, SW26); delay control is executed in the unit delay control sections D19 to D21 in order of group C (SW25, SW26)→group A (SW21, SW22)→group B (SW23, SW24); and delay control is executed in the unit delay control sections D22 to D24 in order of group C (SW25, SW26)→group B (SW23, SW24)→group A (SW21, SW22).
According to the fourth exemplary operation described above also, similarly to the third exemplary operation, it becomes possible to turn on the plurality of LEDs 1 to 18 with uniform brightness appearance.
As in the first to third exemplary operations, in the case where the number of the unit delay control sections D structuring a series of displays is smaller than the factorial of n (where n is the number of the LEDs 1 to 18 or the number of groups), the time taken for equalizing the brightness of the plurality of LEDs 1 to 18 can be shortened. On the other hand, as in the fourth exemplary operation, in the case where the number of the unit delay control sections D structuring a series of displays is equal to the factorial of n (where n is the number of the LEDs 1 to 18 or the number of groups) and the order of delaying is different for each unit delay control section D, even when current flowing through the LEDs greatly varies among the LEDs 1 to 18, voltage supplied to the plurality of LEDs 1 to 18 becomes substantially constant when passing through the plurality of unit delay control sections D.
Next, a description will be given of a display apparatus according to Example 1.
In connection with the display apparatus according to Example 1, 1,728 LEDs (including elements of three types, namely, Red, Green, and Blue) were disposed at a section of 4 mm longitudinally and laterally. Further, 24 common lines connected to anodes of the LEDs were disposed in the lateral direction, while 216 lines (72 lines×3 colors) of drive lines connected to cathodes of the LEDs were disposed in the longitudinal direction.
A DC 5V constant voltage source was employed as the power supply. A source driver having an FPGA and P-channel FETs operating on 5 V was employed as the control unit that time-divisionally applies voltage to the common lines. A sink driver having an FPGA and NPN transistors driven by a constant-current set to about 15 mA was employed as the control unit for drawing current from the drive lines.
The display apparatus according to Example 1 was dynamically driven at a duty ratio of 1/24. The period in which the source driver applies voltage to the common lines was employed as the unit delay control section. The length of each unit delay control section was set to 33.4 us. The length between each of the unit delay control sections was set to 10 us.
Further, in order to facilitate checking of whether the plurality of LEDs are turned on with uniform brightness appearance, all the 1728 LEDs arranged in a matrix were turned on to flash on and off in low light, and divided into five groups differing in the order of delaying. That is, the lighting periods in which the sink driver draws current were all set to 41.2 ns with the delay time of 16.7 ns.
The unit delay control sections of the common lines 1 to 24 were defined as one cycle. The LEDs on one common line were divided into five groups. The groups respectively contain 16-, 16-, 16-, 16-, and 8-pieces of LEDs from the left side on the display surface. The order of delaying in the first cycle unit delay control section was group 1→group 2→group 3→group 4→group 5; the order of delaying in the second cycle unit delay control section was group 2→group 3→group 4→group 5→group 1; the order of delaying in the third cycle unit delay control section was group 3→group 4→group 5→group 1→group 2; the order of delaying in the fourth cycle unit delay control section was group 4→group 5→group 1→group 2→group 3; and the order of delaying in the fifty cycle unit delay control section was group 5→group 1 group 2→group 3→group 4. From then on, the displays from the first to fifth cycles (an exemplary series of displays) were repeated.
When such a display apparatus was visually checked in a darkroom, the brightness among the plurality of LEDs was uniform, and the display on the entire surface was uniform. Accordingly, the display apparatus according to Example 1 can be evaluated as a high-quality display apparatus.
Next, a display apparatus according to Comparative Example 1 is discussed.
As the display apparatus according to Comparative Example 1, a display apparatus basically structured similarly to the display apparatus according to Example 1 was employed. However, with the display apparatus according to Comparative Example 1, the order of delaying was fixed as group 1→group 2→group 3 group 4→group 5, and did not differ among the unit delay control sections. In connection with the display apparatus according to Comparative Example 1, the brightness among the plurality of LEDs was not uniform when the plurality of unit delay control sections were recognized as a whole. The brightness was varied as being gradually shaded from the left side on the display surface, namely among group 1 containing 24×16 areas, group 2 containing 24×16 areas, group 3 containing 24×16 areas, group 4 containing 24×16 areas, and group 5 containing 24×8 areas (brightened up from group 1 toward group 5).
In this manner, the brightness among the plurality of LEDs of the display apparatus according to Comparative Example 1 was not uniform, and uniform display on the entire surface was not provided. Accordingly, the display apparatus according to Comparative Example 1 can be evaluated as a low-quality display apparatus.
Next, a display apparatus according to Comparative Example 2 is considered.
As the display apparatus according to Comparative Example 2, a display apparatus basically structured similarly to the display apparatus according to Example 1 was employed. However, with the display apparatus according to Comparative Example 2, the order of delaying was fixed as group 5→group 4→group 3→group 2→group 1, and did not differ among the unit delay control sections. In connection with the display apparatus according to Comparative Example 2, the brightness among the plurality of unit delay control sections was not uniform when the plurality of LEDs were recognized as a whole. The brightness was varied as being gradually shaded from the left side on the display surface, namely among group 1 containing 24×16 areas, group 2 containing 24×16 areas, group 3 containing 24×16 areas, group 4 containing 24×16 areas, and group 5 containing 24×8 areas (darkened from group 1 toward group 5).
In this manner, the brightness among the plurality of LEDs of the display apparatus according to Comparative Example 2 was not uniform, and uniform display on the entire surface was not provided. Accordingly, the display apparatus according to Comparative Example 2 can be evaluated as a low-quality display apparatus.
In the foregoing, while the description has been given of the embodiment and Examples, the description has been given by way of illustration and is not intended to limit the configuration stated in the scope of claims.
A display apparatus includes: a plurality of light emitting elements; at least one common line connected to one ends of the plurality of light emitting elements; a power supply supplying voltage to the plurality of light emitting elements; a plurality of drive lines connected to other ends of the plurality of light emitting elements; and a control unit executing delay control on lighting possible periods of the plurality of light emitting elements in unit delay control sections. The order of delaying of the lighting possible periods in a single unit delay control section is different from the order of delaying in any one of other unit delay control sections.
With the display apparatus described above, a plurality of light emitting elements can be turned on to achieve a uniform brightness appearance. In particular, in the case where delay control is executed with a delay time equal to or shorter than a transient response recovery time, variations in brightness among a plurality of light emitting elements may have been quite apparent. On the other hand, with the display apparatus described above, variations in brightness among a plurality of light emitting elements can be unnoticeable (or the variations become indistinctive, while they may be noticeable) upon observing the entire of a plurality of unit delay control sections.
Obviously, numerous modifications and variations of the present invention are possible in light of the above teachings. It is therefore to be understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically described herein.
Number | Date | Country | Kind |
---|---|---|---|
2014-133010 | Jun 2014 | JP | national |