The present application claims priority from Japanese application serial no. 2005-125103 filed on Apr. 22, 2005, the content of which is hereby incorporated by reference into this application.
The present invention relates to an image display device and a driving method of the device, and particularly relates to the device and the method which are effective for use in an image display device using a multiple electron sources in which electron emitters are disposed in a matrix pattern.
Much attention has been attracted on a self-luminous, matrix-type display in which electron sources are provided at intersections between electrode groups perpendicular to each other, and applied voltage or applied time to respective electron sources are adjusted, thereby the quantity of electrons emitted from the electron sources are controlled, and then the emitted electrons are accelerated by high voltage and thus irradiated to phosphors.
As the electron sources used for this type of display, electron sources using field emission cathodes, thin-film electron sources, carbon nano-tubes, surface-conduction electron emitters and the like are given.
In this type of display panel, line-sequential scan is generally performed.
In
The display panel includes horizontal m dots and vertical n lines, and D1 to Dm are data electrodes for applying data signals on respective data lines, and S1 to Sn are scan line electrodes for applying selection voltage on respective scan lines.
When the line-sequential scan is performed, driving current for all electron emitters connected to selected scan lines flow into a selected scan-line electrode.
The timing controller 206 outputs a control signal 213 for controlling a data-electrode drive circuit 207 that drives data electrodes, a control signal 214 for controlling a scan-electrode drive circuit 208, and image data 212 for generating driving waveforms for driving the data electrodes.
The scan electrode drive circuit 208 selects one scan line among respective scan lines. One of scan selection switches SH1 to SHn is into an on-state, and selection voltage VH is applied to a selected scan line electrode.
Conversely, non-selection operation is performed using non-selection switches SL1 to SLn. A plurality of switches corresponding to scan lines to be in a non-selection state are into the on-state, and consequently non-selection potential LH is supplied to electrodes of the scan lines.
High voltage is supplied from a high-voltage circuit 211 to the display panel 209, and the emitted electrons are accelerated by the high voltage and then irradiated to the phosphors.
The scan selection switch SH1 is into the on-state during a period T1, so that a first scan line is selected. At that time, data voltage Vd11 to Vd1n are supplied to respective data lines by the data electrode drive circuit 207.
Next, the scan selection switch SH2 is into the on-state during a period T2, so that data voltage Vd21 to Vd2n are supplied to respective data lines. The operation is sequentially performed to display an image corresponding to one field.
U.S. Patent Publication No. 2004/001039 (JP-A-2004-86130) describes an image display device having a correction circuit for correcting voltage variation in a row selection signal due to voltage drop caused by on-resistance of an output stage of a row drive circuit and current flowing into a selected row line according to gray-scale information, and a column drive circuit that generates a modulation signal modulated according to the gray-scale information such that abrupt change in current flowing into the selected row line is restrained.
As described on the related art, in the self-luminous, matrix-type display in which electron sources are provided at intersections between scan lines and data lines perpendicular to each other, switch elements are used for the scan-electrode drive circuit to select a scan line, and drive current for pixels connected to a selected scan line flows into the relevant switch element, which may amount to several milliamperes. Therefore, a level of voltage drop associated with an on-resistance value of the switch element can not be neglected.
Moreover, the current flowing into the switch element is varied depending on the image content, and accordingly the level of voltage drop may be varied. In this case, electric potential of the scan electrode becomes uneven, and consequently difference in luminance called smear occurs in a horizontal direction.
As a method of reforming the smear, a method where the level of voltage drop is previously calculated based on image data, and the data-electrode drive circuit is used for correction, or a method where a negative feedback amplifier is used to monitor the scan electrode potential, and applied voltage to the switch element is corrected such that the scan electrode potential is equal to predetermined potential has been proposed.
The former method has a difficulty in a point that gray-scale characteristics of an image is sacrificed. In the latter, the gray-scale characteristics is not sacrificed, however as described hereinafter, there has been a difficulty that a waveform containing overshooting components appears on the scan electrodes due to a limited frequency characteristic of the amplifier and due to a point of driving capacitive loads via the switching elements, and consequently predetermined gray-scale can not be obtained.
Hereinafter, a difficulty in a scan-electrode correction circuit to which the negative feedback amplifier is applied in the matrix-type display is described.
In a region where the applied voltage V is low (V<Vth), current I of the thin-film electron sources is extremely small. When the applied voltage exceeds Vth, current starts to flow into the thin-film electron sources, consequently the current I of the thin-film electron sources increases exponentially.
Vmax shows a maximum value of the applied voltage to the thin-film electron sources. Polarity of the thin-film electron sources in the embodiment is defined as follows: current flows when scan line voltage is higher than data line voltage.
In
An output terminal of the amplifier 7 is connected with scan selection switches 8 and 15 having on-resistance Ron9 and Ron14, and when a scan selection switch 8 is turned on, scan selection potential is applied to a scan electrode 18. At that time, the thin-film electron sources connected to the scan electrode 18 are into a selection state, leading to light emission.
In the next horizontal scan cycle, the scan selection switch 15 is turned on and thus a scan electrode 19 is into a selection state, leading to light emission.
When the scan electrode 18 is selected, a feedback switch 11 is on, and thus electric potential of the scan electrode 18 is returned into a negative-phase input terminal of the amplifier 7, and then negative feedback operation is performed such that the electric potential of the scan electrode 18 is equal to electric potential of the reference voltage source 13.
Typically, since data lines for connecting respective electron sources to one another have limited resistance values and limited wiring capacitance, and a data drive circuit has certain output resistance, when the gray-scale voltage is changed, a waveform with certain time constant is formed as shown in Vdata in
Therefore, when the scan electrodes are driven, a method is taken, wherein a period while any electrode is not selected (hereinafter, called “non-selection period”) is set at the beginning of the horizontal scan cycle, and after data voltage comes up to predetermined gray-scale voltage, selection potential is given to a scan electrode. Waveforms at that time are shown in Vs1 and Vs2 in
In
A switch 16, which is provided to prevent output voltage of the amplifier 7 from being uncertain during each selection period or the non-selection period such as a vertical blanking period, is a negative feedback switch for fixing the output voltage of the amplifier 7 to reference voltage.
Description is made on difficulties with attention on the scan electrode 19 in
At the beginning of the horizontal scan period, the waveform Vs starts to rise with time constant determined by the on-resistance Ron14 of the scan selection switch 15 and capacitance of a single scan line. The amplifier 7 detects an error component between predetermined reference voltage Vref and scan electrode voltage Vs2, and performs negative feedback operation such that difference between the scan electrode voltage Vs2 and the reference voltage Vref becomes 0 V.
Since the amplifier 7 is the ideal amplifier, the output voltage Vout of the amplifier 7 steeply increases up to supply voltage. After that, from a point when the difference between the scan electrode voltage Vs2 and the reference voltage Vref comes up to 0 V, the output voltage Vout of the amplifier 7 decreases, and the output voltage of the amplifier 7 is into a steady state in a condition that a voltage level corresponding to voltage drop determined by current flowing into the scan line and the on-resistance Ron14 of the scan selection switch 15.
Next, a case that the amplifier 7 is not ideal, and has a limited frequency characteristic is described.
As a characteristic that the open-loop gain characteristic 25 of the amplifier 7 is decreased at 20 dB/decade, when a transfer function of output voltage to differential input voltage of the amplifier 7 is expressed using complex frequency, it can be expressed by the following equation (1).
Here, S is a complex frequency, A is gain of the amplifier, and α is a coefficient.
Similarly, the transfer gain characteristic 26 of the RC circuit network configured by the on-resistance 14 of the scan selection switch 15 and the panel capacitance can be expressed by the following equation (2).
Here, β is a coefficient.
In the equation (1), when the differential input voltage Vref-Vs2 is substituted by Vin, and then a transfer function of Vs2 against Vin is obtained, the following equation (3) is obtained.
The transfer function equation (3) contains a second-order lag element. Therefore, a waveform containing overshooting components appears as Vs2 that is the output voltage.
That is, in a negative feedback circuit configured by the amplifier 7, scan selection switch 15, and panel capacitance, waveform delay associated with the second-order lag element occurs, and consequently the waveform containing the overshooting components appears in the scan electrode voltage, which is output of the circuit.
It is desirable to provide an image display device in which applied voltage to the scan electrodes without overshooting is realized, and consequently an excellent image display can be achieved.
An embodiment of the invention includes a display panel having scan lines and data lines, in which electron emitters are disposed in a matrix pattern, and applied voltage to respective electron emitters is controlled, and emitted electrons are converged and irradiated to phosphors to cause light emission, a scan-electrode drive circuit connected to respective scan lines, a data-electrode drive circuit connected to respective data lines, and a high-voltage circuit that generates high voltage for converging the emitted electrons and irradiating the electrons to the phosphors; wherein the scan-electrode drive circuit includes scan selection switches for selecting a scan line, a scan-electrode potential detection circuit for detecting electric potential of respective scan electrodes, a scan-electrode potential correction circuit that establishes predetermined electric potential for each of the scan electrodes based on scan electrode potential detected by the scan-electrode potential detection circuit, and a reference selection potential signal generation circuit that controls a change rate (delay level) of a scan electrode waveform, and can realize scan electrode voltage without overshooting components in the scan electrode waveform.
According to the image display device according to the embodiment of the invention, an image display device that displays an excellent image without pedestal level errors relief or gray-scale errors can be provided.
Hereinafter, an image display device according to embodiment 1 of the invention is described.
In
An output signal 30 of the reference-selection-potential-signal generation circuit 1 is shown as a delayed waveform 30 in
An output terminal of the amplifier 7 is connected with the scan selection switch 8 having on-resistance Ron9, and when the scan selection switch 8 is turned on, scan selection potential is applied to a scan electrode.
A waveform 33 in
A scan selection period Ts corresponds to a high level period of the switch control signal 33. Timing at which the switch control signal 33 is changed from a low level to the high level is set in synchronization with the time when data-electrode drive voltage comes up to predetermined potential. The switch control signal 33 is supplied from the timing controller 206 shown in
At the time t=0 in
The scan electrode potential is returned into the negative-phase input terminal of the amplifier 7 by the feedback switch 11, and then negative feedback operation is performed such that the scan electrode potential is equal to the potential of the reference voltage source 13. The transfer function of the scan electrode voltage against the differential input voltage of the amplifier 7 was mentioned with respect to the equation (3).
In
When Vsref and Vs are converted into time functions using Laplace inverse transformation, the functions are assumed to be Vsref(t) and Vs(t) respectively. Generally in rise time, Vs(t) can be handled using a time function in the natural logarithm, and when Vsref(t) is a DC signal, Vsref(t)−Vs(t) as the differential input voltage can be expressed by the following equation (5).
(equation 5)
Vsref(t)−Vs(t)=Ed−Eb(1−exp(−at)) (5)
The function contains higher-order frequency components, which means that response in a circuit network containing the transfer function of the equation (4) includes an output waveform which contains many overshoot components.
In other words, Vsref (t) is obtained such that a transient term in the equation (5) is canceled, thereby the high-order frequency components are decreased, and consequently overshooting components is reformed. That is, Vsref(t) is substituted by the following equation (6), thereby the transient term is canceled.
(equation 6)
Vsref(t)=Ed−Eb exp(−at) (6)
A circuit network that can be expressed by the equation (6) is provided as the reference-selection-potential-signal generation circuit 1, thereby the differential input voltage of the amplifier 7 can be expressed as the following equation (7).
(equation 7)
Vsref(t)−Vs(t)=Ed−Eb (7)
A circuit network of
According to the embodiment, scan electrode voltage without overshooting components can be realized for the driving waveform of the scan electrodes of the matrix-type display using the electron emitters as the electron sources, and excellent image display without pedestal level errors or gray-scale errors can be achieved.
Hereinafter, another embodiment of an image display device according to the invention is described using
In
A waveform 33 in
The scan selection period Ts corresponds to a high level period of the switch control signal A. Timing at which the switch control signal A is changed from the low level to the high level is set in synchronization with the time when the data-electrode drive voltage comes up to the predetermined potential. The switch control signal 33 is supplied from the timing controller 206 shown in
At time t=0 in
The scan electrode potential is returned into the negative-phase input terminal of the amplifier 7 by the feedback switch 11, and then negative feedback operation is performed such that the scan electrode potential is equal to the potential of the reference voltage source 13.
On the other hand, a waveform 37 in
A non-selection period Tr corresponds to a high level period of the switch control signal B, which is set before and after the scan selection period. The switch control signal B is supplied from the timing controller 206 shown in
During the non-selection period, the output voltage of the amplifier 7 is returned into the negative-phase input terminal of the amplifier 7. Therefore, the output voltage of the amplifier 7 during the non-selection period corresponds to divided voltage of the voltage Vref of the reference voltage source 13 by the resistor 2 and the resistor 40, and Vsref (0) as initial voltage in the scan selection period is given by the following equation (8).
In the time t>0, the switch 6 and the switch 16 are off, and the scan selection switch 8 and the feedback switch 11 transit into the on-state. A reference-signal-selection-voltage signal 38 during the scan selection operation period can be expressed by a time function of the following equation (9) with the equation (8) as the initial voltage.
Here, a time function of the scan electrode potential is substituted by the following equation (10). In the equation (1), E·(1−exp(−bt)) is the zero state response, and V0·exp(−bt) is the zero input response.
(equation 10)
Vs(t)=E·(1−exp(−bt))+V0·exp(−bt) (10)
The differential input signal in the amplifier 7 can be expressed by the following equation (11) using the equation (9) and the equation (10).
The following equation (12) is obtained by transforming the equation (11). The equation (12) means that natural logarithm terms can be eliminated by appropriately selecting the resistance value R1, resistance value R2, and capacitance value C1.
According to the equation (12), a circuit condition is given according to the following equation (13), thereby high frequency components in the output voltage can be eliminated. In other words, the over shooting components in the output voltage can be eliminated.
Next, as a specific example, in the case that a display panel in the VGA specification (640 dots×RGB×480 lines) is driven, the resistance values R1 and R2 and the capacitance value C1 are obtained. As a typical condition, the scan selection voltage is set to be 10 V, and the non-selection voltage is set to be 5 V.
In the equation (12) and the equation (13), voltage E is the scan selection voltage, and VO is the non-selection voltage. The coefficient b is the time constant determined by the on-resistance Ron9 of the scan selection switch 8 and the capacitance value Cp of the capacitor 14.
When capacitance of one pixel is assumed to be 20 pF, the capacitance value Cp is 38400 pF. Corresponding to this, since scan-selection-switch current reaches several hundreds milliamperes to several amperes, the on-resistance Ron9 of the scan selection switch 8 is desirably set to have a low on-resistance value of 1 Ω or lower.
However, practical on-resistance in the case of configuring a circuit by LSI is set to be several ohms to several tens ohms from a view point of chip size. Here, the on-resistance value of the scan selection switch 8 is assumed to be 10 Ω.
Furthermore, C1 is assumed to be 1000 pF. In the above condition, using the equation (13), since R1 is 384 Ω, the scan selection voltage is 10 V, and non-selection voltage is 5 V, R2=384 Ω can be introduced.
According to the embodiment, as in the embodiment 1, the scan electrode voltage without overshooting can be realized for the driving waveform of the scan electrodes of the matrix-type display using the electron emitters as the electron sources, and the excellent image display without pedestal level errors or gray-scale errors can be achieved.
Hereinafter, still another embodiment of an image display device of the invention is described using
In
The switches 35 and 16 are driven by the switch control signal B, which are on in the high level.
The time t<0 corresponds to a non-selection period where the switches 35 and 16 are on, wherein the output voltage of the amplifier 7 is returned into the negative-phase input terminal of the amplifier 7. Therefore, the output voltage of the amplifier 7 during the non-selection period is equal to output voltage of the voltage source 36.
Next, operation during a selection period corresponding to t>0 is described. In the selection period, the scan selection switch 8 and the feedback switch 11 are turned on by the switch control signal A. Again in this case, respective switches are on in the high level.
Here, the output voltage of the voltage source 36 is substituted by V1, and the reference selection potential signal 39 during the selection period can be expressed by a time function of the following equation (14).
The signal is handled as the differential input signal to the amplifier 7, and the following equation (15) can be obtained from the equation (14) and the equation (10) shown in the embodiment 2.
The following equation (16) is obtained by transforming the equation (15). The equation (16) means that natural logarithm terms can be eliminated by appropriately selecting the voltage V1, resistance value R1, and capacitance value C1.
According to the equation (16), a circuit condition is given by the following equation (17), thereby the high frequency components in the output voltage can be eliminated. In other words, the overshooting components in the output voltage can be eliminated.
According to the embodiment, as in the embodiment 1, the scan electrode voltage without overshooting components can be realized for the driving waveform of the scan electrodes of the matrix-type display using the electron emitters as the electron sources, and the excellent image display without pedestal level errors or gray-scale errors can be achieved.
As described hereinbefore, a technique of correcting unevenness in luminance due to limited impedance of a driver circuit is indispensable in the display in which the electron emitters are disposed in the matrix pattern, and excellent image display can be achieved by applying the embodiments of the invention to the matrix-type display.
While the image display device using the thin-film electron sources was given as an example in the embodiments of the invention, it will be appreciated that the embodiments of the invention are effective for image display devices using other cathode elements such as field emission cathode elements, carbon nano-tube cathode elements, and organic EL elements.
Number | Date | Country | Kind |
---|---|---|---|
2005-125103 | Apr 2005 | JP | national |