This application claims the priority benefit of Taiwan application Ser. No. 95144429, filed on Nov. 30, 2006. All disclosure of the Taiwan application is incorporated herein by reference.
1. Field of the Invention
The present invention relates to a display. More particularly, the present invention relates to a display capable of displaying multi-color space with different specifications.
2. Description of Related Art
In chromatics, XYZ usually indicate colors. Generally speaking, XZ are not used to represent color space. XZ are converted into the form of xy first, and the xy are used to indicate the color space.
x=X/(X+Y+Z) (1)
y=Y/(X+Y+Z) (2)
The XYZ coordinates may be quickly converted into xy coordinates according to formulas (1) and (2).
In most of the information equipments, the display is used as a major communication interface. However, in the design of the display, only one color space of sRGB, NTSC, SMPTE, and PAL is included, and it is impossible to switch between the color spaces with different specifications. Thus, it is inconvenient for users. For example, when the user intends to print a picture seen on the display, after being printed by the printer, it is found that the color of the printed picture is distinctly different from that of the display image. Since the color space of the printer is set to sRGB, but the display is not set to this color space, the distortion is generated.
In addition, in 2006, a paper entitled “Field-sequential-colour display with adaptive gamut” is issued by Johan Bergquist et al. in the society for information display (SID), in which an idea of regulating the range of the color space of the display according to the minimum color space required by the display image. However, it is just mentioned in this paper that the color space may be enlarged or reduced, and the scale range is not distinctly provided.
Accordingly, the present invention is directed to provide a display which is capable of displaying multi-color space with different specifications, such as sRGB, NTSC, SMPTE, and PAL.
The present invention provides a display, which comprises a display unit, a control unit, and a light source. The control circuit is electrically connected to the display unit. The light source is electrically connected to the control circuit, and the control circuit is suitable for controlling the light source to switch between a plurality of illumination modes, such that the display unit may display multi-color space with different specifications. In addition, the color space of the light source covers the multi-color space with different specifications, such as sRGB, NTSC, SMPTE, and PAL.
Since the display of the present invention may display multi-color space with different specifications, such as sRGB, NTSC, SMPTE, and PAL. When the display switching between the color spaces with different specifications, no color distortion is generated. Therefore, the display of the present invention can switch to the required color space according to the requirement of the user. Thus, not only the function of the display is expanded, but also the convenience in use is improved.
It is to be understood that both the foregoing general description and the following detailed description are exemplary, and are intended to provide further explanation of the invention as claimed.
The accompanying drawings are included to provide a further understanding of the invention, and are incorporated in and constitute a part of this specification. The drawings illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
a) to 4(c) show a light source driving method according to a preferred embodiment of the present invention.
In addition, the display unit 105 may be an LCD panel or an image projection unit. The displayed color space specifications may include sRGB, NTSC, SMPTE, and PAL etc. In a preferred embodiment of the present invention, the color space specifications of the display 100 include at least two of the above mentioned specifications. However, in order to make the image displayed by the display unit 105 to meet the color space specifications, the light source 107 with high color saturation, for example, carbon nanotube, light emitting diode (LED), laser and plasma plane light source may be used. The light source 107 of this embodiment is a plurality of LEDs which includes a red LED 131, a green LED 133, and a blue LED 135.
The display 100 of this embodiment further includes a color space selection interface 109 electrically connected to the control circuit 102. In addition, the color space selection interface 109 is, for example, an on-screen display (OSD) interface, thereby the user may use the OSD interface to switch the color space displayed by the display 100.
Referring to
The driving unit 113 includes an image memory unit 115, an image processing unit 117, a timing generator 119, a clock generator 121, and a light source driving circuit 123. The image memory unit 115 is used to receive an image signal, and transmits it to the image processing unit 117. The image processing unit 117 transmits the image data to the display unit 105 and further transmits a synchronizing signal to the clock generating circuit 121. In addition, when the timing generator 119 enables the clock generator 121, the clock generator 121 may transmit a clock control signal to the light source driving circuit 123, thereby driving the light source 107.
In addition, the driving unit 113 further includes a power supply 125 and a parameter regulator 129. The power supply 125 is used to provide the power source for the operation of the LCD panel, and the parameter regulator 129 is used to regulate the brightness of the LCD panel.
After reading the color space specification, the image processing unit 117 transmits a synchronizing signal to the clock generator 121 (S205). At this time, if the clock generator 121 receives the enabling signal of the timing generator 119, the clock generator 121 transmits a clock control signal to the image processing unit 117 and the light source driving circuit 123 respectively. When the image processing unit 117 receives the clock control signal transmitted by the clock generator 121, the image processing unit 117 transmits the image data to the LCD panel, so as to drive the LCD panel to display image. In addition, when the light source driving circuit 123 receives the clock control signal transmitted by the clock generator 121, the light source driving circuit 123 generates a driving signal to the light source 107, such that each LED in the light source 107 provides the required brightness according to the driving signal (S209). Therefore, the display 100 of this embodiment may display the received image data accurately.
When the image displayed by the LCD panel meets the requirements of the user, the regulation is not required (S212). Relatively, when the user intends to regulate the color space of the display image, the user may use the OSD interface to select a new color space (S215).
The present invention is characteristized in that the display 100 may convert between color spaces with different specifications without generating color distortion. It is described how the light source driving circuit 123 drives each light source, so as to switch between the color spaces of the display image below.
Part (a) of FIG. (4) is a light source driving method according to a preferred embodiment of the present invention. In
Similarly, in Parts (b) and (c) of
Since four LEDs capable of emitting different wavelengths respectively are used in this embodiment, the maximum color space range displayed by the display 600 may be effectively enlarged.
In addition, since the color space of the light source in the present invention is larger than the specifications such as sRGB, NTSC, SMPTE, and PAL etc. Therefore, in this embodiment, the light emitted by various LEDs of primary colors has high color saturation. Generally, an LED package has an encapsulant. In order to make the light emitted by the LEDs have high color saturation, in this embodiment, a color saturation enhancement coating of corresponding color is disposed on each LED encapsulant respectively, such that each LED may emit the light with high color saturation.
In another embodiment of the present invention, in order to make the light emitted by the LEDs have high color saturation, a color saturation enhancement dopant is doped in each LED encapsulant respectively, such that each LED may emit the light with high color saturation.
To sum up, the display of the present invention is capable of switching between multi-color space with different specifications without generating color distortion. In addition, the light source of the present invention has high saturation, and the chromaticity covers sRGB, NTSC, SMPTE, and PAL etc, such that the display may display multi-color space with different specifications.
It will be apparent to those skilled in the art that various modifications and variations may be made to the structure of the present invention without departing from the scope or spirit of the invention. In view of the foregoing, it is intended that the present invention cover modifications and variations of this invention provided they fall within the scope of the following claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
95144429 | Nov 2006 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
5243414 | Dalrymple et al. | Sep 1993 | A |
6151004 | Kaneko | Nov 2000 | A |
7135664 | Vornsand et al. | Nov 2006 | B2 |
20020005829 | Ouchi | Jan 2002 | A1 |
20020080304 | Ho et al. | Jun 2002 | A1 |
20030185302 | Abrams, Jr. | Oct 2003 | A1 |
20030234911 | Horvath et al. | Dec 2003 | A1 |
20070189026 | Chemel et al. | Aug 2007 | A1 |
Number | Date | Country |
---|---|---|
2006066380 | Jun 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20080129661 A1 | Jun 2008 | US |