The present invention relates to a display device, and more particularly, to a display device having a plurality of optical sensors disposed in a pixel region.
In a conventional display device, a technique of providing a plurality of optical sensors to a display panel so as to realize an input function such as a touch panel, a stylus input, or a scanner is known. As an example of an optical sensor, a circuit configuration shown in
In this conventional optical sensor, the gate of the transistor M1 is connected to a storage node INT. The storage node INT is connected to one electrode of the capacitor CINT and to one electrode (cathode) of the photodiode PD1. The other electrode (anode) of the photodiode PD1 is connected to a reset line RST. The other electrode of the capacitor CINT is connected to a read-out line RWS.
The conventional optical sensor operates as follows. First, in a reset period, the reset line RST is applied with a voltage that makes the photodiode PD1 forward-biased. This way, in the reset period, the storage node INT is reset to a prescribed potential. When the reset period is over, the reset line is applied with a voltage that makes the photodiode PD1 reverse-biased. In an accumulation period following the reset period, electrical charges are accumulated in the storage node INT. In a read-out period following the accumulation period, the read-out line RWS is applied with a read-out voltage, which allows the transistor M1 to read out the electrical charges that were accumulated in the storage node INT during the accumulation period.
In order to improve the sensitivity of the conventional optical sensor described above, it is necessary to reduce the capacitance of CINT, or to increase the size or number of the photodiode PD1. However, when the size or number of the photodiode PD1 is increased, the load capacitance thereof is also increased, and therefore, it was difficult to effectively improve the sensitivity. To solve this problem, the present invention is aiming at providing a display device equipped with an optical sensor with higher sensitivity.
In order to achieve the above-mentioned object, a display device disclosed herein includes: a display panel that has a plurality of display pixel circuits and a plurality of sensor pixel circuits in a display region; and a driver circuit that supplies a driving signal to the sensor pixel circuits, wherein each of the sensor pixel circuits includes: a light-receiving element; a storage node that retains electrical charges corresponding to an amount of light that entered the light-receiving element; and a read-out switching element that is connected to the storage node, wherein the display device further includes: a first switching element that is connected between the light-receiving element and the storage node, the first switching element being operated in a saturation region; and a second switching element that resets the storage node.
According to the present invention, a display device that includes an optical sensor with improved sensitivity can be provided.
A display device according to an embodiment of the present invention is provided with:
a display panel that includes a plurality of display pixel circuits and a plurality of sensor pixel circuits in a display region; and
a driver circuit that supplies a driving signal to the sensor pixel circuits,
wherein each of the sensor pixel circuits includes:
a light-receiving element;
a first storage node that accumulates electrical charges corresponding to an amount of light that entered the light-receiving element;
a second storage node that is provided to retain electrical charges at the first storage node;
a read-out switching element that is connected to the second storage node;
a first switching element that is connected between the first storage node and the second storage node, the first switching element being operated in a saturation region when electrical charges accumulated in the first storage node are transferred to the second storage node; and
a second switching element that is connected to the second storage node, the second switching element being provided for resetting the first and second storage nodes (first configuration).
In the first configuration,
each of the sensor pixel circuits may further include a capacitor that is connected between the second storage node and a read-out signal line, and
the second switching element may have a gate connected to a reset line, a source connected to a fixed voltage source, and a drain connected to the second storage node (second configuration).
Alternatively, in the first configuration,
each of the sensor pixel circuits may further include a capacitor that is connected between the second storage node and a read-out signal line, and
the second switching element may have a gate connected to a reset line, a source connected to the read-out signal line, and a drain connected to the second storage node (third configuration).
In the first to third configurations,
it is preferable that the driver circuit perform a sensing operation during a unit period that includes:
a reset period during which the first switching element is turned on, the second switching element is turned on, and the first and second storage nodes are reset;
an accumulation period during which the first switching element is turned off, the second switching element is turned off, and electrical charges corresponding to an amount of light received by the light-receiving element are accumulated in the first storage node;
a transfer period during which the first switching element is turned on, the second switching element is turned off, and electrical charges that were accumulated in the first storage node during the accumulation period are transferred to the second storage node; and
a read-out period during which the first switching element is turned off, the second switching element is turned off, and the read-out switching element is turned on, thereby performing a read-out operation (fourth configuration).
Alternatively, in the first to third configurations,
it is preferable the driver circuit perform a sensing operation during a unit period that includes:
a reset period during which the first switching element is turned on, the second switching element is turned on, and the first and second storage nodes are reset;
an accumulation and transfer period during which the first switching element is turned on, the second switching element is turned off, and electrical charges corresponding to an amount of light received by the light-receiving element are accumulated in the first storage node, while transferring electrical charges that were accumulated in the first storage node during the accumulation period to the second storage node; and
a read-out period during which the first switching element is turned off, the second switching element is turned off, and the read-out switching element is turned on, thereby performing a read-out operation (fifth configuration).
In the first to fifth configurations,
it is preferable that the display device further include a light source that is turned on only for a prescribed period of time during one frame period, and
the display device be configured such that the sensor pixel circuits include a first sensor pixel circuit and a second sensor pixel circuit, the first sensor pixel circuit detecting light during a detection period in which the light source is on, the second sensor pixel circuit detecting light during a detection period in which the light source is off, and
the driver circuit performs a read-out operation from the first and second sensor pixel circuits in a line-sequential manner during a period other than the detection period in which the light source is on and the detection period in which the light source is off (sixth configuration).
In the sixth configuration,
it is more preferable that the display device be configured such that the light source is turned on for a prescribed period of time only once during one frame period, and
one frame period includes one detection period in which the light source is on and one detection period in which the light source is off (seventh configuration).
In the sixth or seventh configuration,
it is preferable that the first sensor pixel circuit and the second sensor pixel circuit share a single optical sensor (eighth configuration).
In the first to eighth configurations,
it is preferable that the first capacitor is a P-type transistor (ninth configuration).
In the first to eighth configurations,
it is preferable that each of the sensor pixel circuits further include a reference light-receiving element that is connected to the light-receiving element in series and that is shielded from light, and
the first storage node be connected between the light-receiving element and the reference light-receiving element (tenth configuration).
In the first to eighth configurations,
the light-receiving element may be an N-type transistor (eleventh configuration).
In the first to eighth configurations,
it is preferable the display device further include a select switching element that is connected to the read-out switching element in series, the select switching element being provided to establish and break electrical continuity between the second storage node and an output line of the sensor pixel circuit.
A driving method of a display device according to an embodiment of the present invention is a driving method of a display device that is provided with: a display panel that includes a plurality of display pixel circuits and a plurality of sensor pixel circuits in a display region; and a driver circuit that supplies a driving signal to the sensor pixel circuits, wherein each of the sensor pixel circuits includes: a light-receiving element; a first storage node that accumulates electrical charges corresponding to an amount of light that entered the light-receiving element; a second storage node that is provided to retain electrical charges at the first storage node; a read-out switching element that is connected to the second storage node; a first switching element that is connected between the first storage node and the second storage node, the first switching element being operated in a saturation region when electrical charges accumulated in the first storage node are transferred to the second storage node; and a second switching element that is connected to the second storage node, the second switching element being provided for resetting the first and second storage nodes,
the driving method including a sensing operation that is performed by the driver circuit during a unit period, the sensing operation including:
a reset process in which the first switching element is turned on, the second switching element is turned on, and the first and second storage nodes are reset;
an accumulation process in which the first switching element is turned off, the second switching element is turned off, and electrical charges corresponding to an amount of light received by the light-receiving element are accumulated in the first storage node;
a transfer process in which the first switching element is turned on, the second switching element is turned off, and electrical charges that were accumulated in the first storage node during the accumulation process are transferred to the second storage node; and
a read-out process in which the first switching element is turned off, the second switching element is turned off, and the read-out switching element is turned on, thereby performing a read-out operation.
A driving method of a display device according to another embodiment of the present invention is a driving method of a display device that is provided with: a display panel that includes a plurality of display pixel circuits and a plurality of sensor pixel circuits in a display region; and a driver circuit that supplies a driving signal to the sensor pixel circuits, wherein each of the sensor pixel circuits includes: a light-receiving element; a first storage node that accumulates electrical charges corresponding to an amount of light that entered the light-receiving element; a second storage node that is provided to retain electrical charges at the first storage node; a read-out switching element that is connected to the second storage node; a first switching element that is connected between the first storage node and the second storage node, the first switching element being operated in a saturation region when electrical charges accumulated in the first storage node are transferred to the second storage node; and a second switching element that is connected to the second storage node, the second switching element being provided for resetting the first and second storage nodes,
the driving method including a sensing operation that is performed by the driver circuit during a unit period, the sensing operation including:
a reset process in which the first switching element is turned on, the second switching element is turned on, and the first and second storage nodes are reset;
an accumulation and transfer process in which the first switching element is turned on, the second switching element is turned off, and electrical charges corresponding to an amount of light received by the light-receiving element are accumulated in the first storage node, while transferring electrical charges that were accumulated during the accumulation period in the first storage node to the second storage node; and
a read-out process in which the first switching element is turned off, the second switching element is turned off, and the read-out switching element is turned on, thereby performing a read-out operation.
Below, specific embodiments of the present invention will be explained with reference to figures. The following embodiments describe configuration examples in a case in which the display device according to the present invention is implemented as a liquid crystal display device. However, the display device of the present invention is not limited to a liquid crystal display device, and can be applied to other display devices that use an active matrix substrate. The display device according to the present invention is equipped with optical sensors, and can therefore be used as a display device equipped with a touch panel that performs an input operation by detecting an object near a screen, a dual-communication display device that has both a display function and an image-capturing function, or the like.
For ease of explanation, each of the figures that are referred to in the following descriptions only shows, in a simple manner, main components that are necessary to explain the present invention, out of constituting components of embodiments of the present invention. Therefore, it is possible that the display device of the present invention includes appropriate constituting components that are not shown in any of the figures that are referred to in the present specification. Dimensions of the components in each figure do not truthfully represent the dimensions of the actual constituting components, dimensional ratios of the respective components, or the like.
The display device shown in
The backlight 3 is a light source for sensing, which is provided in addition to a light source for display, and radiates light to the display panel 2. More specifically, the backlight 3 is disposed on the rear surface side of the display panel 2, and radiates light to the rear surface of the display panel 2. The backlight 3 is turned on when the control signal CSb is at a high level, and is turned off when the control signal CSb is at a low level. As the backlight 3, an infrared light source or the like can be used, for example.
In the pixel region 4 of the display panel 2, (x×y) number of display pixel circuits 8 and (n×m/2) number of sensor pixel circuits 9 are respectively arranged two-dimensionally. More specifically, in the pixel region 4, “x” number of gate lines GL1 to GLx and “y” number of source lines SL1 to SLy are provided. The gate lines GL1 to GLx are arranged in parallel with each other, and the source lines SL1 to SLy are arranged in parallel with each other so as to intersect with the gate lines GL1 to GLx. The (x x y) number of display pixel circuits 8 are provided near respective intersections of the gate lines GL1 to GLx and the source lines SL1 to SLy. Each display pixel circuit 8 is connected to one gate line GL and one source line SL. Three types of display pixel circuits 8 are respectively provided for red color display, green color display, and blue color display. These three types of display pixel circuits 8 are arranged side by side in a direction in which the gate lines GL1 to GLx are extended, constituting one color pixel.
In the pixel region 4, “n” number of clock lines CLK1 to CLKn, “n” number of reset lines RST1 to RSTn, and “n” number of read-out lines RWS1 to RWSn are disposed in parallel with the gate lines GL1 to GLx. Also, in the pixel region 4, other signal lines or power lines (not shown) may be disposed in parallel with the gate lines GL1 to GLx. In a read-out operation from the sensor pixel circuits 9, “m” number of lines that are selected from the source lines SL1 to SLy are used as power supply lines VDD1 to VDDm, and other “m” source lines are used as output lines OUT1 to OUTm.
The gate driver circuit 5 drives the gate lines GL1 to GLx. More specifically, based on the control signal CSg, the gate driver circuit 5 selects one gate line out of the gate lines GL1 to GLx sequentially, and applies a high-level potential to the selected gate line, and a low-level potential to the other gate lines. This way, “y” number of display pixel circuits 8 that are connected to the selected gate line are collectively selected.
The source driver circuit 6 drives the source lines SL1 to SLy. More specifically, based on the control signal CSs, the source driver circuit 6 applies potentials corresponding to the image signal VS to the source lines SL1 to SLy. At this time, the source driver circuit 6 may drive the source lines in a line-sequential manner or a dot-sequential manner. The potentials applied to the source lines SL1 to SLy are written into “y” number of display pixel circuits 8 that are selected by the gate driver circuit 5. As described above, by writing potentials corresponding to the image signal VS into all of the display pixel circuits 8 using the gate driver circuit 5 and the source driver circuit 6, a desired image can be displayed on the display panel 2.
The sensor row driver circuit 7 drives the clock lines CLK1 to CLKn, the reset lines RST1 to RSTn, the read-out lines RWS1 to RWSn, and the like. More specifically, based on the control signal CSr, the sensor row driver circuit 7 applies a high-level potential and a low-level potential to the clock lines CLK1 to CLKn at prescribed timing (as described later in detail). Also, based on the control signal CSr, the sensor row driver circuit 7 selects one reset line out of the reset lines RST1 to RSTn, and applies a high-level potential for resetting to the selected reset line, and a low-level potential to the other reset lines. This way, “m” number of sensor pixel circuits 9 connected to the reset line that is applied with the high-level potential are collectively reset.
Also, based on the control signal CSr, the sensor row driver circuit 7 selects one read-out line out of the read-out lines RWS1 to RWSn sequentially, and applies a high-level potential for reading-out to the selected read-out line, and applies a low-level potential to the other read-out lines. This way, “m” number of sensor pixel circuits 9 that are connected to the selected read-out line are collectively turned into a read-out ready state. At this time, the source driver circuit 6 applies a high-level potential to the power supply lines VDD1 to VDDm. This causes the “m” number of sensor pixel circuits 9, which are in the read-out ready state, to output signals corresponding to the amounts of light detected by the respective sensor pixel circuits 9 (referred to as sensor signals below) to the output lines OUT1 to OUTm. The output lines OUT double as the source lines SL, and the sensor signals outputted to the output lines OUT are sent to the source driver circuit 6.
The source driver circuit 6 amplifies the sensor signals outputted from the output lines OUT, and outputs the amplified signals to the outside of the display panel 2 as sensor output Sout. The sensor output Sout, as necessary, undergoes an appropriate process conducted by the signal processing circuit 20 provided outside the display panel 2. As described above, by reading out the sensor signals from all of the sensor pixel circuits 9 using the source driver circuit 6 and the sensor row driver circuit 7, light that entered the display panel 2 can be detected.
The number of the sensor pixel circuits 9 disposed in the pixel region 4 may be appropriately selected. For example, it is possible to provide (n×m) number of sensor pixel circuits 9 in the pixel region 4, or to provide the same number of sensor pixel circuits 9 as that of the color pixels (that is, (x×y/3)) in the pixel region 4. Alternatively, it is possible to provide a smaller number of the sensor pixel circuits 9 in the pixel region 4 than that of the color pixels (with a ratio of one to several or one to several dozens, for example).
As described above, the display device according to an embodiment of the present invention is a display device having a plurality of photodiodes (optical sensors) disposed in the pixel region 4, and includes: the display panel 2 having a plurality of display pixel circuits 8 and a plurality of sensor pixel circuits 9; and a sensor row driver circuit 7 (driver circuit) that outputs driving signals such as a clock signal CLK to the sensor pixel circuits 9.
Below, a configuration and a driving method of the sensor pixel circuit 9 will be explained. In the following description, signals on the respective signal lines are distinguished from each other by using the same reference characters as the corresponding signal lines (for example, a signal on the clock line CLK1 is referred to as a clock signal CLK1).
In the reset period between times t1 and t2, when the clock signal CLK and the reset signal RST are set to a high level, as shown in
That is, the following condition needs to be fulfilled, where Vclk is a high-level potential of the clock signal CLK, Vsig is a potential of a node SIG, and Vth is the threshold voltage of the transistor T1:
Vint−Vsig>Vclk−Vsig−Vth (1).
At the time t2, the reset signal RST is set to a low level from a high level, thereby ending the reset period and starting an accumulation period. During the accumulation period between the times t2 and t3, the clock signal CLK, the reset signal RST, and the read-out signal RWS are all maintained at a low level. During the accumulation period, the transistors T1 and T2 are off. In this state, when light enters the photodiode PD1, a current Ipd that corresponds to the incident light flows through the photodiode PD1, and charges Qsig are extracted from the node SIG (
Next, at a point in time when the accumulation period ends (time t3), the clock signal CLK is set to a high level again, thereby turning the transistor T1 on. As a result, charges that correspond to the charges Qsig, which were extracted from the node SIG, are moved from the storage node INT to the node SIG. Consequently, the potential Vint at the storage node INT is lowered by ΔVint in accordance with the size of the charges Qsig, which results in the following equation:
where Cint is a load capacitance of the storage node INT, and “t” is the length of the accumulation period (between the times t2 and t3).
In the read-out period following the time t5, the clock signal CLK and the reset signal RST are set to a low level, and the read-out signal RWS is set to a high level for reading-out. At this time, the potential Vint at the storage node INT is increased by an amount that is (Cint/Cp) times as much as the size increase in the potential of the read-out signal RWS (here, Cp is the total capacitance value of the sensor pixel circuit 9). The transistor M1 serves as a source follower amplifier circuit that uses, as a load, a transistor (not shown) included in the source driver circuit 6, and drives the output line OUT in accordance with the potential Vint.
The time t1 in
As described above, in this embodiment, the sensor pixel circuit 9a includes the transistor T2 for resetting, and a reset operation is performed during the reset period such that the transistor T1 is operated in a saturation region. Also, in the sensor pixel circuit 9a, the transistor T1 is disposed between the photodiode PD1 and the storage node INT, and therefore, it is possible to isolate the load capacitance of the photodiode PD1, which is relatively large, from the capacitor Cint, thereby achieving high sensitivity. The load capacitance of the photodiode PD1 is mainly accounted for by a capacitance formed between the photodiode PD1 and a light-shielding layer disposed on the rear surface of the photodiode PD1 (backlight side).
In the conventional sensor pixel circuit shown in
ΔVint=Q/(Cint+Cpd) (3).
On the other hand, as shown in Equation (2) above, in the sensor pixel circuit 9a of this embodiment, ΔVint is not affected by the load capacitance Cpd of the photodiode PD1. Therefore, with the sensor pixel circuit 9a, the amount of decrease ΔVint during the accumulation period can be made larger, thereby achieving an optical sensor with higher sensitivity.
Embodiment 1 has been described above, but the sensor pixel circuit 9 can also be configured in different manners from the sensor pixel circuit 9a. Below, major modification examples will be described.
Also, as shown in
Embodiment 2 of the display device of the present invention will be explained below. The same reference characters are given to elements similar to the constituting elements described in Embodiment 1, and the detailed descriptions thereof are omitted.
In Embodiment 2, the specific configuration of the sensor pixel circuit 9 is the same as that of the sensor pixel circuit 9a described in Embodiment 1, but the driving method thereof differs.
In a reset period between the times t1 and t2, the clock signal CLK and the reset signal RST are set to a high level, and the read-out signal RWS is set to a low level. At this time, the transistors T1 and T2 are both turned on. As a result, the potential Vsig at the node SIG and the potential Vint at the storage node INT are respectively reset to prescribed levels. That is, the potential Vint at the storage node INT is reset to the fixed voltage Vref, and the potential Vsig at the node SIG is reset to Vclk-Vth, respectively. The potential Vref is set to a greater value than the potential Vclk such that the transistor T1 is operated in a saturation region at all times.
In this embodiment, between the times t2 and t3, the accumulation of charges and the transfer of the charges to the storage node INT are simultaneously performed. During a period between the times t2 and t3, the clock signal CLK is maintained at a high level, and the reset signal RST and the read-out signal RWS are maintained at a low level, and as a result, the transistor T1 is turned on, and the transistor T2 is turned off. When light enters the photodiode PD1, photocurrent Ipd flows from the node SIG to the power supply line COM through the photodiode PD1, and the charges are extracted from the node SIG. At this time, because the transistor T1 is on, the charges extracted as a result of the photocurrent Ipd are made up for by charges at the storage node INT. Therefore, the potential Vint at the storage node INT is decreased by an amount that corresponds to the size of the charges. The amount of decrease ΔVint in potential Vint is represented by
ΔVint=Ipd·t/Cint (4),
where “t” is the length of the period between the times t2 and t3.
Thereafter, during the read-out period following the time t4, the clock signal CLK and the reset signal RST are set to a low level, and the read-out signal RWS is set to a high level for reading out. As a result, in a manner similar to Embodiment 1, the transistor M1 serves as a source follower amplifier circuit that uses, as a load, a transistor (not shown) included in the source driver circuit 6, and drives the output line OUT in accordance with the potential Vint of the storage node.
As described above, in this embodiment, the sensor pixel circuit 9a includes the transistor T2 for resetting, and a reset operation is performed during the reset period such that the transistor T1 is operated in a saturation region. Also, in the sensor pixel circuit 9a, the transistor T1 is disposed between the photodiode PD1 and the storage node INT, and therefore, it is possible to separate the load capacitance of the photodiode PD1, which is relatively large, from the capacitor Cint, thereby achieving high sensitivity.
Embodiment 2 has been described above, but in a manner similar to Embodiment 1, even when the sensor pixel circuit 9a is replaced with any of the sensor pixel circuits 9a1 to 9a13 described in Embodiment 1, effects similar to above can be obtained.
Embodiment 3 of the present invention will be explained below.
The source driver circuit 6 of this embodiment includes a differential circuit (not shown) that derives a difference between output signals from the first sensor pixel circuits 9_on and output signals from the second sensor pixel circuits 9_off. The source driver circuit 6 amplifies the difference in light amounts derived by the differential circuit, and outputs the amplified signal to the outside of the display panel 2 as a sensor output Sout. The sensor output Sout, as necessary, undergoes an appropriate process performed by the signal processing circuit 20 disposed outside the display panel 2.
The first sensor pixel circuits 9_on detect light that entered during a period A1 between the time tA and the time tB (ON period of the backlight 3). The second sensor pixel circuits 9_off detect light that entered during a period A2 between the time tB and the time tC (OFF period of the backlight 3). The period A1 has the same length as the period A2. The read-out operation from the first sensor pixel circuits 9_on and the read-out operation from the second sensor pixel circuits 9_off are performed in parallel with each other in a line-sequential manner after the time tC. In
The high-level potential Vclk of the clock lines CLK is set to fulfill the condition represented by Inequality (1) in Embodiment 1. The operation of the first sensor pixel circuit 9_on in the period A1 and the operation of the second sensor pixel circuit 9_off in the period A2 are the same as that of the sensor pixel circuit 9a described in Embodiment 1.
As described above, in this embodiment, the potential Vint_on at the storage node INTon of the first sensor pixel circuit 9_on in the period A1 can be represented as follows:
Vint_on=Vref−Ipd_on·t/Cint (5),
in a manner similar to Equation (2) in Embodiment 1. Here, “Ipd_on” represents a current value of a photocurrent that flows through the photodiode PD1 during the accumulation period in which the backlight 3 is ON (accumulation period in the period A1).
The potential Vint_off at the storage node INToff of the second sensor pixel circuit 9_off in the period A2 can be represented as follows:
Vint_off=Vref−Ipd_off·t/Cint (6),
in a manner similar to Equation (2) in Embodiment 1. Here, “Ipd_off” represents a current value of a photocurrent that flows through the photodiode PD1 during the accumulation period in which the backlight 3 is OFF (accumulation period in the period A2).
During the read-out period after the time tC shown in
The output signals from the second sensor pixel circuits 9_off, that is, the sensor signals that correspond to the amount of light that entered during the detection period in which the backlight 3 is OFF only includes noise components generated as a result of the surrounding environment. Therefore, in the differential circuit of the source driver circuit 6, by subtracting the output signals of the second sensor pixel circuits 9_off from the output signals of the first sensor pixel circuits 9_on, it is possible to obtain highly accurate sensor output from which noise components have been removed.
In a manner similar to the sensor pixel circuits 9a of Embodiment 1, with the first sensor pixel circuits 9_on and the second sensor pixel circuits 9_off, the amount of decrease ΔVint in potential at the storage node during the accumulation period is not affected by the load capacitance Cpd of the photodiode PD1. Therefore, with this embodiment, it is possible to achieve optical sensors having high sensitivity.
In Embodiment 3 described above, in a manner similar to Embodiment 1, the sensor pixel circuits 9a1 to 9a13 described in Embodiment 1 may be adopted as the circuit configuration of the first sensor pixel circuit 9_on and the second sensor pixel circuit 9_off, instead of the sensor pixel circuit 9a, and even with these circuit configurations, effects similar to above can be obtained.
It is also possible to adopt the following modification example.
As shown in
In this configuration, the sensor pixel circuit 9c can be driven by the driving signals shown in
In a manner similar to the sensor pixel circuit 9a of Embodiment 1, with the sensor pixel circuit 9c of this modification example, the amount of decrease ΔVint in potential at the storage node during the accumulation period is not affected by the load capacitance Cpd of the photodiode PD1. Therefore, with this embodiment, it is possible to achieve optical sensors having high sensitivity.
It is also possible to modify the sensor pixel circuit 9c shown in
As described above, the sensor pixel circuit 9c and the sensor pixel circuits 9c1 to 9c6 as modification examples thereof have a configuration in which the first sensor pixel circuit, which obtains a sensor output based on the accumulation period in which the backlight 3 is on, and the second sensor pixel circuit, which obtains a sensor output based on the accumulation period in which the backlight 3 is off, share a single photodiode PD1 (light-receiving element). The cathode of the shared photodiode PD1 is connected to the source of the transistor T1on included in the portion that corresponds to the first pixel circuit, and to the source of the transistor T1off in the portion that corresponds to the second pixel circuit.
With the sensor pixel circuit 9c, it is possible to detect the amount of light during the backlight ON period and the amount of light during the backlight OFF period. Also, because a single photodiode PD1 is shared by the first sensor pixel circuit, which obtains a sensor output based on the accumulation period in which the backlight 3 is on, and the second sensor pixel circuit, which obtains a sensor output based on the accumulation period in which the backlight 3 is off, effects of variations in sensitivity characteristics of the photodiodes can be eliminated. As a result, it is possible to obtain the difference between the amount of light received during the backlight ON period and the amount of light received during the backlight OFF period with high degree of accuracy. Also, because the number of photodiodes is reduced, the aperture ratio can be improved, thereby making it possible to increase the sensitivity of the sensor pixel circuit.
Embodiment 4 of the present invention will be explained below.
A display device according to Embodiment 4 has the first sensor pixel circuits 9_on and the second sensor pixel circuits 9_off respectively shown in
The high level potential Vclk of the clock line CLK and the reference potential Vref are set to fulfill the same conditions as those in Embodiment 2. The operation of the first sensor pixel circuit 9_on in the period A1 and the operation of the second sensor pixel circuit 9_off in the period A2 are the same as those in Embodiment 2.
According to this embodiment, in the read-out period after the time tC shown in
The output signals from the second sensor pixel circuits 9_off, that is, the sensor signals that correspond to the amount of light that entered during the detection period in which the backlight 3 is off only include noise components generated as a result of the surrounding environment. Therefore, by subtracting the output signals of the second sensor pixel circuits 9_off from the output signals of the first sensor pixel circuits 9_on in the differential circuit of the source driver circuit 6, it is possible to obtain highly accurate sensor output from which noise components have been removed.
In a manner similar to the sensor pixel circuits 9a of Embodiment 1, with the first sensor pixel circuits 9_on and the second sensor pixel circuits 9_off of this embodiment, the amount of decrease ΔVint in potential at the storage node during the accumulation period is not affected by the load capacitance Cpd of the photodiode PD1. Therefore, with this embodiment, it is possible to achieve optical sensors having high sensitivity.
In Embodiment 4 described above, in a manner similar to Embodiment 1, the sensor pixel circuits 9a1 to 9a13 described in Embodiment 1 may be adopted as circuit configurations of the first sensor pixel circuits 9_on and the second sensor pixel circuits 9_off, instead of the sensor pixel circuit 9a, and even with those circuit configurations, effects similar to above can be obtained.
Alternatively, even when the first sensor pixel circuit 9_on and the second sensor pixel circuit 9_off are replaced with the sensor pixel circuit 9c described in Embodiment 3, effects similar to above can be obtained. It is also possible to adopt the sensor pixel circuits 9c1 to 9c6 that are modification examples of the sensor pixel circuit 9c.
In the driving method described in Embodiments 3 and 4, during one frame period, OFF signals are obtained first, and then the ON signals are obtained. However, it is also possible to adopt a driving method in which ON signals are obtained first, and then OFF signals are obtained.
The present invention has an industrial applicability as a display device having an optical sensor function.
Number | Date | Country | Kind |
---|---|---|---|
2010-168688 | Jul 2010 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2011/066903 | 7/26/2011 | WO | 00 | 1/17/2013 |