1. Field of the Invention
The present invention relates to a display control apparatus and display control method, particularly to operation mode switching control for a display control apparatus.
2. Description of the Related Art
In recent years, the number of functions using a touch panel has been increasing together with the popularization of an information terminal including a touch panel that allows intuitive operations. A drawing function for enabling a desired picture to be drawn freehand on an LCD panel is one of the functions of using a touch panel. On the other hand, a display control apparatus such as a vari-angle monitor and slidable monitor in which the position of a body having a display unit is variable with respect to a body to be gripped is becoming popular.
Japanese Patent Laid-Open No. 2003-289349 has disclosed a clamshell-type portable telephone whose upper body and lower body are connected by a hinge portion and which allows freehand drawing by operating a touch panel.
Japanese Patent Laid-Open No. 2009-177836 has disclosed a technique for setting an operation mode upon power-on to an appropriate one of a capture mode, reproduction mode, USB mode, and power-off mode in accordance with a change in state of a display unit (touch panel) to reduce the load of switching the mode.
In Japanese Patent Laid-Open No. 2003-289349 described above, since the upper body and lower body are connected by the hinge portion to be pivotable, if, while gripping one body, a touch input operation is performed for the other body, the other body may rotate by pressure applied by the touch operation. This may make it impossible to draw a trajectory as the user wants when he/she performs freehand drawing by a touch operation. If the user performs freehand drawing while maintaining a positional relationship such that the gripped body can withstand the force applied by a touch operation, it is possible to avoid the above-mentioned inconvenience, which, however, is not mentioned.
Japanese Patent Laid-Open No. 2009-177836 has disclosed a technique of switching an operation mode to an appropriate one of a capture mode, reproduction mode, USB mode, and power-off mode in accordance with a change in state of a display unit. Japanese Patent Laid-Open No. 2009-177836, however, does not describe a technique of switching an operation mode to a mode suitable for a touch operation in accordance with a change in state of the display unit since the way a force applied by a touch operation acts in accordance with a change in state of the display unit is not considered.
The present invention has been made in consideration of the aforementioned problems, and realizes a technique which can start freehand drawing without performing a mode switching operation when a display unit is located at a position such that the positional relationship between the display unit and a body gripped by the user is stable with respect to a force applied by a touch operation.
In order to solve the aforementioned problems, the present invention provides a display control apparatus, comprising: a display unit configured to include a touch panel type display device and is movably connected to a body; a drawing unit configured to draw a display object based on coordinates touched in freehand drawing as a touch operation for the display device; a detection unit configured to detect a positional relationship of the display unit with respect to the body; and a control unit configured to control, when the detection unit detects that the display unit has been moved to have a given positional relationship such that a display surface of the display device is arranged at a touchable position and the body supports the display unit not to be moved by a force acting on the display surface in a direction substantially perpendicular to the display surface, to display a display item for receiving the freehand drawing on the display device.
In order to solve the aforementioned problems, the present invention provides a display control apparatus, comprising: a display unit configured to include a touch panel type display device and is movably connected to a body; a drawing unit configured to draw a display object based on coordinates touched in freehand drawing as a touch operation for the display device; a detection unit configured to detect a positional relationship of the display unit with respect to the body; and a control unit configured to control to switch to an operation mode for receiving the freehand drawing when the detection unit detects that the display unit has been moved from a state in which a touch-operable touch button is displayed on the display device and it is possible to receive a touch operation for the touch button to have a given positional relationship such that a display surface of the display device is arranged at a touchable position and the body supports the display unit not to be moved by a force acting on the display surface in a direction substantially perpendicular to the display surface.
In order to solve the aforementioned problems, the present invention provides a display control method for a display device which includes a display unit having a touch panel type display device and movably connected to a body, and a drawing unit configured to draw a display object based on coordinates touched in freehand drawing as a touch operation for the display device, the method comprising: a detection step of detecting a positional relationship of the display unit with respect to the body; and a control step of controlling, when it is detected in the detection step that the display unit has been moved to have a given positional relationship such that a display surface of the display device is arranged at a touchable position and the body supports the display unit not to be moved by a force acting on the display surface in a direction substantially perpendicular to the display surface, to display a display item for receiving the freehand drawing on the display device.
In order to solve the aforementioned problems, the present invention provides a display control method for a display device which includes a display unit having a touch panel type display device and movably connected to a body, and a drawing unit configured to draw a display object based on coordinates touched in freehand drawing as a touch operation for the display device, the method comprising: a detection step of detecting a positional relationship of the display unit with respect to the body; and a control step of controlling to switch to an operation mode for receiving the freehand drawing when it is detected in the detection step that the display unit has been moved from a state, in which a touch-operable touch button is displayed on the display device and it is possible to receive a touch operation for the touch button, to have a given positional relationship such that a display surface of the display device is arranged at a touchable position and the body supports the display unit not to be moved by a force acting on the display surface in a direction substantially perpendicular to the display surface.
According to the present invention, it is possible to readily start freehand drawing while reducing the load of a mode switching operation since a mode is automatically switched to a freehand drawing mode by only changing the state of a display unit to a state suitable for freehand drawing.
Further features of the present invention will become apparent from the following description of exemplary embodiments (with reference to the attached drawings).
Modes for carrying out the present invention will be described in detail below. Note that embodiments to be described below are merely examples for implementing the present invention, and should be modified or changed, as needed, in accordance with the configuration of an apparatus to which the present invention is applied and various conditions. The present invention, therefore, is not limited to the following embodiments. Parts of the respective embodiments (to be described later) may be combined.
A display control apparatus of the first embodiment will be explained below.
In this embodiment, when the positional relationship between a display unit and a main body gripped by the user (to also be called an operator) is changed to a state suitable for freehand drawing, a mode is automatically switched to a freehand drawing mode (to be referred to as a drawing mode hereinafter). In freehand drawing, in order for the user to draw a picture as he/she wants, the display unit needs to be located at a stable position where it does not accidentally move. The stability, however, varies depending on the shape of the apparatus, the orientation of the display unit, how the user grips the main body, and the like.
In this embodiment a digital video camera which has an outer appearance shown in
<Configuration of Video Camera>
The configuration of a video camera according to the first embodiment will be described with reference to
Referring to
A camera unit 101 generates an analog video signal by photoelectrically converting an object image. The camera unit 101 includes a photographing lens for imaging object light, an image sensor for photoelectrically converting an object image imaged by the photographing lens, and a circuit for driving the image sensor. A video processing unit 102 converts the analog video signal output from the camera unit 101 into a digital signal, and performs predetermined signal processing to generate moving image data. The above-mentioned camera control task executed by the CPU 109 controls the operation of the camera unit 101 and video processing unit 102.
An encoder/decoder unit 104 encodes the image data output from the video processing unit 102. The image data encoded by the encoder/decoder unit 104 is temporarily stored in the temporary storage unit 103, and then stored in a moving image storage unit 105 together with attached management data. The moving image storage unit 105 includes an internal memory such as a hard disk and flash memory, and a detachable recording medium such as a memory card.
To reproduce a moving image, the encoded moving data (to also be referred to as image data hereinafter) read out from the moving image storage unit 105 is decoded by the encoder/decoder unit 104 via the temporary storage unit 103, and expanded in the moving image frame buffer within the temporary storage unit 103. The above-mentioned recorder control task executed by the CPU 109 controls the encoder/decoder unit 104 and moving image storage unit 105.
The management data read out from the moving image storage unit 105 is used to generate OSD (On Screen Display) data, that is, characters and a Graphical User Interface (GUI) to be superimposed and displayed on a captured image or reproduced image. The generated OSD data is drawn in the OSD frame buffer within the temporary storage unit 103.
Contents of the moving image frame buffer and the OSD frame buffer are superimposed by a display control unit 111 and displayed on a touch panel type LCD panel 112.
The above-mentioned control task executed by the CPU 109 controls the OSD data, the display control unit 111, and the LCD panel 112.
A panel state detection unit 106 detects whether a vari-angle LCD unit (to be referred to as a display unit hereinafter) 113 having, on its front surface, a touch panel 108 attached on the display surface of the LCD panel 112 has a given positional relationship (to be described later with reference to
An operation key 107 and the touch panel 108 of the display unit 113 serve as an operation unit for receiving a user operation instruction.
As shown in
The LCD panel 112 and touch panel 108 are integrally formed, and built in the display unit 113. The touch panel 108 is formed so that, for example, its light transmittance is set not to inhibit display of the LCD panel 112. Input coordinates on the touch panel 108 correspond to display coordinates on the LCD panel 112. This forms a GUI such that the user feels as if he/she can directly operate a screen displayed on the LCD panel 112.
The CPU 109 can detect the following operations for the touch panel 108. That is, the CPU 109 can detect that a finger or pen has touched the touch panel 108 (to be referred to as a touchdown hereinafter), that a finger or pen is touching the touch panel 108 (to be referred to as a touchon hereinafter), that a finger or pen moves while touching the touch panel 108 (to be referred to as a move hereinafter), that a finger or pen which was touching the touch panel 108 has been removed (to be referred to as a touchup hereinafter), and that nothing touches the touch panel 108 (to be referred to as a touchoff hereinafter). The CPU 109 is notified of these operations and position coordinates on the touch panel 108 where a finger or pen is touching, and determines, based on the sent information, an operation performed on the touch panel 108.
For a move, a moving direction of the finger or pen moving on the touch panel 108 is also determined for each vertical component/horizontal component on the touch panel 108 based on a change in position coordinates. When a touchdown, a move, and then a touchup are performed on the touch panel 108, drawing of a stroke is determined. An operation of quickly drawing a stroke is called a flick. A flick means an operation of quickly moving a finger by a predetermined distance while touching the touch panel 108, and then removing the finger from it. In other words, a flick means an operation of quickly sliding a finger on the touch panel 108 as if the touch panel 108 is flicked by the finger. When it is detected that the user has moved his/her finger by a predetermined distance or longer at a predetermined speed or higher, and then a touchup is detected, it is determined that a flick has been performed.
If it is detected that the user has moved his/her finger by the predetermined distance or longer at a speed lower than the predetermined speed, it is determined that a drag operation has been performed.
The above-mentioned mode control task executed by the CPU 109 operates as follows. That is, the task transits the operation state of the video camera as a whole in response to an instruction from the operation unit (operation key 107 or touch panel 108), a request from another task, or a change in internal state managed by the task itself, and then notifies each task of an event.
A direction in which the display unit 113 is movable with respect to the main body 114 will be described with reference to
Referring to
A panel state detection switch can detect at least positional relationships shown in
Normal Position/Closed State (
Normal Position/Open State (
Reversed/Open State (
The display unit 113 has an orientation such that the display surface of the display unit 113 faces in the same direction as that of the capturing surface of the camera unit 101, and when an operator grips the grip portion 115 with the right hand, the display surface of the display unit 113 can be seen from the object side, which means the operator can see the rear surface of the display unit 113. The display unit 113 is upside down with respect to the normal position/open state.
Reversed/Closed State (
Drawing operations when the display unit is in an open state (
Referring to
Referring to
In the video camera of this embodiment, the touch panel 108 is stable in a reversed/closed state during freehand drawing, and thus this state is suitable for freehand drawing. However, it is troublesome for the user to set the display unit to a reversed/closed state suitable for freehand drawing and then switch to a freehand drawing mode. In this embodiment, therefore, when the state of the display unit 113 is changed to a reversed/closed state, an operation mode is automatically switched to a mode (drawing mode to be described later) in which the user can perform freehand drawing.
The video camera of this embodiment has a “drawing mode” as one of moving image capture modes. The “drawing mode” indicates a mode in which the user can draw and superimpose an arbitrary picture on a captured image. In the “drawing mode”, the user can perform freehand drawing which allows the user to superimpose an arbitrary color pen having an arbitrary width or a stamp having an arbitrary shape at a touch on position. In the “drawing mode”, the user can also perform touch animation input which allows the user to superimpose animation of a star- or musical note-shaped particle at a touch on position.
The above freehand drawing and touch animation input will be described in detail with reference to
As described with reference to
A function assigned to each button described above will now be explained in detail. The freehand drawing setting button 611 is used to transit to a freehand drawing setting screen (to be described later with reference to
The touch animation button 612 is used to transit to a touch animation setting screen (to be described later with reference to
Referring to
The function of each button shown in
The user can select color in performing freehand drawing using the color select buttons 713 to 715. Note that when the tool select button 709 or 710 is selected, a colorless, transparent motion trajectory is displayed, and therefore the user cannot select the color select buttons 713 to 715. Referring to
The all clear button 716 is used to erase all freehand-drawn pictures. When the user touches the all clear button 716, all pictures displayed in the OSD are erased (a colorless, transparent screen is obtained). The video camera of this embodiment has a function of saving a freehand-drawn picture displayed in the OSD, and loading a previously saved picture. When the user touches the drawing screen save button 717, the program/data storage unit 110 records a picture displayed in the OSD. When the user touches the drawing screen load button 718, a previously saved picture is loaded from the program/data storage unit 110, and displayed in the OSD.
The function of each button shown in
<Mode Switching Processing>
The operation of display control processing executed by the CPU 109 as a display control task and mode switching processing executed by the CPU 109 as a mode control task in this embodiment will be explained with reference to
When the video camera starts, and goes into a moving image capture mode, it enters a capture standby state, and then starts capture standby processing shown in
In step S801, the CPU 109 makes initial settings, and the mode control task controls an initial moving image capture mode to be a normal capture mode.
In step S802, the display control unit 111 updates a displayed screen according to a moving image capture mode. If the mode is a normal capture mode, the screen shown in
In step S803, the CPU 109 determines whether an instruction to switch to a drawing mode has been input. It is possible to input an instruction to switch to a drawing mode when the user touches the FUNC button 606 to open a FUNC menu screen during display of the screen in a normal capture mode in
In step S804, the CPU 109 determines, based on information contents stored in the program/data storage unit 110, whether ON is set to automatically start a drawing mode when the LCD panel is reversed and closed. In this embodiment, it is possible to set, in advance in accordance with a user instruction, whether to automatically start a drawing mode when the display unit 113 is reversed and closed. This setting is made by operating, on a menu screen displayed by touching the menu button 608 during display of the screen in a normal capture mode in
In step S805, the CPU 109 acquires the state of the LCD panel (the orientation and position of the display unit 113 with respect to the main body 114) from the panel state detection unit 106.
In step S806, the CPU 109 determines whether there is a change in state of the LCD panel acquired in step S805. If there is a change in state, the process advances to step S807; otherwise, the process returns to step S802 to repeat the processing.
In step S807, the CPU 109 determines whether the state of the LCD panel acquired in step S805 is a reversed/closed state. If the acquired state is a reversed/closed state, the process advances to step S808 to automatically switch to a drawing mode; otherwise, the process returns to step S802 to repeat the processing.
If the CPU 109 receives an instruction to switch to a drawing mode in step S803, or the state of the LCD panel is changed to a reversed/closed state in step S807, the mode control task controls the moving image capture mode to be a drawing mode in step S808.
Then, the screen in a drawing mode is displayed on the LCD panel 112.
In step S809, the CPU 109 performs drawing mode processing. The drawing mode processing will be described in detail later with reference to
In step S810, the CPU 109 causes the mode control task to control the moving image capture mode to be a normal capture mode.
Referring to
In step S902, the CPU 109 determines whether the panel state detection unit 106 has detected a touch. If the unit 106 has detected a touch, the process advances to step S903; otherwise, a state is maintained until the unit 106 detects a touch.
In step S903, the CPU 109 determines whether coordinates touch-detected in step S902 are in the drawing enabled area 617 of
In step S904, the CPU 109 determines whether the coordinates touch-detected in step S902 are in the touch area of one of the touch buttons shown in
In step S905, the CPU 109 determines whether the coordinates touch-detected in step S902 are in the touch area of the drawing mode end button 618 shown in
In step S906, the CPU 109 executes processing when the user presses a button other than the drawing mode end button 618 shown in
In step S907, the CPU 109 determines whether the user has performed an operation of returning from the screen displayed in step S906 to the drawing input selection screen shown in
If the coordinates touch-detected in step S902 are in the drawing enabled area 617 shown in
In step S909, the CPU 109 determines whether a selected drawing input state is a freehand drawing state or touch animation state, and acquires settings corresponding to each state. In a freehand drawing state, for example, the CPU 109 acquires information indicating which of the tool select buttons 705 to 712 shown in
In step S910, the CPU 109 performs display processing (drawing) according to the drawing input state acquired in step S909 at the touch position acquired from the panel state detection unit 106. Then, the process advances to step S911. The display processing is performed to display pictures in the OSD as shown in
In step S911, the CPU 109 determines whether the panel state detection unit 106 has detected a touchup. If the unit 106 has not detected a touchup, the CPU 109 repeats the processing in step S910; otherwise, the process advances to step S912.
In step S912, the CPU 109 determines whether the panel state detection unit 106 has detected a touch. If the unit 106 has detected a touch, the process advances to step S910; otherwise, the process advances to step S913.
In step S913, the CPU 109 determines whether a given period of time has elapsed since a touchup was detected in step S911. The given period of time in this embodiment is, for example, 1 sec. If the given period of time has not elapsed, the process returns to step S912 to continue receiving a touch input operation; otherwise, the process returns to step S901 to transit to the drawing input selection screen. With this processing, even if a touch is not detected, the camera image is displayed without displaying the OSD such as touch buttons while the user is likely performing drawing, and therefore, the user can perform drawing in an arbitrary area except for the touch detection ignored area 605 in the camera image.
If the user instructs to start recording a moving image by pressing a moving image recording start button of the operation keys 107 at an arbitrary timing during the processing shown in
According to this embodiment, in a normal capture mode, when the LCD panel 112 is reversed and closed, the mode is switched to a drawing mode to enter a freehand drawing state or touch animation input state. As described above, since a reversed/closed state in which the touch panel is stable is suitable for a drawing mode, it is possible to smoothly switch to a drawing mode, thereby enabling operation in a state suitable for a drawing mode. A trigger to end a drawing mode is only a touch operation of the drawing mode end button 618 in
In this embodiment, a drawing mode is switched to a normal capture mode when the user touches the drawing mode end button 618 on the drawing input selection screen. However, the LCD panel may automatically exit a drawing mode to switch to a normal capture mode when it transits from a reversed/closed state to another state. That is, when the position of the LCD panel 112 is changed to a position other than the reversed/closed position, the display state shown in
To protect a photographing lens in touch operation, a lens cover serving as a lens protection unit may be controlled to be in a closed state (protection state) in a drawing mode. To prevent an incorrect operation from occurring, an input operation except for a touch operation may be prohibited in a drawing mode. For example, in the drawing mode, it may be assumed that the user presses the operation keys 107 provided with the main body 114 by mistake because a gripping force for gripping the main body by a user's hand hands becomes greater in order to hold the main body against a writing pressure added to the main body 114 by the drawing (touch) operation on the display surface. To prevent such an unintended operation, it is desirable to disable any operations by the operation keys 107 except for the touch operation during the drawing mode. Alternatively, it is more effective to disable some of operations of the operation keys 107 arranged within a distance range capable of operating by the user's hand instead of disabling all operation keys 107.
In step S901 described above, if switching to a drawing mode is performed in response not to a change in position of the display unit 113 but a switching instruction from the user in step S803, guidance display may be performed to encourage the user to move the display unit 113 to a reversed/closed state. This can prompt the user to perform freehand drawing in a more stable state. Furthermore, by moving the display unit 113 to a reversed/closed state in a normal capture mode, a guidance indicating that a drawing mode is to start may be displayed. This means that it is possible to switch to a drawing mode by only moving the display unit 113 without performing an operation of switching to a drawing mode from the FUNC menu. The frequency at which the user switches to a drawing mode by reversing and closing the display unit 113 increases, thereby naturally enabling freehand drawing in a more stable state.
In this embodiment, a case in which the LCD panel switches to a drawing mode when its state is changed to a reversed/closed state has been described because the grip portion 115 is provided on one side of the main body 114 on the other side of which the touch panel 108 is arranged. The present invention, however, is not limited to this. It is possible to obtain the same effects even in another positional relationship as long as the LCD panel switches to a drawing mode when the display unit is moved to have a positional relationship such that the display surface of the display unit is arranged at a touchable position and the body supports the display unit not to be moved by a force applied to the display surface in the direction substantially perpendicular to the display surface by a touch input operation. Even if there is no grip portion, for example, when the display unit has the above-described positional relationship with respect to the body placed on a desk or ground in a stable state, the body can support the display unit so that a force acting on the display surface in the direction substantially perpendicular to the display surface by a touch input operation does not move the display unit. This makes it possible to realize stable freehand drawing.
The example of the processing in a capture standby mode has been explained. The present invention is applicable even if a drawing mode starts in another operation mode such as a capturing mode or a reproduction mode.
In the first embodiment, a case in which the LCD panel switches to a drawing mode including a freehand drawing state and touch animation input state when it is reversed and closed has been described above. The present invention, however, is not limited to this.
In the second embodiment, a freehand drawing enabled state and a touch animation input enabled state are explained as different drawing modes. That is, in this embodiment, a freehand drawing mode and a touch animation input mode are provided as drawing modes. A prepared configuration except for the definition of a drawing mode is the same as that in the first embodiment.
A different part from the first embodiment is mode switching processing in step S808 when an LCD panel 112 is reversed and closed. In the second embodiment, when the LCD panel 112 is reversed and closed, it switches to a drawing mode but does not switch to a touch animation input mode. A reason for this is as follows.
The purpose of freehand drawing is to draw characters such as a capture date/time and the location/name of an object. In contrast to this, touch animation input is used to add effects around an object or to the whole screen. The touch animation input mode, therefore, requires low touch input accuracy as compared with the freehand drawing mode, and does not necessarily require a state (reversed/closed state) in which the LCD panel is stable. Furthermore, if the user draws characters by freehand drawing during a capturing operation, characters are recorded only halfway through. Freehand drawing, therefore, may be used as preparatory drawing before a capturing operation. Freehand drawing preparatory to a capturing operation has no operative problem in a reversed/closed state which is unsuitable for a capturing operation.
The reason why a reversed/closed state is unsuitable for a capturing operation is that the direction in which the user is looking is different from the capturing direction of the camera unit 101 and the user cannot see an object, as shown in
According to the second embodiment, when the LCD panel 112 is reversed and closed in a normal capture mode, it switches to a drawing mode to enter a freehand drawing enabled state. As described above, a reversed/closed state in which the touch panel 108 is stable is suitable for freehand drawing.
For these reasons, in the second embodiment, when the LCD panel 112 is reversed and closed, it switches to a drawing mode but does not switch to a touch animation input mode.
In the second embodiment, it is also possible to switch to a drawing mode without an extra load, and perform operation in a state suitable for freehand drawing. In addition, when the LCD panel is reversed and closed, it does not transit to a touch animation input mode, thereby omitting unnecessary mode switching.
One hardware component may execute the above-described control processing, or a plurality of hardware components may share the processing, thereby controlling the apparatus as a whole.
In each embodiment described above, a case in which the present invention is applied to a digital video camera has been exemplified. The present invention is not limited to this, and is applicable to any apparatus having a mode in which freehand drawing is possible. That is, the present invention is applicable to any apparatus in which a touch panel capable of performing freehand drawing and a body to be gripped by the user can move with respect to each other. In this case, it is possible to obtain the same effects by switching to a freehand drawing mode in response to detecting that the display unit has been moved to have a positional relationship such that the display surface of the display unit is arranged at a touchable position and the body supports the display unit not to be unstable by pressure applied by a touch input operation. Examples of an apparatus to which the present invention is applicable are, for example, a personal computer, a PDA, a portable telephone, a portable image viewer, a printer apparatus including a display, a digital photo frame, a music player, a game machine, an electronic book reader, and the like.
Aspects of the present invention can also be realized by a computer of a system or apparatus (or devices such as a CPU or MPU) that reads out and executes a program recorded on a memory device to perform the functions of the above-described embodiment(s), and by a method, the steps of which are performed by a computer of a system or apparatus by, for example, reading out and executing a program recorded on a memory device to perform the functions of the above-described embodiment(s). For this purpose, the program is provided to the computer for example via a network or from a recording medium of various types serving as the memory device (e.g., computer-readable medium).
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. It will of course be understood that this invention has been described above by way of example only, and that modifications of detail can be made within the scope of this invention.
This application claims the benefit of Japanese Patent Application No. 2010-271952, filed Dec. 6, 2010, which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
2010-271952 | Dec 2010 | JP | national |