The present disclosure relates to a display device and a method for manufacturing the display device.
Attention has been recently drawn to self-emission organic EL display devices using organic electroluminescence (EL) elements, as display devices instead of liquid-crystal displays. To prevent deterioration of an organic EL element resulting from contaminations of moisture, oxygen, and other things, a proposed sealing structure has a sealing film for covering the organic EL element. The sealing film consists of a stack of organic and inorganic films.
Patent Literature 1 discloses an example material applicable to such an organic film of the sealing film. This material is a sealant that is intended for use in an organic EL display element, is easy to apply through ink jetting, is highly curable, and has high capabilities of making a cured object transparent and protecting the object.
Patent Literature 1: Japanese Patent Application Laid-Open No. 2014-225380
The capability of forming an organic film through ink jetting is susceptible to the condition of a target surface for formation; hence, precisely forming the edge of the organic film is difficult. Thus, an organic resin material (application ink) spreads on a flattening film at the edge in a manner different from that in a display region; ink thickness is hence reduced, easily producing a chipped organic film.
To solve this problem, it is an object of the present disclosure to provide a display device that can improve the spread of an application ink to prevent a chipped organic film. It is also an object of the present disclosure to provide a method for manufacturing the display device.
To solve the problem, a display device according to the present disclosure includes the following: a base substrate; a plurality of switching elements disposed on the base substrate; a flattening film disposed on the plurality of switching elements; a light-emitting element disposed on the flattening film; a sealing film disposed over the light-emitting element, and has a stack of, in sequence, a first inorganic film, an organic film, and a second inorganic film; a display region; and a frame region disposed around the display region. The frame region includes a plurality of mask spacers. The flattening film has a recess disposed between the display region and the plurality of mask spacers adjacent to the display region. The recess is filled with the organic film.
The present disclosure improves the spread of an organic resin material of the organic film when the organic film is formed through ink jetting. This can prevent chipping in the organic film.
Embodiments of the present disclosure will be detailed with reference to the drawings. The present disclosure is not limited to the following embodiments.
As illustrated in
The organic EL display device 50a have a plurality of sub-pixels P arranged in matrix in the display region D, as illustrated in
These three adjacent sub-pixels P with the red light-emission region Lr, the green light-emission region Lg, and the blue light-emission region Lb constitute one pixel in the display region D of the organic EL display device 50a.
As illustrated in
The resin substrate layer 10 is made of, for instance, polyimide resin and provided as a resin substrate.
The TFT layer 20a includes the following components, as illustrated in
The TFT layer 20a includes a plurality of gate lines 14 extending in parallel with each other in the lateral directions of the drawings, as illustrated in
The base coat film 11 is composed of an inorganic insulating monolayer film of, for instance, silicon nitride, silicon oxide or silicon oxide nitride, or is composed of an inorganic insulating laminated film of these materials.
The first TFT 9a is connected to the corresponding gate line 14 and source line 18f in each sub-pixel P, as illustrated in
The gate insulating film 13, the first interlayer insulating film 15, and the second interlayer insulating film 17 are composed of an inorganic insulating monolayer film of, for instance, silicon nitride, silicon oxide, or silicon oxide nitride, or is composed of an inorganic insulating laminated film of these materials.
The second TFT 9b is connected to the corresponding first TFT 9a and power-source line 18g in each sub-pixel P, as illustrated in
Although the first TFTs 9a and the second TFTs 9b are top-gate TFTs in this embodiment by way of example, these TFTs may be bottom-gate TFTs.
The capacitor 9c is connected to the corresponding first TFT 9a and power-source line 18g in each sub-pixel P, as illustrated in
In this embodiment, the flattening film 19a is made of an inexpensive organic resin material, such as acrylic resin or epoxy resin.
The organic EL element 30 includes the following components sequentially disposed on the flattening film 19a, as illustrated in
As illustrated in
An edge cover 22 is disposed in lattice and covers the perimeter of each first electrode 21, as illustrated in
The edge cover 22 is made of an organic resin material, such as polyimide resin, or spin-on-glass (SOG) resin. Alternatively, the edge cover 22 can be made of a material that emits a small amount of gas.
Here, gas emitted from the material refers to the amount of gas emitted after resin production, and a small amount of emitted gas refers to 5 ppm or less of emitted gas.
The plurality of organic EL layers 23 are disposed on the individual first electrodes 21 and arranged in matrix so as to correspond to the plurality of sub-pixels, as illustrated in
The hole injection layer 1 is also called an anode buffer layer, and is capable of bringing the energy levels of the first electrode 21 and organic EL layer 23 close to each other to improve the efficiency of hole injection from the first electrode 21 to the organic EL layer 23. Examples of the material of the hole injection layer 1 include a triazole derivative, an oxadiazole derivative, an imidazole derivative, a polyarylalkane derivative, a pyrazoline derivative, a phenylenediamine derivative, an oxazole derivative, a styrylanthracene derivative, a fluorenone derivative, a hydrazone derivative, and a stilbene derivative.
The hole transport layer 2 is capable of improving the efficiency of hole transport from the first electrode 21 to the organic EL layer 23. Examples of the material of the hole transport layer 2 include a porphyrin derivative, an aromatic tertiary amine compound, a styrylamine derivative, a polyvinylcarbazole, a poly-p-phenylenevinylene, a polysilane, a triazole derivative, an oxadiazole derivative, an imidazole derivative, a polyarylalkane derivative, a pyrazoline derivative, a pyrazolone derivative, a phenylenediamine derivative, an arylamine derivative, an amine-substituted chalcone derivative, an oxazole derivative, a styrylanthracene derivative, a fluorenone derivative, a hydrazone derivative, a stilbene derivative, a hydrogenated amorphous silicon, a hydrogenated amorphous silicon carbide, a zinc sulfide, and a zinc selenide.
The light-emitting layer 3 is a region where holes and electrons are injected from the first electrode 21 and the second electrode 24 upon voltage application via the first electrode 21 and the second electrode 24, and is a region where the holes and electrons rejoin. The light-emitting layer 3 is made of a material having high efficiency of light emission. Examples of the material of the light-emitting layer 3 include a metal oxinoid compound [8-hydroxyquinoline metal complex], a naphthalene derivative, an anthracene derivative, a diphenylethylene derivative, a vinyl acetone derivative, a triphenylamine derivative, a butadiene derivative, a coumarin derivative, a benzoxazole derivative, an oxadiazole derivative, an oxazole derivative, a benzimidazole derivative, a thiadiazole derivative, a benzthiazole derivative, a styryl derivative, a styrylamine derivative, a bisstyrylbenzene derivative, a trisstyrilbenzene derivative, a perylene derivative, a perynone derivative, an aminopyrene derivative, a pyridine derivative, a rhodamine derivative, an acridine derivative, a phenoxazone, a quinacridone derivative, a rubrene, a poly-p-phenylenevinylene, and a polysilane.
The electron transport layer 4 is capable of moving the electrons to the light-emitting layer 3 efficiently. The electron transport layer 4 is made of an organic compound, including an oxadiazole derivative, a triazole derivative, a benzoquinone derivative, a naphthoquinone derivative, an anthraquinone derivative, a tetracyanoanthraquinodimethane derivative, a diphenoquinone derivative, a fluorenone derivative, a silole derivative, and a metal oxinoid compound.
The electron injection layer 5 is capable of bringing the energy levels of the second electrode 24 and organic EL layer 23 close to each other to improve the efficiency of electron injection from the second electrode 24 to the organic EL layer 23. This function can lower voltage for driving the organic EL element 30. The electron injection layer 5 is also called a cathode buffer layer. Herein, examples of the material of the electron injection layer 5 include an inorganic alkali compound (e.g., LiF or lithium fluoride, MgF2 or magnesium fluoride, CaF2 or calcium fluoride, SrF2 or strontium fluoride, and BaF2 or barium fluoride), an aluminum oxide (Al2O3). and a strontium oxide (SrO).
The second electrode 24 is disposed over the individual organic EL layers 23 and the edge cover 22, as illustrated in
The organic EL display device 50a includes a sealing film 28 covering the organic EL element 30, as illustrated in
The first inorganic film 25 and the second inorganic film 27 are made of, for instance, an inorganic material, such as silicon oxide (SiO2), aluminum oxide (Al2O3), silicon nitride (SiNx, where x is a positive numeral; an example of silicon nitride is Si3N4 or trisilicon tetranitride), or silicon carbonitride (SiCN). The organic film 26 is made of, for instance, an organic material, such as acrylate, polyurea, parylene, polyimide, or polyamide.
In this embodiment, the frame region F includes a plurality of mask spacers 37, as illustrated in
In this embodiment, the flattening film 19a has a recess (slit) S disposed between the display region D and the mask spacer 37 adjacent to the display region D (i.e., the mask spacer 37 on the left side of
In cross-sectional view, the recess S is substantially rectangular, as illustrated in
The recess S allows the organic resin material (application ink), which constitutes the organic film 26 after ejected through ink jetting, to easily accumulate in the recess S and to easily spread from the recess S toward the display region D.
The mask spacers 37 allows the organic resin material, which constitutes the organic film 26 after ejected through ink jetting, to accumulate in the region where the mask spacers 37 are located; hence, the organic resin material easily spreads from the recess S toward the display region D via the recess S filled with the organic film 26.
That is, in this embodiment, the frame region F includes the mask spacers 37; in addition, the flattening film 19a has the recess S disposed between the display region D and the mask spacer adjacent to the display region D; in addition, the recess S is filled with the organic film 26. This configuration can improve the spread of the organic resin material when the organic film 26 is formed through ink jetting, thereby preventing chipping in the organic film 26.
As illustrated in
As illustrated in
The second electrode 24 and the metal layer 21′ are in contact and electrically connected to each other in the trench 40, as illustrated in
The recess S has a width W1, and the trench 40 has a width W2. The width W1 of the recess S is set to be larger than the width W2 of the trench 40 (i.e., W1>W2), as illustrated in
The organic EL display device 50a according to this embodiment includes first and second blockage walls Wa and Wb disposed in the frame region F (blockage region C, as illustrated in
As illustrated in
As illustrated in
A method for manufacturing the organic EL display device 50a according to this embodiment will be described. The method for manufacturing the organic EL display device 50a in this embodiment includes a step of forming an organic EL element, and a step of forming a sealing film.
Step of Forming Organic EL Element
For instance, using a known method, the TFT layer 20a including the base coat film 11, the organic EL element 30 (i.e., the first electrode 21, the organic EL layer 23 including the hole injection layer 1, the hole transport layer 2, the light-emitting layer 3, the electron transport layer 4 and the electron injection layer 5, and the second electrode 24), the edge cover 22, the first blockage wall Wa, and the second blockage wall Wb are formed onto a surface of the base substrate 10 of polyimide resin.
Here, the recess S and the trench 40 are formed in the flattening film 19a when the flattening film 19a is formed so as to cover a plurality of switching elements (i.e., the first TFT 9a and the second TFT 9b) on the base substrate 10.
To be more specific, the flattening film 19a having the recess S and the trench 40 and having a thickness of, for instance, 2 μm is formed through the following process steps: applying photosensitive acrylic resin, through spin coating, onto the base substrate 10 provided with the first TFT 9a and the second TFT 9b; then exposing the base substrate 10 at a predetermined amount of exposure (e.g., 150 mJ/cm2) using an exposure mask having a predetermined exposure pattern; and then developing the base substrate 10 using an alkali development solution. The base substrate 10 after development undergoes post-baking under a predetermined condition (e.g., at 220° C. for 60 minutes).
As illustrated in
The mask spacers 37 are made of the same material as the edge cover 22, as earlier described. The mask spacers 37 are simultaneously formed onto a surface of the metal layer 21′ as well, as illustrated in
Step of Forming Sealing Film
First, the first inorganic film 25 is formed by depositing an inorganic insulating film of, for instance, silicon nitride to a thickness of about several ten nanometers to several micrometers through plasma chemical vapor deposition (CVD) so as to cover the organic EL element 30 as formed in the step of forming an organic EL element. At this stage, the first inorganic film 25 is formed onto a surface of the recess S, onto a surface of the second electrode 24 on the surface of the trench 40, and onto surfaces of the mask spacers 37.
Subsequently, the organic film 26 is formed onto a surface of the first inorganic film 25 by ejecting an organic resin material of, for instance, acrylate all over the substrate surface provided with the first inorganic film 25, to a thickness of about several micrometers to several ten micrometers through ink jetting.
At this stage, an application frequency f is expressed by Expression (1) below, where p denotes nozzle pitch in the ink jetting, where V denotes ejection volume per drop, where v denotes scanning rate in the ink jetting, where n denotes the number of scanning times in the ink jetting (i.e., the number of times of drop into the application region), where t denotes a desired thickness of the organic film 26.
[Expression 1]
f=pvt/(nV) (1)
For p=70 μm, V=10 pl, v=1 [m/s], n=4 times, and t=10 μm, the application frequency is 17.5 kHz, at which the organic resign material needs to be ejected.
In the present disclosure, to avoid chipping in the organic film 26, the organic resin material is designed to land in the recess S when ejected with an inkjet device being scanned. In the above example for instance, the organic resin material is ejected at a constant timing of 1/f=57 μs in a normal region except a region where the recess S is located, as illustrated in
Ink droplets need to be ejected in such a manner that the landing location of the organic resin material is set inside the recess S, as illustrated in
In this embodiment, the organic resin material is at this stage firstly ejected into not the recess S but both the display region D and the frame region F to form the organic film 26.
Furthermore, the substrate provided with the organic film 26 undergoes plasma CVD to grow an inorganic insulating film of, for instance, silicon nitride to a thickness of about several ten nanometers to several micrometers to form the second inorganic film 27, thus forming the sealing film 28 consisting of the first inorganic film 25, the organic film 26, and the second inorganic film 27.
The organic EL display device 50a according to this embodiment can be manufactured through these process steps.
As illustrated in
When ejected through ink jetting, the organic resin material may be firstly ejected into the recess S to fill the recess S with the organic resin material (i.e., the organic film 26).
The foregoing embodiment has described, by way of example, the organic EL display device 50a includes an organic EL layer having a five-ply stack of a hole injection layer, a hole transport layer, a light-emitting layer, an electron transport layer and an electron injection layer. In some embodiments, an organic EL layer may be provided that has a three-ply stack of a hole injection-and-transport layer, a light-emitting layer and an electron transport-and-injection layer.
The foregoing embodiment has described, by way of example, an organic EL display device that has a first electrode as an anode and a second electrode as a cathode. The present disclosure is also applicable to an organic EL display device in which an organic EL layer has an inverted stack of layers: the first electrode as a cathode and the second electrode as an anode.
The foregoing embodiment has described, by way of example, an organic EL display device that includes, as a source electrode, an electrode of a TFT connected to the first electrode. The present disclosure is also applicable to an organic EL display device that includes, as a drain electrode, an electrode of a TFT connected to the first electrode.
The foregoing embodiment has described an organic EL display device as a display device by way of example. The present disclosure is applicable to a display device that includes a plurality of light-emitting elements driven by current, such as a display device that includes QLEDs or quantum-dot light-emitting diodes, which are light-emitting elements using a layer containing quantum dots.
As described above, the present disclosure is useful for a display device, such as an organic EL display device.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2018/019905 | 5/23/2018 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/224963 | 11/28/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
10269881 | Go | Apr 2019 | B2 |
20140131672 | Yoon | May 2014 | A1 |
20170194599 | Furuie | Jul 2017 | A1 |
20180287093 | Lee | Oct 2018 | A1 |
20200358030 | Okabe | Nov 2020 | A1 |
Number | Date | Country |
---|---|---|
2014-225380 | Dec 2014 | JP |
Number | Date | Country | |
---|---|---|---|
20210210724 A1 | Jul 2021 | US |