This application claims the benefit of Korea Patent Application No. 10-2009-0133709 filed on Dec. 30, 2009, the entire contents of which are incorporated herein by reference for all purposes as if fully set forth herein.
1. Field of the Invention
This document relates to a display device and a method for controlling gate pulses.
2. Related Art
A liquid crystal display (“LCD”) has been widely applied due to its lightweight, thin profile, lower power consumption driving, and so on. Such an LCD has been employed as a portable computer such as a notebook PC, an office automation device, an audio/video device, an indoor/outdoor advertisement display device or the like. The LCD displays images by controlling an electric field applied to an LC layer to adjust a light from a backlight unit depending on data voltages.
An active matrix LCD includes an liquid crystal display panel assembly provided with TFTs (thin film transistors) which are formed at the respective pixels and switch data voltages supplied to pixel electrodes, data driving circuits which supply data voltages to data lines in the liquid crystal display panel assembly, gate driving circuits which sequentially supply gate pulses (or scan pulses) to gate lines in the liquid crystal display panel assembly, and a timing controller which controls operation timings of the above-described driving circuits.
In
At the rising edge of each of the gate pulses SCAN1 to SCAN4, the voltage rapidly increases from the gate low voltage VGL to the gate high voltage VGH. At the falling edge of each of the gate pulses, the voltage rapidly decreases from the gate high voltage VGH to the gate low voltage VGL. Thereby, since the currents Ileak rapidly increase in the gate lines at the rising edges and falling edges, the power consumption in the gate driving circuits are also heightened.
In the active matrix LCD, a voltage charged in a liquid crystal cell is influenced by the kickback voltage (or feed through voltage, ΔVp) generated due to the parasitic capacitance of the TFT. The kickback voltage ΔVp is given by the following equation (1)
Where ‘Cgd’ denotes a parasitic capacitance generated between a gate terminal of the TFT connected to the gate line and a drain terminal of the TFT connected to the pixel electrode of the liquid crystal cell, and ‘VGH-VGL’ denotes a voltage difference between the gate high voltage and the gate low voltage supplied to the gate line.
This kickback voltage alters voltages applied to the pixel electrodes of the liquid crystal cells to show flickers and afterimages in a displayed image. In order to reduce the kickback voltage ΔVp, there is used a gate pulse modulation method of modulating the gate high voltage VGH at the falling edge of the gate pulse. However, the gate pulse modulation method is for reducing the kickback voltage ΔVp, but has a limitation in reducing the power consumption.
Embodiments of this document provide a display device and a method of controlling gate pulses capable of reducing the kickback voltage ΔVp and the power consumption.
According to an exemplary embodiment of this document, there is provided a display device comprising a display panel including data lines and gate lines intersecting each other, a data driving circuit configure to convert digital video data into data voltages which are supplied to the data lines, a gate driving circuit configure to sequentially supply gate pulses to the gate lines.
Here, a voltage of each of the gate pulses increases from a gate low voltage to a precharging voltage during a first rising time and thereafter increases from the precharging voltage to a gate high voltage during a second rising time, and the voltage of each of the gate pulses decreases from the gate high voltage to the precharging voltage during a first falling time and thereafter decreases from the precharging voltage to the gate low voltage during a second falling time.
According to an exemplary embodiment of this document, there is provided a method for controlling gate pulses comprising increasing voltages of the gate pulses from a gate low voltage to a precharging voltage during a first rising time, increasing the voltages of the gate pulses from the precharging voltage to a gate high voltage during a second rising time, decreasing the voltages of the gate pulses from the gate high voltage to the precharging voltage during a first falling time, and decreasing the voltages of the gate pulses from the precharging voltage to the gate low voltage during a second falling time.
The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and together with the description serve to explain the principles of the invention. In the drawings:
A display device according to this document comprises any display device which sequentially supplies gate pulses (or scan pulses) to the gate lines to write video data in the pixels in a line sequential scanning manner. For example, the display device may include, but not limited to, a liquid crystal display (LCD), an organic light emitting diode (OLED) display, a field emission display (FED), an electrophoresis display (EPD), or the like.
An LCD according to this document may be implemented by an liquid crystal mode such as a TN (Twisted Nematic) mode, a VA (Vertical Alignment) mode, an IPS (In Plane Switching) mode, an FFS (Fringe Field Switching) mode, or the like. The LCD according to this document may be implemented by the normally white mode or the normally black mode when classified by the transmittance to voltage characteristics. In addition, the LCD may be implemented by any types such as a transmissive LCD, a transflective LCD, and a reflective LCD or the like.
Embodiments according to this document will be described in detail mainly based on an LCD with reference to the accompanying drawings. The display device according to this document is exemplified by an LCD in the following description of the embodiments, but it is noted not to be limited to the LCD. Like reference numerals designate like elements throughout the specification. In the following description, when a detailed description of well-known functions or configurations related to this document is determined to unnecessarily cloud a gist of the present invention, the detailed description thereof will be omitted.
Names of the respective elements used in the following description are selected for convenience of writing the specification and may be thus different from those in actual products.
Referring to
The display panel assembly 10 has a liquid crystal layer formed between two panels. A lower panel of the display panel assembly 10 is provided with, as shown in
The display panel assembly 10 may be implemented by any one display panel assembly of an organic light emitting diode (OLED) display, a field emission display (FED), and an electrophoresis display (EPD).
The data driving circuit comprises a plurality of source drive ICs 12. The source drive ICs 12 receive digital video data RGB from the timing controller 11. The source drive ICs 12 convert the digital video data RGB into positive/negative analog data voltages, in response to source timing control signals from the timing controller 11, and supply the data voltages for the data lines in the display panel assembly 10 in synchronization with the gate pulses. The source drive ICs 12 may be connected to the data lines in the display panel assembly 10 by a COG (chip on glass) process or a TAB (tape automated bonding) process.
The gate driving circuit comprises a power sharing level shift circuit (hereinafter, referred to as a “level shifter”) 15 and a shift register 13 connected between the timing controller 11 and the gate lines in the display panel assembly 10.
The level shifter 15 level-shifts a TTL (transistor transistor logic) level voltage of gate shift clocks CLK output from the timing controller 11, to have the gate high voltage VGH and the gate low voltage VGL. The gate shift clocks CLK are input to the level shifter 15 as i-phase (where i is a positive integer equal to or more than 2) clocks having a predetermined phase difference. The level shifter 15 reduces the power consumption and the kickback voltage ΔVp through the power sharing at rising edges and falling edges of the level-shifted clocks having the gate high voltage VGH and the gate low voltage VGL. The shift register 13 shifts the clocks output from the level shifter 15 to sequentially supply the gate pluses to the gate lines in the display panel assembly 10.
The gate driving circuit may be directly formed on the lower panel of the display panel assembly 10 by a GIP (gate in panel) scheme, or may be connected between the gate lines in the display panel assembly 10 and the timing controller 11 by the TAB scheme. By the GIP scheme, the level shifter 15 may be mounted on the PCB 14, and the shift register 13 may be formed on the lower panel of the display panel assembly 10. By the TAB scheme, the level shifter and the shift register may be integrated into a single chip, mounted on the TCPs, and attached to the lower panel of the display panel assembly 10.
The timing controller 11 receives the digital video data RGB from an external device via an interface such as an LVDS (low voltage differential signaling) interface, a TMDS (transition minimized differential signaling) interface or the like. The timing controller 11 transmits the digital video data from the external device to the source drive ICs 12.
The timing controller 11 receives timing signals such as a vertical synchronizing signal Vsync, a horizontal synchronizing signal Hsync, a data enable signal DE, a main clock MCLK, and so forth, from the external device via an LVDS or TMDS interface reception circuit. The timing controller 11 generates timing control signals for controlling operation timings of the data driving circuit and the gate driving circuit with respect to the timing signals from the external device. The timing control signals include gate timing control signals for controlling operation timings of the gate driving circuit, and data timing signals for controlling operation timings of the source drive ICs 12 and polarities of the data voltages.
The gate timing control signals include a gate start pulse GSP, the gate shift clocks CLK, a gate output enable signal GOE, and so forth. The gate start pulse GSP is input to the shift register 13 to control shift start timings. The gate shift clocks CLK are input to the level shifter 15 and level-shifted, which are then input to the shift register 13, and are used as clock signals for shifting the gate start pulse GSP. The gate output enable signal GOE controls output timings of the shift register 13.
The data timing control signals include a source start pulse SSP, a source sampling clock SSC, a polarity control signal POL, a source output enable signal SOE, and so on. The source start pulse SSP controls shift start timings in the source drive ICs 12. The source sampling clock SSC is a clock signal which controls data sampling timings with respect to a rising edge or a falling edge in the source drive ICs 12. The polarity control signal POL controls polarities of the data voltages output from the source drive ICs 12. If a data transmission interface between the timing controller 11 and the source drive ICs 12 is a mini LVDS interface, the source start pulse SSP and the source sampling clock SSC may be omitted.
The timing controller 11 supplies i gate shift clocks CLK which swing in the TTL level and of which the phases are sequentially delayed, and a power sharing control signal CTRG, to the level shifter 15.
In the TFT array shown in
In the TFT array shown in
In the TFT array shown in
The TFT arrays shown in
In
The level shifter 15 discharges the output node through the power sharing at the falling edge of each of the gate pulses SCAN1 to SCAN4 to a predetermined precharging voltage VA and then discharges it to the gate low voltage VGL. A pull-down transistor of the level shifter 15 is turned on to enable a voltage at the output node to be discharged to the gate low voltage VGL after the voltage at the output node is discharged to the precharging voltage VA. Since the voltage at the output node discharged via the pull-down transistor varies from the precharging voltage VA to the gate low voltage VGL at the falling edge of each of the gate pulses SCAN1 to SCAN4, its swing range is greatly reduced as compared with that in the related art. Therefore, the current Ileak flowing through the output node at the falling edge of each of the gate pulses SCAN1 to SCAN4 is also greatly reduced as compared with that in the related art, and the kickback voltage in the display panel assembly 10 ΔVp is lowered.
Referring to
The first transistor T1, which is a pull-up transistor, is turned on to transmit the gate high voltage VGH to the second node N2 after a voltage at the second node N2 is charged to the precharging voltage VA at the rising edge duration of the gate pulse under the control of the switch controller 71. A gate terminal of the first transistor T1 is connected to a first control signal output node of the switch controller 71, and a source terminal thereof is connected to the second node N2. A drain terminal of the first transistor T1 is applied with the gate high voltage VGH.
The second transistor T2, which is a pull-down transistor, is turned on to transmit the gate low voltage VGL to the second node N2 after a voltage at the second node N2 is discharged to the precharging voltage VA at the falling edge duration of the gate pulse under the control of the switch controller 71. A gate terminal of the second transistor T2 is connected to a second control signal output node of the switch controller 71, and a drain terminal thereof is connected to the second node N2. A source terminal of the second transistor T2 is applied with the gate low voltage VGL.
The power sharing switch circuit 73 comprises first and second diodes D1 and D2, and third and fourth transistors T3 and T4 controlled by the switch controller 71.
The first diode D1 is turned on at an initial period of time in the rising edge duration of the gate pulse to form a current path between the first node N1 and a third node N3. The third transistor T3 is turned on to from a current path at an initial period of time in the falling edge duration of the gate pulse under the control of the switch controller 71. A gate terminal of the third transistor T3 is connected to a third control signal output node of the switch controller 71, and a source terminal thereof is connected to an anode of the first diode D1. The source terminal of the third transistor T3 is applied with the precharging voltage VA. A drain terminal of the third transistor T3 is connected to a cathode of the first diode D1 and a drain of the fourth transistor T4 via the third node N3.
The second diode D2 is turned on at an initial period of time in the falling edge duration of the gate pulse to form a current path between the second node N2 and the third node N3. The fourth transistor T4 is turned on to form a current path between the second node N2 and the third node N3 at an initial period of time in the rising edge duration of the gate pulse under the control of the switch controller 71. A gate terminal of the transistor T4 is connected to a fourth control signal output node of the switch controller switch controller 71, and a source terminal thereof is connected to an anode of the second diode and the second node N2. The drain terminal of the fourth transistor T4 is connected to the third node N3.
The first to fourth transistors T1 to T4 may be implemented by an n type MOSFET (metal-oxide-semiconductor field-effect transistor). The first to fourth transistors T1 to T4 may be implemented by a p type MOSFET, not limited to the n type MOSFET, or may be implemented by CMOS (complementary metal semiconductor) transistor. Hereinafter, there will be description of exemplifying that the first to fourth transistors T1 to T4 are implemented by the n type MOSFET.
The switch controller 71 controls the transistors T1 to T4 in response to the gate shift clocks CLK and the power sharing control signal CTRG from the timing controller 11. The delay circuit 72 delays gate voltages for the transistors T1 to T4 using a delay circuit such as an RC delay circuit. A delay value in the delay circuit 72 may be adjusted based on a rising edge slope, a rising edge time, a falling edge slope, and a falling edge time of the gate pulse output from the level shifter 15.
Referring to
The transistors T1 to T4 are operated as shown in Table 1 for each time zone under the control of the switch controller 71. The transistors T3 and T4 of the power sharing switch circuit 73 are connected between the first node N1 (input node) and the second node N2 (output node) under the control of the switch controller 71, to form a current path between the first node N1 and the second node N2 during the second time (or the first rising time) and the fourth time (or the first falling time) and to block the current path between the first node N1 and the second node N2 during the third time (or the second rising time) and the first time (or the second falling time).
The level shifter 15 maintains a voltage at the output node N2 as the gate low voltage VGL during the first time A. The switch controller 71 outputs a high logic voltage to the second control signal output node and outputs a low logic voltage to the first, third, and fourth control signal output nodes, regardless of the power sharing control signal CTRG till the gate shift clocks CLK are input. Thereby, the second transistor T2 is, as shown in
The level shifter 15 increases a voltage at the output node N2 from the gate low voltage VGL to the predetermined precharging voltage VA by using the power sharing switch circuit 73 during the second time B. The switch controller 71 outputs the high logic voltage to the fourth control signal output node and outputs the low logic voltage to the first, second, and third control signal output nodes in synchronization with the rising edge of the gate shift clock CLK, during the second time B when the power sharing control signal CTRG is maintained as the high logic voltage. Thereby, the fourth transistor T4 is, as shown in
The level shifter 15 maintains a voltage at the output node N2 as the gate high voltage VGH during the third time C. The switch controller 71 outputs the high logic voltage to the first control signal output node and outputs the low logic voltage to the second and fourth control signal output nodes, during the third time C when the power sharing control signal CTRG and the gate shift clock CLK are maintained as the high logic voltage. Thereby, the first transistor T1 is, as shown in
The level shifter 15 discharges the voltage at the output node N2 from the gate high voltage VGH to the precharging voltage VA by using the power sharing switch circuit 73 during the fourth time D. The switch controller outputs the high logic voltage to the third control signal output node and outputs the low logic voltage to the first, second, and fourth control signal output nodes in synchronization with the falling edge of the power sharing control signal CTRG, during the fourth time D when the gate shift clock is maintained as the high logic voltage and the power sharing control signal CTRG is reversed to the low logic voltage. Thereby, the third transistor T3 is, as shown in
Thereafter, the level shifter 15 level-shifts the gate pluses by repeatedly performing the operations shown in
The inflection point in the waveform of the rising edge of the gate pulse is placed at the boundary between the second time B and the third time C. The inflection point in the waveform of the falling edge of the gate pulse is placed at the boundary between the fourth time D and the first time A. The slope of the rising edge of the gate pulse at the second time B may be controlled to be smaller than that at the rising edge of the third time C. The slope of the falling edge at the fourth time D may be controlled to be smaller than that at the falling edge of the first time A thereafter. In addition, the voltage at the second time B in the rising edge of the gate pulse may be increased in a step waveform shape, and the voltage at the fourth time B in the falling edge of the gate pulse may be decreased in a step waveform shape.
The switch controller 71 may be provided with an option terminal OPT. The switch controller 71 may select the power sharing at the second time B and the power sharing at the fourth time D depending on a logic voltage value at the option terminal OPT. The option terminal OPT may be applied with a power supply voltage Vcc or a ground voltage GND via a switching element such as a dip switch formed on the PCB 14. Also, the option terminal OPT may be connected to the timing controller 11. Thus, the timing controller or an operator of fabricating the display device can select voltages applied to the option terminal to select the power sharing operation of the level shifter 15.
For example, if a logic value at the option terminal OPT is “00,” the switch controller 71 controls the first and second transistors T1 and T2 as shown in Table 1, and disables the third and fourth transistors T3 and T4 to makes the power sharing at the second and fourth times B and D inactive. If a logic value at the option terminal OPT is “01,” the switch controller 71 controls the first, second, and third transistors T1, T2 and T3 as shown in Table 1, and disables the fourth transistor T4 to make the power sharing at the second time B inactive. If a logic value at the option terminal OPT is “10,” the switch controller 71 controls the first, second, and fourth transistors T1, T2 and T4 as shown in Table 1, and disables the third transistor T3 to make the power sharing at the fourth time D inactive. If a logic value at the option terminal OPT is “11,” the switch controller 71 controls the first to fourth transistors T1 to T4 to make the power sharing at the second and fourth times B and D active.
In
The precharging voltage adjustment circuit 74 is connected between the input node N1 of the level shifter 15 and the power sharing switch circuit 73 and adjusts a voltage level and a waveform at the output node N2 during the second and fourth times B and D. The precharging voltage adjustment circuit 74 may be implemented by a variety of circuits in order to adjust a voltage at the output node to a desired voltage level and form during the second and fourth times B and D.
The precharging voltage adjustment circuit 74 may comprise a parallel resistor circuit as shown in
In the meantime, the maximum voltage at the second time B and the minimum voltage at the fourth time, that is, the precharging voltage VA may be set to be equal at the second time B and the fourth time D, whereas it may be set to be different at those times as shown in
As shown in
As shown in
As described above, according to the embodiments of this document, it is possible to reduce the power consumption and the kickback voltage ΔVp by generating the rising edge voltage and the falling edge voltage through the power sharing of the different voltage sources.
Although embodiments have been described with reference to a number of illustrative embodiments thereof, it should be understood that numerous other modifications and embodiments can be devised by those skilled in the art that will fall within the scope of the principles of this disclosure. More particularly, various variations and modifications are possible in the component parts and/or arrangements of the subject combination arrangement within the scope of the disclosure, the drawings and the appended claims. In addition to variations and modifications in the component parts and/or arrangements, alternative uses will also be apparent to those skilled in the art.
Number | Date | Country | Kind |
---|---|---|---|
10-2009-0133709 | Dec 2009 | KR | national |
Number | Name | Date | Kind |
---|---|---|---|
7808494 | Lee et al. | Oct 2010 | B2 |
20050219187 | Shih | Oct 2005 | A1 |
20060158412 | Morita | Jul 2006 | A1 |
20060170658 | Nakamura et al. | Aug 2006 | A1 |
20080303765 | Nakatsuka | Dec 2008 | A1 |
Number | Date | Country |
---|---|---|
10-2005-0046173 | May 2005 | KR |
Number | Date | Country | |
---|---|---|---|
20110157132 A1 | Jun 2011 | US |