This application claims the priority of Chinese patent application No. 201811131083.2, filed on Sep. 27, 2018, the entirety of which is incorporated herein by reference.
The present disclosure generally relates to the field of display technology and, more particularly, relates to a display device and a driving method thereof.
Currently, widely used display devices include, for example, mobile phones, computers, televisions, etc. The display devices are classified into cathode ray tube (CRT) display devices, liquid crystal display devices, plasma display devices, etc.
A display device typically includes an image processor, a display panel, and a signal controller. Generally, the image processor transmits image data to be displayed on the display panel to the signal controller, and the signal controller then generates a control signal for driving the display panel. The control signal together with the image data are transmitted to the display panel, and thus drive the display panel to display images.
The images displayed on the display panel are generally divided into static images and dynamic images. The display panel can display several frames per second, and when the image data included in these frames are the same, a static image is displayed. However, when the image data included in these frames are different, a dynamic image is displayed.
Generally, when the image displayed on the display panel is a static image or a dynamic image, the driving manners of the display panel are the same. When the displayed image is switched between a static image and a dynamic image, or when a dynamic image is displayed, during picture switching, the picture tearing phenomenon may very likely occur, and in the process of displaying a static image, the picture flickering phenomenon may very likely take place. As such, the visual experience of the user is greatly degraded.
The disclosed display device and driving method are directed to solve one or more problems set forth above and other problems in the art.
One aspect of the present disclosure provides a driving method for a display device. The display device includes a display panel configured to display images and a driving chip configured to provide driving signals and data signals to the display panel. The driving method includes inputting initial image data; determining whether picture switching occurs; and in response to determining that picture switching occurs, using a progressive scanning mode to provide the driving signals to the display panel, and in response to determining that picture switching does not occur, using an interlaced scanning mode to provide the driving signals to the display panel.
Another aspect of the present disclosure provides a display device. The display device includes a display panel, a driving chip, a switching-determination module, and a process. The display panel is configured to display images. The driving chip is configured to provide driving signals and data signals to the display panel, and to input initial image data into the display panel. In response to receiving a signal indicating that picture switching occurs, a progressive scanning mode is used to provide the driving signals to the display panel, and in response to receiving a signal indicating that picture switching does not occur, an interlaced scanning mode is used to provide the driving signals to the display panel. The switching-determination module is configured to determine whether picture switching occurs, and when picture switching occurs, send the driving chip the signal indicating that picture switching occurs, and when picture switching does not occur, send the driving chip the signal indicating that picture switching does not occur. The processor is electrically connected to the driving chip and configured to provide the driving signals and the data signals to the driving chip.
Other aspects of the present disclosure can be understood by those skilled in the art in light of the description, the claims, and the drawings of the present disclosure.
The following drawings are merely examples for illustrative purposes according to various disclosed embodiments and are not intended to limit the scope of the present disclosure.
Various exemplary embodiments of the present disclosure will now be described in detail with reference to the accompanying drawings. It should be noted that the relative arrangement of the components and steps, numerical expressions and numerical values set forth in the embodiments are not intended to limit the scope of the present disclosure. The following description of the at least one exemplary embodiment is merely illustrative, and by no means can be considered as limitations for the application or use of the present disclosure.
It should be noted that techniques, methods, and apparatuses known to those of ordinary skill in the relevant art may not be discussed in detail, but where appropriate, the techniques, methods, and apparatuses should be considered as part of the specification.
In all of the examples shown and discussed herein, any specific values should be considered as illustrative only and not as a limitation. Therefore, other examples of exemplary embodiments may have different values.
It should be noted that similar reference numbers and letters indicate similar items in subsequent figures, and therefore, once an item is defined in a figure, it is not required to be further discussed or defined in the subsequent figures.
A display device typically includes an image process unit, a display panel, and a signal controller. Usually, the image processor transmits image data to be displayed on the display panel to the signal controller, and the signal controller then generates a control signal for driving the display panel. The control signal together with the image data are transmitted to the display panel, and thus drive the display panel to display images.
The images displayed on the display panel are generally divided into static images and dynamic images. The display panel can display several frames per second, and when the image data included in these frames are the same, a static image is displayed. However, when the image data included in these frames are different, a dynamic image is displayed.
Usually, when the image displayed on the display panel is a static image or a dynamic image, the driving manners of the display panel are the same. When the displayed image is switched between a static image and a dynamic image, or when a dynamic image is displayed, during picture switching, the picture tearing phenomenon may very likely occur, and in the process of displaying a static image, the picture flickering phenomenon may very likely take place. As such, the visual experience of the user is greatly degraded.
The present disclosure provides a display device and a driving method for the display device. According to the disclosed display device and driving, the scanning mode is adjusted according to whether picture switching occurs or not. Therefore, the disclosed display device and driving method may not only be conducive to reducing the flickering phenomenon during picture display, but also be helpful to reduce the possibility for the picture tearing phenomenon to occur during picture switching. As such, the disclosed display device and driving method may improve the display quality of pictures.
It should be noted that the picture switching in the embodiments of the present disclosure may be, for example, switching between a static picture and a dynamic picture, or picture switching during a display process of a dynamic picture. How to determine whether picture switching occurs or not will be explained in detail later in the specification.
In the following, the progressive scanning mode and the interlaced scanning mode will be described in detail separately.
According to the disclosed driving method for display devices, during the process of displaying pictures on the display panel, when the displayed picture is switched, the display panel may be driven in a progressive scanning mode, and when the displayed picture is not switched, the display panel may be driven in an interlaced scanning mode. When picture switching occurs and the display panel is driven in the progressive scanning mode, the picture on the display panel may be refreshed in a row-by-row manner. Therefore, in a same frame, the polarities of the data signals corresponding to the plurality of pixel-unit rows may be the same, and thus the picture tearing phenomenon due to the difference in the polarities of the data signals in a same frame during the picture switching process may be greatly reduced. When picture switching does not occur and the display panel is driven in the interlaced scanning mode, the picture on the display panel may be refreshed in an interlaced manner. That is, the pixel-unit rows corresponding to pixel electrodes in one polarity may be refreshed first and the pixel-unit rows corresponding to pixel electrodes in the other polarity may then be refreshed. In a same frame, pixel-unit rows in different polarities may simultaneously display such that the positive and the negative polarities may cancel each other out, which may be conducive to eliminating the impact of the difference in the brightness of different polarities, and thus may be helpful to suppress the picture flickering phenomenon. Therefore, the disclosed driving method for display devices may be able to flexibly adjust the driving manner for the display panel according to whether picture switching occurs or not, and thus may be conducive to reducing the flickering phenomenon generated during the picture display process. In the meantime, the disclosed driving method may also be conducive to reducing the possibility for the picture tearing phenomenon to appear during the picture switching process. Therefore, the disclosed driving method for display devices may be beneficial to improving the display effect and the display quality of the picture, and thus may be conducive to improving the visual experience of the user.
In one embodiment, the initial image may be a static image, and correspondingly, according to the driving method for the display device, inputting the initial image data may further include inputting the initial image data and providing the display panel with driving signals using an interlaced scanning mode.
The images displayed on the display panel are generally divided into static images and dynamic images. The display panel can display several frames per second, and when the image data included in these frames are the same, a static image is displayed. However, when the image data included in these frames are different, a dynamic image is displayed. According to the disclosed driving method for display devices, when the initial image is a static image, e.g., picture switching does not occur, the display panel may be driven in an interlaced scanning mode. When driving the display panel in the interlaced scanning mode, in a same frame, the plurality of pixel-unit rows with different polarities may be simultaneously displayed, and the positive and the negative polarities may cancel each other out, which is beneficial to eliminating the influence of the difference in the brightness of different polarities. As such, the picture flickering phenomenon may be suppressed, and thus the display quality may be improved, which may also be beneficial to improving the visual experience of the user.
In one embodiment, the initial image may be a dynamic image, and correspondingly, according to the driving method for the display device, inputting the image data may further include inputting the initial image data and providing the display panel with driving signals using a progressive scanning mode.
According to the disclosed driving method for display devices, when the initial image is a dynamic image, the display panel may be driven in a progressive scanning mode as picture switching occurs in the display process of the dynamic image. When driving the display panel in the progressive scanning mode, the picture on the display panel may be refreshed in a row-by-row manner. In a same frame, the polarities of the data signals corresponding to the plurality of pixel-unit rows may be the same, and thus the picture tearing phenomenon due to the difference in the polarities of the data signals in a same frame during the picture switching process may be greatly reduced. As such, the display quality may be improved, which may also be beneficial to improving the visual experience of the user.
Further, in one embodiment, according to the disclosed driving method for display devices, determining whether picture switching occurs may include determining whether the data signals corresponding to the current frame are identical to the data signals corresponding to the previous frame. When the data signals corresponding to the current frame are identical to the data signals corresponding to the previous frame, it is determined that picture switching does not occur; and when the data signals corresponding to the current frame are not completely the same as, or are completely different from the data signals corresponding to the previous frame, it is determined that picture switching occurs.
When picture switching occurs, the data signals corresponding to two consecutive frames are different. Therefore, according to the disclosed driving method, by determining whether the data signals corresponding to two consecutive frames are the same, whether picture switching occurs can be determined. When the data signals corresponding to two consecutive frames are identical, the picture may not be switched, e.g., picture switching may not occur; and when the data signals corresponding to two consecutive frames are different, the picture may be switched, e.g., picture switching may occur. In one embodiment, a driving chip included in the display device may be configured to determine whether picture switching occurs. In other embodiments, any other appropriate building module included in the display device may be configured to determine whether picture switching occurs.
In one embodiment, the interlaced scanning mode according to the disclosed driving method for display devices may be a one-row-interlaced scanning mode, a two-row-interlaced scanning mode, or a multiple-row-interlaced scanning mode. For example, in the one-row-interlaced scanning mode, each time after a pixel-unit row, e.g., an even numbered row, is scanned, the scanning continues by skipping the next pixel-unit row, e.g., an odd numbered row, to scan the following pixel-unit, e.g., a following even numbered row. Similarly, in the two-row-interlaced scanning mode, each time after two consecutive pixel-unit rows are sequentially scanned, the scanning continues by skipping the next two pixel-unit rows; and in the multiple-row-interlaced scanning mode, each time after a certain number of consecutive pixel-unit rows are sequentially scanned, the scanning continues by skipping the same number of consecutive pixel-unit rows. The embodiments of the present disclosure are described mainly based on the one-row-interlaced scanning mode, although the interlaced scanning mode may be a two-row-interlaced scanning mode or a multiple-row-interlaced scanning mode.
In one embodiment, the display panel of the display device may include a plurality of pixel-unit rows and a plurality of gate driving units.
In one embodiment, when providing driving signals to the plurality of pixel-unit rows, the outputting driving signals from the driving chip 10 may be transmitted through the plurality of gate driving units 30 to the plurality of pixel-unit rows.
In one embodiment, the interlaced scanning mode is a one-row-interlaced scanning mode, and accordingly, when scanning driving is provided for each pixel-unit row, Gout1, Gout3, Gout5, and Gout7 may be sequentially outputted first, and then Gout2, Gout4, Gout6, and Gout8 may be sequentially outputted. That is, the first pixel-unit row, the third pixel-unit row, the fifth pixel-unit row, and the seventh pixel-unit row may be sequentially scanned first, and then the second pixel-unit row, the fourth pixel-unit row, the sixth pixel-unit row, and the eighth pixel-unit row may be sequentially scanned. In a same frame, when the input driving signals for the odd pixel-unit rows are positive, the input driving signals for the even pixel-unit rows may be negative; and when the input driving signals for the odd pixel-unit rows are negative, the input driving signals for the even pixel-unit rows may be positive. The interlaced scanning mode described above is especially suitable when picture switching does not occur. In a same frame, pixel-unit rows with different polarities may simultaneously display, and the positive and the negative polarities may cancel each other out, which is beneficial to eliminating the influence of the difference in the brightness of different polarities. As such, the picture flickering phenomenon may be suppressed.
Alternatively, in the disclosed driving method for the display device, the interlaced scanning mode may be a two-row-interlaced scanning mode. In the following, illustration will be provided using the two-row-interlaced scanning mode as an example.
Referring to
Accordingly, the present disclosure also provides a display device.
The display device may also include a switching-determination module 80. The switching-determination module 80 may be configured to determine whether picture switching occurs. Moreover, when picture switching occurs, the switching-determination module 80 may send a signal, indicating that picture switching occurs, to the driving chip 10; and when picture switching does not occur, the switching-determination module 80 may send a signal, indicating that picture switching does not occur, to the driving chip 10.
The display device may further include a processor 90, electrically connected to the driving chip 10 and configured to provide driving signals and data signals to the driving chip 10.
Referring to
When the picture switching occurs and the progressive scanning mode is used to drive the display panel 100, the picture on the display panel may be refreshed in a row-by-row manner. Therefore, in a same frame, the polarities of the data signals corresponding to the plurality of pixel-unit rows may be the same, and thus the picture tearing phenomenon due to the difference in the polarities of the data signals in a same frame during the picture switching process may be greatly reduced. When the picture switching does not occur and the interlaced scanning mode is used to drive the display panel 100, the picture on the display panel may be refreshed in an interlaced manner. That is, the pixel-unit rows corresponding to pixel electrodes in a same polarity may be refreshed first and the pixel-unit rows corresponding to pixel electrodes in the other polarity may then be refreshed. In a same frame, pixel-unit rows in different polarities may simultaneously display such that the positive and the negative polarities may cancel each other out, which may be conducive to eliminating the impact of the difference in the brightness of different polarities, and thus may be helpful to suppress the picture flickering phenomenon. Therefore, the disclosed display device 200 may be able to flexibly adjust the driving manner for the display panel according to whether picture switching occurs or not, and thus may be conducive to reducing the flickering phenomenon generated during the picture display process. In the meantime, the disclosed display device 200 may also be conducive to reducing the possibility for the picture tearing phenomenon to appear during the picture switching process. Therefore, the disclosed display device 200 may be beneficial to improving the display effect of the picture.
The input terminal of the first memory 81 may be connected to the processor 90, and configured to receive the display data sent from the processor 90 for an (n−1)th frame; and the input terminal of the second memory 82 may be connected to the processor 90, and may be configured to receive the display data sent from the processor 90 for an nth frame, where n>1. The output terminal of the first memory 81 may be connected to the first input terminal 831 of the comparator 83, and the output terminal of the second memory 82 may be connected to the second input terminal 832 of the comparator 83. The output terminal of the comparator 83 may be connected to the driving chip 10, and configured to send signals indicating whether picture switching occurs or not to the driving chip 10.
Referring to
In one embodiment, the switching-determination module 80 may be integrated with the driving chip 10 in the disclosed display device 200. That is, the switching determination function performed by the switching-determination module 80 may be integrated into the driving chip 10. In an actual displaying process, the driving chip 10 itself may be able to determine whether picture switching occurs or not, and may also be able to drive the display panel 100 in different modes according to whether picture switching occurs. In addition, the method of integrating the switching-determination module 80 with the driving chip 10 may also be conducive to improving the efficiency of space-utilization of the display device 200.
In one embodiment, in the disclosed display device 200, the switching-determination module 80 may be integrated with the processor to form a signal piece. That is, the switching determination function performed by the switching-determination module 80 may be integrated into the driving chip 10. In the display device 200, the driving chip 10 is usually integrated onto the display panel 100, and the processor 90 is usually independent from the display panel 100. According to the present disclosure, integrating the switching determination module 80 into the processor 90 may be conducive to improving the efficiency of space-utilization of the display device 200, and in the meantime, may be conducive to simplifying the function structure of the driving chip 10, and improving the production rate of the display panel 200.
The driving chip 10 may provide driving signals to each pixel-unit row through a corresponding gate line 51, and may provide data signals to each pixel-unit row through a corresponding data line 52.
In one embodiment, referring to
The plurality of gate driving units 30 may be electrically connected to the plurality of gate lines 51 in one-to-one correspondence. Each gate driving unit 30 may include a plurality of first gate driving units (for example, including a gate driving unit 31, a gate driving unit 32, a gate driving unit 35, and a gate driving unit 36) and a plurality of second gate driving units (for example, including a gate driving unit 33, a gate driving unit 34, a gate driving unit 37, and a gate driving unit 38). The pixel-unit rows electrically connected to the first gate driving units and the pixel-unit rows electrically connected to the second gate driving units may be alternately arranged. The first gate driving unit may also be electrically connected to the first driving-signal line 61, and the second gate driving unit may also be electrically connected to the second driving-signal line 62.
The driving chip may sequentially provide driving signals to the plurality of pixel-unit rows through the first driving-signal line 61 or the second driving-signal line 62, the plurality of gate driving units 30, and the plurality of gate lines 51.
Compared to existing display devices and driving methods, the disclosed display device and driving method for the display device may demonstrate the following advantages.
According to the disclosed display device and driving method, the display device includes a display panel configured to display images and a driving chip configured to provide driving signals and data signals to the display panel. During the process of displaying pictures on the display panel, when the displayed picture is switched, the display panel is driven in a progressive scanning mode, and when the displayed picture is not switched, the display panel is driven in an interlaced scanning mode. When picture switching occurs and the display panel is driven in the progressive scanning mode, the picture on the display panel is refreshed in a row-by-row manner. Therefore, in a same frame, the polarities of the data signals corresponding to the plurality of pixel-unit rows are the same, and thus the picture tearing phenomenon due to the difference in the polarities of the data signals in a same frame during the picture switching process is greatly reduced. When picture switching does not occur and the display panel is driven in the interlaced scanning mode, the picture on the display panel is refreshed in an interlaced manner. That is, the pixel-unit rows corresponding to pixel electrodes in one polarity are refreshed first and then the pixel-unit rows corresponding to pixel electrodes in the other polarity are refreshed. In a same frame, pixel-unit rows in different polarities are simultaneously display such that the positive and the negative polarities may cancel each other out, which may be conducive to eliminating the impact of the difference in the brightness of different polarities, and thus may be helpful to suppress the picture flickering phenomenon. Therefore, the disclosed display device and driving method are able to flexibly adjust the driving manner for the display panel according to whether picture switching occurs or not, and thus the disclosed display device and driving method may be conducive to reducing the flickering phenomenon generated during the picture display process. In the meantime, the disclosed display device and driving method may also be conducive to reducing the possibility for the picture tearing phenomenon to appear during the picture switching process. Therefore, the disclosed display device and driving method may be beneficial to improving the display effect and the display quality of the picture.
The above detailed descriptions only illustrate certain exemplary embodiments of the present disclosure, and are not intended to limit the scope of the present disclosure. Those skilled in the art can understand the specification as whole and technical features in the various embodiments can be combined into other embodiments understandable to those persons of ordinary skill in the art. Any equivalent or modification thereof, without departing from the spirit and principle of the present disclosure, falls within the true scope of the present disclosure.
Number | Date | Country | Kind |
---|---|---|---|
201811131083.2 | Sep 2018 | CN | national |