The present invention relates to a display control method and a display apparatus, and more particularly, to a display control method and a display control apparatus capable of improving image output quality.
With advancements of display technology, flat panel displays are widely applied in various electronic products, e.g., mobile communication devices, televisions, tablet computers, wearable devices, notebook computers. In general, images can be displayed through the flat panel display while using the electronic product, so that the user can see the images on flat panel display. Since aliasing distortion and motion blur are frequently occurring effects during the operation of the flat panel display, the user may see the object with afterimage, thereby resulting in significant discomfort for the user. A moving picture response time (MPRT) function can be adopted to resolve the abovementioned problem. However, the conventional display device may process image data by using the MPRT method based only upon operating at a fixed refresh rate (RR). Thus, the prior art has to be improved.
It is therefore an objective of the present invention to provide a display control method and a display apparatus capable of improving image output quality, to solve the above mentioned problems.
According to an aspect of an embodiment, a display control method applied for display apparatus is disclosed. The control method includes receiving a vertical synchronization signal; calculating a refresh rate according to the vertical synchronization signal; comparing the refresh rate with a threshold value to generate a comparison result; and generating a backlight control signal to control light sources of a backlight module of the display apparatus according to the comparison result.
According to an aspect of another embodiment, a display apparatus is disclosed. The display apparatus includes a backlight module; and a display controller, configured to receive a vertical synchronization signal and calculate a refresh rate according to the vertical synchronization signal; wherein the display controller is configured to compare the refresh rate with a threshold value to generate a comparison result and generate a backlight control signal to control light sources of a backlight module of the display apparatus according to the comparison result.
These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.
Certain terms are used throughout the description and following claims to refer to particular components. As one skilled in the art will appreciate, hardware manufacturers may refer to a component by different names. This document does not intend to distinguish between components that differ in name but not function. In the following description and in the claims, the terms “include” and “comprise” are utilized in an open-ended fashion, and thus should be interpreted to mean “include, but not limited to”. Also, the term “couple” is intended to mean either an indirect or direct electrical connection. Accordingly, if one device is coupled to another device, that connection may be through a direct electrical connection, or through an indirect electrical connection via other devices and connections.
Please refer to
For an illustration of the operations of the electronic system 1, please refer to
Step S200: Start.
Step S202: Receive vertical synchronization signal.
Step S204: Calculate refresh rate according to vertical synchronization signal.
Step S206: Compare refresh rate with threshold value to generate comparison result.
Step S208: Generate backlight control signal to control light source of backlight module of display apparatus according to comparison result.
Step S210: End.
According to the procedure 2, in Step S202, the electronic system 1 operates in a variable refresh rate (VRR) mode. The host device 10 is configured to send a vertical synchronization signal VSYNC and an input image signal IMG_IN to the display controller 202. The display controller 202 is configured to receive the vertical synchronization signal VSYNC and the input image signal IMG_IN from the host device 10. The vertical synchronization signal VSYNC indicates the starting and ending points of each frame. For example, as shown in
In Step S204, the display controller 202 is configured to calculate a refresh rate according to the vertical synchronization signal VSYNC. The display controller 202 is configured to detect a starting point and an ending point of a first frame period of the vertical synchronization signal VSYNC and calculate an interval length between the starting point and the ending point of the first frame period to obtain a frame length. Further, the display controller 202 is configured to calculate a reciprocal of the frame length to obtain a refresh rate. The reciprocal of the frame length is the refresh rate. The first frame period may be a current frame period. For example, as shown in
In Step S206, the display controller 202 is configured to compare the refresh rate with a threshold value to generate a comparison result. In Step S208, the display controller 202 is configured to generate a backlight control signal to control light sources of the backlight module 206 according to the comparison result. Therefore, the display panel 204 may display the display image signal IMG_out according to the vertical synchronization signal VSYNC and light sources of the backlight module 206 may turn on or off according to the backlight control signal.
In Step S208, when the comparison result generated in Step S206 indicates that the refresh rate is smaller than the threshold value, the display controller 202 is configured to generate a backlight control signal PWM1 to control the light sources of the backlight module 206. The backlight control signal PWM1 may be a normal backlight dimming control signal. For example, the backlight control signal PWM1 may be a pulse width modulation dimming (PDIM) signal or an amplitude dimming (ADIM) signal. The turn on and turn off operations of the light sources of the backlight module 206 may be controlled according to the backlight control signal in the following frame periods. When the comparison result generated in Step S206 indicates that the refresh rate is greater than or equal to the threshold value, the display controller 202 is configured to adjust the backlight control signal PWM1 to generate an adjusted backlight control signal to control the light sources of the backlight module 206. The turn on and turn off operations of the light sources of the backlight module 206 may be controlled according to the adjusted backlight control signal in the following frame periods. In other words, the embodiment of the present invention generates a normal backlight control signal PWM1 to control the light sources of the backlight module 206 when the currently detected refresh rate is smaller than the threshold value and generates a backlight control signal different from the backlight control signal PWM1 to control the light sources of the backlight module 206 when the currently detected refresh rate is greater than or equal to the threshold value.
In an embodiment, when the comparison result of Step S206 indicates that the refresh rate is greater than or equal to the threshold value, the display controller 202 may adjust the backlight control signal PWM1 to generate a backlight control signal PWM2 to control the light sources of the backlight module 206. A turn on duration (i.e. an duration of on state) of each turning on and off cycle in a second frame period of the light sources of the backlight module 206 controlled by the backlight control signal PWM2 is greater than a turn on duration of each on and off cycle in the second frame period of the light sources of the backlight module 206 controlled by the backlight control signal PWM1. The first frame period may be the current frame period. The second frame period is subsequent to the first frame period. For example, as shown in
In an embodiment, a switching frequency of on and off operations of the light sources of the backlight may be associated with the pulse frequency of the backlight control signal. A switching frequency of on and off operations in a second frame period of the light sources of the backlight module 206 controlled by the backlight control signal PWM2 is smaller than a switching frequency of on and off operations in the second frame period of the light sources of the backlight module 206 controlled by the backlight control signal PWM1. For example, as shown in
Moreover, in Step S208, when the refresh rate is greater than or equal to the threshold value, the display controller 202 may dynamically adjust the backlight control signal PWM1 to generate an adjusted control signal according to the refresh rate, so as to control the light sources of the backlight module 206. For example, when the refresh rate is a first value and the comparison result indicates that the first value is greater than the threshold value, the display controller 202 is configured to dynamically adjust the backlight control signal PWM1 to generate a backlight control signal PWM2 according to the refresh rate, so as to control the light sources of the backlight module 206. The switching frequency of on and off operations in a second frame period of the light sources of the backlight module 206 controlled by the backlight control signal PWM2 may be equal to the first value, or may be varied and designed according to practical system demands. When the refresh rate is a second value and the comparison result indicates that the second value is greater than the threshold value and the first value, the display controller 202 is configured to adjust the backlight control signal PWM1 to generate a backlight control signal PWM3 according to the refresh rate, so as to control the light sources of the backlight module 206. The switching frequency of on and off operations in the second frame period of the light sources of the backlight module 206 controlled by the backlight control signal PWM3 may be equal to the second value, or may be varied and designed according to practical system demands. In an embodiment, a total turn on duration (i.e. a total duration of on state) in the second frame period of the light sources of the backlight module controlled by the backlight control signal PWM2 is greater than a total turn on duration in the second frame period of the light sources of the backlight module controlled by the backlight control signal PWM3. For example, as shown in
In an embodiment, a total turn on duration in the second frame period of the light sources of the backlight module controlled by the backlight control signal PWM2 is equal to a total turn on duration in the second frame period of the light sources of the backlight module controlled by the backlight control signal PWM3 and a driving current 12 applied to the light sources of the backlight module 206 and controlled by the backlight control signal PWM2 in the second frame period is greater than a driving current 13 applied to the light sources of the backlight module 206 and controlled by the backlight control signal PWM3 in the second frame period. For example, as shown in
In an embodiment, a total turn on duration in the second frame period of the light sources of the backlight module controlled by the backlight control signal PWM2 is equal to a total turn on duration in the second frame period of the light sources of the backlight module controlled by the backlight control signal PWM3 and a driving voltage V2 applied to the light sources of the backlight module 206 and controlled by the backlight control signal PWM2 in the second frame period is greater than a driving voltage V3 applied to the light sources of the backlight module 206 and controlled by the backlight control signal PWM3 in the second frame period. For example, as shown in
Please refer to
To sum up, the embodiments of the present invention may calculate the refresh rate according to the vertical synchronization signal in the current frame period and generate the backlight control signal to control light sources of the backlight module according to the refresh rate. In other words, the embodiments of the present invention may adjust the operations of the backlight module 206 by utilizing the moving picture response time method when the electronic system operates in the variable refresh rate mode, and thus having the advantages of energy saving, eliminating screen tearing and ghosting, low latency, clear display quality and excellent output quality of moving images.
Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention. Accordingly, the above disclosure should be construed as limited only by the metes and bounds of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
109104918 | Feb 2020 | TW | national |
Number | Date | Country |
---|---|---|
107111992 | Dec 2019 | CN |
201815160 | Apr 2018 | TW |