The present disclosure relates to a display device and an image processing method, especially a technology for presenting images based on image signals.
Currently, among various consumer electronic products, “reflective display devices” are widely used to make display panels, such as electronic paper display devices. The reflective display device uses light to illuminate the display material layer to display images and reduce power consumption. However, with the improvement of imaging technology, the resolution of the image is getting higher and higher. Under the condition that the resolution of the image increases, how to improve the image processing method so that the screen will not appear jagged or broken when the reflective display device displays high-resolution images, which has become a major research topic at present.
One aspect of the present disclosure is an image processing method, comprising: receiving an original image signal, wherein the original image signal comprises a plurality of original pixel values; identifying an edge of at least one object in the original image signal to generate a contour image signal; and correcting the original image signal according to the contour image signal to generate an enhanced image signal.
Another aspect of the present disclosure is a display device, comprising a display circuit and a processor. The display circuit comprises a plurality of pixel units. The processor is electrically connected to the display circuit, and is configured to receive an original image signal. The processor is configured to identify an edge of an object in the original image signal to generate an contour image signal, and the processor is further configured to correct the original image signal according to the contour image signal to generate an enhanced image signal.
Another aspect of the present disclosure is an image processing method, comprising: receiving an original image signal, wherein the original image signal comprises a plurality of original pixel values; identifying an edge of at least one object in the original image signal to generate a contour image signal; and enhancing the edge of the at least one object in the original image signal by using the contour image signal to generate an enhanced image signal.
It is to be understood that both the foregoing general description and the following detailed description are by examples, and are intended to provide further explanation of the disclosure as claimed.
The present disclosure can be more fully understood by reading the following detailed description of the embodiment, with reference made to the accompanying drawings as follows:
For the embodiment below is described in detail with the accompanying drawings, embodiments are not provided to limit the scope of the present disclosure. Moreover, the operation of the described structure is not for limiting the order of implementation. Any device with equivalent functions that is produced from a structure formed by a recombination of elements is all covered by the scope of the present disclosure. Drawings are for the purpose of illustration only, and not plotted in accordance with the original size.
It will be understood that when an element is referred to as being “connected to” or “coupled to”, it can be directly connected or coupled to the other element or intervening elements may be present. In contrast, when an element to another element is referred to as being “directly connected” or “directly coupled,” there are no intervening elements present. As used herein, the term “and/or” includes an associated listed items or any and all combinations of more.
The present disclosure relates to a display device and an image processing method.
As shown in
As mentioned above, the color filter layer 113 (e.g., color filter array) includes multiple filter units 113a, such as red, green and blue filter units. The position of each of the filter units 113a corresponds to one or more pixel units PX. The filter units 113a are arranged in a specific way, so that the grayscale image displayed by the electronic ink layer 112 can form a color image through the color filter layer 113.
In some other embodiments, the display device 100 further includes a touch panel 130 and a front light module 140, the touch panel 130 is configured to a touch action of user, and the front light module 140 is configured to provide a front light source.
The processor 120 is electrically connected the display circuit 110, and is integrated with the display circuit 110. The processor 120 is configured to receive an original image signal (e.g., a photo of a chameleon, or an image of an article). The processor 120 generates a control voltage according to the original image signal to generate an electric field through the transistor array layer 111, adjust the positions of the electrophoretic particles 112a, 112b, and then make the display circuit 110 display the corresponding screen. However, when the original image signal is configured to present tiny objects (e.g., small fonts or small objects), there may be problems with insufficient clarity. Therefore, the present disclosure corrects the original image signal to improve the image quality.
In some embodiments, when the processor 120 receives the original image signal, the processor 120 will identify the pixel value that is configured to present edge of one or more objects in the original image signal to generate a contour image signal. By capturing the contour image signal and correcting the original image signal accordingly, the display device 100 will be able to strengthen the edge of the object in the screen, making the screen clearer. In other words, the processor 120 can use the contour image signal to enhance the edges of objects in the original image signal to generate the enhanced image signal.
In step S202, the processor 120 compares original pixel values adjacent to each other to obtain difference values of the original pixel values. For example, for pixel A5, the processor 120 can compare the differences between pixel A5 and pixel A1-A4 and A6-A9, respectively, and average the comparison results, or take the maximum value as “the difference values of pixel A5”.
In step S203, the processor 120 filters out the original pixel values whose difference values are greater than the threshold value. Specifically, the processor 120 determines whether the difference values are greater than a threshold value (e.g., the difference is greater than 60%). The original pixel values, whose corresponding difference values are greater than the threshold value, will be set as the contour pixel values.
In step S204, the processor 120 retains the original pixel values of the original image signal whose difference values are greater than the threshold value (i.e., the above contour pixel values), and deletes/subtracts other unfiltered the original pixel values to form the contour image signal. In other words, the processor 120 filters out the original pixel values according to the difference values to generate the contour image signal. The contour image signal includes the contour pixel values.
The contour image B100 corresponding to the contour image signal is shown in
In step S205, after obtaining the contour image signal, the processor 120 reduces the original pixel values corresponding to the contour image signal in the original image signal according to the contour image signal. The “contour” is usually recorded in light-colored or white pixels in image processing. The processor 120 can subtract the original pixel values corresponding to the contour image signal from the original image signal to generate the enhanced image signal (in
In step S206, when the processor 120 obtains the enhanced image signal, the processor 120 generates the control voltage according to the enhanced image signal, and drives the display circuit 110 accordingly to adjust the positions of the electrophoretic particles 112a, 112b to present an enhanced image.
In some embodiments, before the processor 120 corrects the original image signal according to the contour image signal, the processor 120 can perform a color enhancement process on the original image signal first. During the color enhancement process, the processor 120 adjusts the saturation, contrast or brightness of the original signal. The color enhancement process can improve the color quality of the picture, but it may also affect the clarity of the picture. The present disclosure first performs the color enhancement for the original image signal, and then corrects the original image signal according to the contour image signal after the color enhancement. Accordingly, both color quality and image clarity can be ensured.
Similarly,
Similarly,
The elements, method steps, or technical features in the foregoing embodiments may be combined with each other, and are not limited to the order of the specification description or the order of the drawings in the present disclosure.
It will be apparent to those skilled in the art that various modifications and variations can be made to the structure of the present disclosure without departing from the scope or spirit of the present disclosure. In view of the foregoing, it is intended that the present disclosure cover modifications and variations of this present disclosure provided they fall within the scope of the following claims.
This application claims priority to U.S. Provisional Application Ser. No. 63/153,963, filed Feb. 26, 2021, which is herein incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
6075905 | Herman et al. | Jun 2000 | A |
6928196 | Bradley et al. | Aug 2005 | B1 |
7426312 | Dance et al. | Sep 2008 | B2 |
8457433 | Hong | Jun 2013 | B2 |
9229526 | Neglur | Jan 2016 | B1 |
20110142363 | Nojima | Jun 2011 | A1 |
20140212064 | Heo | Jul 2014 | A1 |
20180338138 | Zeng | Nov 2018 | A1 |
20190206058 | Okada | Jul 2019 | A1 |
Number | Date | Country |
---|---|---|
101076078 | Nov 2007 | CN |
101197911 | Jun 2008 | CN |
102984434 | Mar 2013 | CN |
103839509 | Jun 2014 | CN |
102984434 | Mar 2015 | CN |
106469533 | Mar 2017 | CN |
109509161 | Mar 2019 | CN |
109814292 | May 2019 | CN |
111492402 | Aug 2020 | CN |
20160046983 | May 2016 | KR |
201603556 | Jan 2016 | TW |
Entry |
---|
The office action of corresponding TW application No. 111101917 dated Dec. 29, 2022. |
The office action of corresponding CN application No. 202210054676.3 issued on Mar. 5, 2024. |
Number | Date | Country | |
---|---|---|---|
20220277697 A1 | Sep 2022 | US |
Number | Date | Country | |
---|---|---|---|
63153963 | Feb 2021 | US |