1. Field of the Invention
The present invention relates to an architecture for display controllers. More specifically, the present invention relates to an architecture for Twisted Nematic Liquid Crystal Display (TN-LCD) controllers embedded in microcontrollers.
2. Background
The present invention is typically provided in a microcontroller-type integrated circuit, but can also be provided in any other type of integrated circuit-driven display panel, especially passive Twisted Nematic Liquid Crystal Displays (TN-LCD). These kind of display panels are well known and can be found in many electronic devices, especially in battery powered devices such as watches, games, basic displays in cameras, etc.
When powered by batteries, the electronic device must reduce its consumption as much as possible to improve the battery lifetime. Therefore, reduced power modes of operation have been designed. For example, when only one static image must be displayed, the powered circuitry can be limited to the display panel itself and the minimum logic circuitry necessary to generate the required signals, rather than powering the entire microcontroller logic including the microprocessor.
Another example is the blinking mode where the image is periodically blanked. This mode can be implemented in different ways resulting in different power consumptions. For a simple LCD panel having a single common backplane terminal, if the segment signals and backplane have the same waveform, the pixels are not visible (not energized), but the signals are toggling and, therefore, some current flows in parasitic capacitances that are inherent to any digital circuitries. The present invention prevents the LCD terminals from this switching during the blank period, thereby reducing the power consumption for the blank period.
However, this power consumption reduction is not important for these single backplane LCD panels. For example, when using LCD panels for basic scientific calculators (for example, a 8×40 dot panel is used in order to display characters using 7×5 dot fonts) or small/basic images/icons, there are not 8×40 (320) terminals in the LCD panel or in the controller driving it because of the resulting associated cost for the integrated circuit packages. These kind of panels use the well known multiplexed technique.
This multiplexing technique involves special waveforms that require signals to be slightly energized even if pixels of the image are not visible. Additionally, intermediate voltage levels must be available for these special waveforms. In order to generate these intermediate voltages, a resistor ladder is often used, which consumes DC current.
The present invention provides circuitry that prevents the terminals of the LCD panel from switching during the period the image is blanked. This prevention is achieved by setting these terminals to logic 0, thereby eliminating the need for any intermediate voltage. As a result, the resistor ladder activity can be disabled. The power consumption is reduced in this mode of operation (blinking).
On-chip memories 103 allows for the storage of the application software processed by microprocessor 101. Microcontroller 100 is powered by means of a different set of terminals 140 and 141. Terminals 140 comprise a series of physical access terminals (PADs), some for providing VDD and some for providing GND. Terminals 140 power the main parts of the microcontroller 100, including microprocessor 101, address decoder 102, on-chip memories 103, interrupt controller 104, timers 105, and UART 106. Terminal 141 powers the LCD display controller 107. The boundary for the different power supplies is represented by dotted line 150.
The LCD display controller 107 may be the only circuitry to be powered in microcontroller 100 for power consumption considerations. This LCD display controller 107 can drive an LCD panel 108 by means of line 127 and terminals 142. In order to display an image, the software located in on-chip memory 103 is fetched by microprocessor 101 by means of read accesses performed on system bus 120.
The on-chip memory 103 is selected (signal 123 is active) as soon as the address value of the address bus matches the address range allocated for the on-chip memory 103. The address decoder 102 is designed accordingly. The memory 103 provides the corresponding data onto system bus 120, which is read by microprocessor 101 and processed accordingly.
The image to display on a twisted nematic passive LCD panel can be considered as a bit stream, one bit for each LCD dot. If the number of dot exceeds the system bus 120 data size, several accesses will be required to transfer the full image contained in on-chip memory 103 to display controller 107. Therefore, the display controller 107 must contain an image buffer that can be fully loaded by decoding different access on the system bus 120 when the associated select signal 125 is active.
When the microprocessor 101 is instructed to load an image into display controller 107, write accesses are performed on system bus 120. As soon as all write accesses have been performed, there is nothing more to do for the microprocessor 101 and, therefore, it can be powered off. For example, just after having finished transferring the image, the microprocessor 101 can perform an access into UART module 106, which would be externally connected (not shown) to a companion chip to manage the power of the microcontroller 100. For example, the companion chip would receive through RXD/TXD connections a data that would instruct the regulator driving terminals 140 (VDD/GND) to switch off.
The display controller circuitry 200 also comprises a second buffer of data (“display frame buffer”) 205, which is connected to user holding buffer 204 contains a copy of the bit stream that is stored in data buffer 204. Loading the frame buffer 205 with the content of the user holding registers is automatically performed by timing generation circuitry 202 asserting signal 231.
The display controller 200 comprises configuration registers 211 that can be accessed at different addresses than the user holding registers. Configuration registers 211 provide the mode of operations 201 of the display controller, which can include, but is not limited to, the blinking frequency signals “LCDBLKFREQ” and the display mode “DISPMODE” which can allow for addressing different types of LCD panels (1, 2, 3, 4 COMMON TERMINAL PANELS).
Considering the blinking mode, the displayed data results in two periods: one period with an energized image according to the bit stream located in the display frame buffer 205 and the other period where all dots are blanked. Therefore, the timing generation circuitry 202 provides a toggling signal 223, which clears the output of the multiplexer 207 when it is low (logical 0) and passes the output of multiplexer 207 when it is high (logical 1). It is possible to achieve this behavior by means of a set of AND gates 206.
The display controller 200 uses the multiplexing technique to provide data to LCD panel. Therefore, both internal buffers are organized accordingly. There are as many outputs as common to address in the LCD panel for each buffer. The multiplexed LCD panel consists of a series of terminals organized as a matrix. There are several common terminals usually called “COMMON.” Each of these common terminals access several other terminals called “SEGMENT” of the LCD panels through a capacitor whose dielectric is filled with liquid crystal. For example, for a 10 COMMONS×64 SEGMENTS LCD panel, the display controller data buffer will be organized as 10 64-bit registers, as seen in
Therefore, these registers must be multiplexed. The display controller 200 comprises 64×10:1 multiplexer 207. These multiplexers have their select inputs driven by the timing generation module 202 by means of signal 220. Each register of the frame buffer 205 is periodically selected, and the period of selection for each register is called the “frame period.” This frame period depends on the number of commons addressed on the LCD panel and also on other parameters, including the clock frequency divider (division of clock signal 232). The divider circuitry may be contained in the timing generation module 202. This clock frequency divider is not mandatory, but it is common to use a watch crystal oscillator (32.768 KHz) or an on-chip RC oscillator (cheaper than the crystal oscillator) to drive the display circuitry. Since this is a high frequency compared to image display frequency 50 to 100 Hz, there is a need to divide it. The 32.768 KHz clock is used because it comes from a crystal and, therefore, it is very accurate and is often used in other parts (not shown) of the microcontroller, such as the real time clock and periodic interval timer where timing accuracy is mandatory.
The output 225 of multiplexer 207 that is passed through AND gate 206 carries the data to be provided to SEGMENTS terminals of the LCD display panel, but it needs to be processed as it cannot be displayed in that form. This processing is achieved by means of waveform generator 209, which takes into account the type of LCD panel to be addressed. The type of LCD panel to be addressed is configured by user through signal 201 (DISPMODE).
Waveform generator module 209 provides different waveforms according to the data to be displayed (either energized pixel or non-energized, a pixel (or dot) being the area formed by the cross-over of a SEGMENT and a COMMON). The waveform also depends on the time slot location. During a COMMON terminal duration period, one can distinguish 2 different areas. These areas are signaled by timing generation circuitry 202 by means of signal 221.
Waveform generator 209 is a digital module and does not generate the direct waveform that is described in
Each analog multiplexer of module 203 comprises a selection input driven by the SEGMENT waveform generator 209 for segment terminals 229 via line 227 or the COMMON waveform generator 208 for the common terminals 230 via line 228. COMMON waveform generator 208 may be signaled by timing generation circuitry 202 by means of signal 222. There are analog multiplexers for common terminals 230 and analog multiplexers for segment terminals 229. They are all identical in their intrinsic structure, but their select inputs are not driven the same way to provide the waveforms shown in
For each register (in our example, a 64-bit register), the select inputs of multiplexers 302 are connected to the same signal 307 driven by the timing generator module 202 in
The LCD panels do not allow DC current on their terminals. Therefore, a LCD driver must maintain a 0 Volt DC potential across each pixel. The resulting voltage across a pixel is the segment voltage minus the common voltage. If the average resulting voltage is below a particular voltage, the pixel is said to be “non-energized” because it will appear non-visible, whereas if the average voltage across the pixel is greater than the particular voltage, it will appear visible (colored in black in
For simplicity,
The second COMMON 1 (COM 1) is energized on the second part of the frame with the same type of waveform as COMMON 0. This is the same waveform compared to COM0, but right shifted by ⅓ of a frame period. COM2 (not shown) is the same as COM1, but right shifted by ⅓ of a frame period. As would be appreciated by one skilled in the art, the multiplexed mode of operation appears on COMMON terminals.
To get 0 Vdc voltage across pixel COM0-SEG0 when COM0 is energized, if the pixel must be visible (energized), then SEGMENT 0 (SEG0) has the opposite waveform of COM0. Therefore, the first ⅓ of the SEG0 waveform starts with VLCD, followed by GND. If the pixel (COM0-SEG0) must be blanked, i.e., non-energized and non-visible (not shown in
In the example of
The difference of voltages across the pixel SEG0-COM0 is shaped like the third waveform provided in
For a non-visible pixel like SEG0-COM1, the root mean square voltage is VOFF and is lower than VON, as can be seen in
Some modes of operation can provide capabilities to make the image, or part of the image, blink. These type of modes of operation are well known with respect to electronic appliances that display time, where the second event is materialized by a blinking “:” character, but the time is not blinking.
If the entire image is blinking, then the prior art architecture described in
The logic to perform this kind of blinking can be very simple with AND gate 206 and square wave signal generation 223. However, in order to have the intermediate voltages as can be seen on the non-energized part of SEG0 in
In a preferred embodiment, the present invention mainly takes place in a TN LCD controller that interfaces LCD displays. However, it is contemplated that other applications are within the scope of the present invention as well.
The present invention reduces the overall power consumption of a microcontroller using such a display controller, especially when the display controller is the only active logic in the microcontroller for some modes of operation. When an application (watch, remote control, calculator, digital camera, etc.) is in standby/low power mode, some images may still appear on the display panel to inform user about their mode of operation (standby, advertising, etc.). They may appear blinking, like the well known “:” blinking character in watches while the time is constantly displayed, but may be more simple by blanking the whole image for a period of time. The present invention is directed towards a mode of operation for simple blinking display.
The circuitry of the present invention enables the reduction of the power consumption of such blinking mode for multiplexed TN LCD controllers. For the blank period, the LCD display controller of the invention drives all the segments and commons terminals of the LCD panel to logical 0 and the resistor ladder generating the intermediate voltages is switched off. Therefore, in this mode of operation, the power consumption is reduced compared to a display controller that would clear the image data buffer for the blank period, where intermediate voltages are required and the resistor ladder is consuming power.
The present invention provides a reduced power consumption blinking mode. This feature is especially useful in final applications where an electronic appliance is battery powered.
In one embodiment, a display controller for providing signals to a discrete display panel unit is disclosed. The display controller comprises a first set of registers configured to hold data to be displayed and a first logic circuitry connected to the first set of registers. The first logic circuitry is configured to receive the data from the first set of registers, generate the signal waveforms required by the discrete display panel according to the data, and provide the signal waveforms to the discrete display panel. The controller further comprises a second logic circuitry connected to the first logic circuitry. The second logic circuitry is configured to generate timing signals for timing the first logic circuitry providing the signal waveforms to the discrete display panel. The controller also comprises a resistor ladder connected to the second logic circuitry. The resistor ladder is configured to generate intermediate voltages required to drive the discrete display panel. The resistor ladder is also configured to receive the timing signals from the second logic circuitry. The controller is configured to automatically and periodically disable the resistor ladder according to one of the generated timing signals.
In another embodiment, a method for reducing power consumption in a display controller is disclosed. The controller has a first set of registers, a first logic circuitry connected to the first set of registers, a second logic circuitry connected to the first logic circuitry, and a resistor ladder connected to the second logic circuitry and configured to generate intermediate voltages. The method comprises the first set of registers holding data to be displayed on a discrete display panel. The second logic circuitry generates timing signals that alternate between different values, and transmits a generated timing signal to the first logic circuitry and the resistor ladder. The first set of registers transmits the held data to the first logic circuitry. The first logic circuitry receives the timing signal from the second logic circuitry and the data from the first set of registers. The first logic circuitry generates signal waveforms required by the discrete display panel according to the received data. The first logic circuitry transmits the generated signal waveforms to the discrete display panel. The resistor ladder receives a timing signal from the second logic circuitry. When the received timing signal has a first value, the resistor ladder does not generate any intermediate voltages. When the received timing signal has a second value different from the first value, the resistor ladder generates intermediate voltages and transmits the generated intermediate voltages to the discrete display panel.
Persons of ordinary skill in the art will realize that the following disclosure is illustrative only and not in any way limiting. Other embodiments of the invention will readily suggest themselves to such skilled persons having the benefit of this disclosure.
As seen in
The display controller circuitry 700 also comprises a display frame buffer 705, which is connected to user holding buffer 704 and contains a copy of the bit stream that is stored in data buffer 704. Loading the frame buffer 705 with the content of the user holding registers is automatically performed by timing generation circuitry 702 asserting signal 720.
The display controller 700 comprises configuration registers 711 that can be accessed at different addresses than the user holding registers. Configuration registers 711 provide the mode of operations 729 of the display controller, which can include, but is not limited to, the blinking frequency “LCDBLKFREQ” and the display mode “DISPMODE.”
Considering the blinking mode, the displayed data results in two periods: one period with an energized image according to the bit stream located in the display frame buffer 705 and the other period where all dots are blanked. The multiplexing technique may be used to provide data to the LCD panel. Therefore, both internal buffers are organized accordingly. There are as many outputs as common to address in the LCD panel for each buffer. The multiplexed LCD panel consists of a series of terminals organized as a matrix. There are several common terminals usually called “COMMON.” Each of these common terminals accesses several other terminals called “SEGMENT” of the LCD panels through a capacitor whose dielectric is filled with liquid crystal. For example, for a 10 COMMONS×64 SEGMENTS LCD panel, the display controller data buffer will be organized as 10 64-bit registers, as seen in
Therefore, these registers must be multiplexed. The display controller 700 comprises 64×10:1 multiplexer 706. These multiplexers have their select inputs driven by the timing generation module 702 by means of signal 721. Each register of the frame buffer 705 is periodically selected for a frame period This frame period depends on the number of commons addressed on the LCD panel and also on other parameters, including the clock frequency divider (division of clock signal 701). The divider circuitry may be contained in the timing generation module 702. As discussed above, this clock frequency divider is not mandatory. However, it is common to use a watch crystal oscillator to drive the display circuitry.
The output 723 of multiplexer 706 is connected to SEGMENT waveform generator 708, thereby providing the data to be displayed. The type of LCD panel to be addressed is configured by user through signal 729 (DISPMODE).
Waveform generator module 708 provides different waveforms according to the data to be displayed (either energized pixel or non-energized, a pixel being the area formed by the cross-over of a SEGMENT and a COMMON). The waveform also depends on the time slot location. During a COMMON terminal duration period, one can distinguish 2 different areas. These areas are signaled by timing generation circuitry 702 by means of signal 722.
Waveform generator 708 is a digital module and does not generate the direct waveform that is described in
Analog switch array 703 is an array of analog multiplexers (one for each terminal of the LCD display panel) that select among four voltages provided by a resistor ladder 712. Resistor ladder 712 acts as a voltage divider, providing all required voltage values ¾ VDD, ½ VDD, and ¼ VDD carried by signals 728. Each analog multiplexer of module 703 comprises a selection input driven by the SEGMENT waveform generator 708 for segment terminals 731 via line 727 and the output of AND gate 710 or the COMMON waveform generator 722 for the common terminals 732 via line 728 and the output of AND gate 709. COMMON waveform generator 709 and SEGMENT waveform generator 708 may be signaled by timing generation circuitry 702 by means of signal 726. There are analog multiplexers for common terminals 230 and analog multiplexers for segment terminals 229.
Architecture 700 suppresses the above-mentioned problems of circuitry 200 by adding a set of AND gates 709 and 710 after COMMON waveform generator 707 and SEGMENT waveform generator 708. Therefore, the set of AND gates 709 and 710 are able to directly clear the commands of all multiplexers within the analog switch array 703 when the signal 726 is cleared. All multiplexers select the logical “GROUND” in such a case. Therefore, the resistor ladder 712 is no longer required and can be switched off. In a preferred embodiment, resistor ladder 712 can be switched off by means of a transistor, such as NMOS transistor 713, by timing generation module 702 applying a logical 0 on net 725. This switching off of resistor ladder 712 is performed during the blank period. When net 725 is set to logical 1, the NMOS transistor 712 is ON and the current flows through resistors, thereby providing the required voltages on all nets 728.
Although AND gates are used in the exemplary embodiment illustrated in
The clearing of SEGMENTS and COMMONS terminals may be performed with another signal 726. This configuration is not mandatory. However, it may allow architecture 700 to take into account a startup time in resistor ladder 712.
When the blinking mode of operation is activated by means of configuration register 711 providing the “LCDBLKFREQ” information (part select of 729), the timing generation module 702 generates both command signal 725 and 726.
This technique can be used no matter what the number of common terminals on LCD panel is. However, the best result in terms of display quality will be achieved for LCD panels having a limited number of common terminals. Up to four COMMONS provides a correct result. In fact, in LCD panels having a significant number of COMMON terminals, the multiplexing results in a very small difference between the RMS voltage across a visible pixel and a non-visible pixel. The more COMMON terminals there are, the less of a voltage difference there is. This leads to a slight grey tint on non-visible pixels instead of the pixels being fully invisible. When switching the waveforms off, the pixels are fully invisible. Therefore, in blinking mode, for each non-visible pixel, there is a blinking transition effect from slight grey tint to invisible, which may result in an undesirable lack of elegance. This problem of the slight grey tint remains imperceptible for 2, 3 or 4 COMMON terminal LCD panels.
While the invention has been described with reference to an exemplary embodiment, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention.
Number | Name | Date | Kind |
---|---|---|---|
4191956 | Groothuis | Mar 1980 | A |
4470042 | Barnich et al. | Sep 1984 | A |
4724431 | Holtey et al. | Feb 1988 | A |
4831369 | Lecourtier | May 1989 | A |
5726668 | Clement | Mar 1998 | A |
5821910 | Shay | Oct 1998 | A |
6388661 | Richards | May 2002 | B1 |
6636190 | Hirakata et al. | Oct 2003 | B2 |
6903716 | Kawabe et al. | Jun 2005 | B2 |
20030151616 | Morita | Aug 2003 | A1 |
20050073490 | Kojima et al. | Apr 2005 | A1 |
20050163506 | Ikeda et al. | Jul 2005 | A1 |
20060087503 | Sasaki et al. | Apr 2006 | A1 |
20060284863 | Imayoshi et al. | Dec 2006 | A1 |
Number | Date | Country |
---|---|---|
1255241 | Nov 2002 | EP |
1763015 | Mar 2007 | EP |
WO-2008124051 | Oct 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20080246746 A1 | Oct 2008 | US |