This application is based upon and claims the benefit of priority from the prior Japanese Patent Application No. 2003-058959, filed Mar. 5, 2003, the entire contents of which is incorporated herein by reference.
1. Field of the Invention
This invention relates to a display device and associated drive method, and more particularly comprises a display panel arranged with a plurality of display pixels which have current control type optical elements related to a display device which displays desired information and the method for driving the display device.
2. Description of the Related Art
In recent years, the increase of flat panel type display devices as monitors and displays of personal computers and video equipment has been amazing. Particularly, Liquid Crystal Displays (hereinafter denoted as “LCD”) have advanced rapidly as these devices are thin-shaped, space-saving, low-powered and the like as compared to conventional display devices. In addition, relatively small LCD's remarkably have also recently spread and are widely applied as display devices in such as cellular/mobile phones, digital cameras, Personal Digital Assistants (PDA's) and the like.
Furthermore, as the display device (display) of the next generation following such an LCD, Research and Development (R&D) of the self-luminescence type display device (hereinafter denoted as a “self-luminescence type display”) comprised of a display panel with optical elements arranged in a matrix form consisting of self-luminescence type light emitting devices, such as organic electroluminescent devices (hereinafter denoted as “organic EL devices”), inorganic electroluminescent devices (hereinafter denoted as “inorganic EL devices”) or Light Emitting Diodes (LEDs) and the like is being actively pursued. In comparison with former LCD's, such a self-luminescence type display has a more rapid display response speed and does not have a limited viewing angle. Additionally, as high luminosity increases contrast, higher resolution display image quality using low-power and the like are realistic. Because backlight is not needed like an LCD, this very predominant feature will lead to more thin-shaped and lightweight models and full-scale utilization of such self-luminescence type displays are expected in the near future.
In the configuration which applied an active-matrix drive method in the above-mentioned self-luminescence display, optical elements are added that are composed of the above-mentioned light emitting devices. Each of the display pixels constitutes the display panel. In addition, the drive method comprises a the driver circuit (hereinafter denoted as a “pixel driver circuit” for convenience) is composed of a plurality of switching element for performing drive control of these optical elements. A configuration which drives the light emitting devices of each display pixel is known, and the drive method of the circuit configuration of a pixel driver circuit or by means of light emitting devices has been variously proposed.
In the display pixel of prior art, for example, as shown in
Also, a parasitic capacitance Cp is provided between the gate-source of the Thin-Film Transistor Tr32. Furthermore, the Thin-Film Transistor Tr31 is constituted by an n-channel type MOS transistor (NMOS). The Thin-Film Transistor Tr32 is constituted by a p-channel type MOS transistor (PMOS).
Additionally, in the pixel driver circuit DCP which has such a configuration, the Thin-Film Transistors Tr31 and Tr32 are switched “ON” at predetermined timing and drive control of the organic EL device OEL performs an “OFF” control.
Thus, in the pixel driver circuit DCP, initially, when a high-level selection signal Vsel is applied to the selection lines SL, the display pixels are set to a selection state by the scanning driver and the Thin-Film Transistor Tr31 performs an “ON” operation. The signal voltage Vpix is applied to the data lines DL by the data driver according to the display signal and applied to the gate terminal of the Thin-Film Transistor Tr32 via the Thin-Film Transistor Tr31. Accordingly, the Thin-Film Transistor Tr32 performs an “ON” operation as a result of the switch-on state according to the above-mentioned signal voltage Vpix. The drive current according to the signal voltage Vpix flows in the direction of the constant voltage Vss via the Thin-Film Transistor Tr32 and the organic EL devices OEL from the ground potential Vgnd. This drive current is supplied to the organic EL devices OEL and light is emitted by the luminosity gradation according to the display signal.
Secondly, when a low-level selection signal Vsel is applied to the selection lines SL and the display pixels are set to a non-selection state, the Thin-Film Transistor Tr31 performs an “OFF” operation. The data lines DL and the pixel driver circuit DCP are electrically blocked out. Thereby, the voltage applied to the gate terminal of the Thin-Film Transistor Tr32 is stored by the parasitic capacitance Cp and the Thin-Film Transistor Tr32 maintains an “ON” state. The operation in which the drive current flows to the organic EL devices OEL via the Thin-Film Transistor Tr32 from the ground potential Vgnd is maintained and the luminescent operation is continued. This luminescent operation is controlled, for example, so that one frame periods are continuously performed until the signal voltage Vpix is written in each display pixel according to the display signal.
Since such a drive method controls the current value of the drive current flow to the light emitting devices by regulating the voltage applied to each display pixel and performs a luminescent operation by predetermined luminosity gradation, it is called a voltage drive method or the voltage application method.
However, in the display device comprised with the display pixels of the pixel driver circuit which was mentioned above, it has a problem as illustrated below.
Specifically, in the pixel driver circuit as shown in
Additionally, because the variation in operating characteristics, such as the current between source-drain of the Thin-Film Transistors Tr31 and Tr32 which constitute the pixel driver circuit, becomes greater when each of the display pixels that constitute the display panel is miniaturized to attain a higher-resolution display image quality, proper gradation control becomes complicated to resolve. Thus, the problem of variation occurring in the display properties of each display pixel causes deterioration of the image quality.
Furthermore, in the pixel driver circuit as shown in
The present invention has been made in view of the circumstances mentioned above. Accordingly, it is the primary object of the present invention to provide a display panel comprised with an arrangement of a plurality of display pixels which have current control type optical elements. In the display device which displays desired information, while applying already established inexpensive manufacturing technology, the present invention has an advantage to acquire stabilized display image quality over a long period of time.
The driver circuit which drives optical elements applied to the pixel driver circuit in the present invention for acquiring the above-mentioned advantage comprises a first current path with one end connected to one end of the optical elements and the other end connected to a drive power supply; a second current path electrically connected to the first current path; a write-in control circuit which flows the write-in current having a predetermined current value in the direction of the other end side from one end side of the first current path via the second current path; a charge storage circuit which stores the electric charge accompanying the write-in current that flows in the first current path; a drive control circuit which supplies the drive current having a current value corresponding to the current value of the write-in current to the optical elements via the first current path and drives these optical elements based on the electric charge stored up in the charge storage circuit. The signal current supplied in the second current path has a predetermined current value and the write-in current has a current value according to the value of the signal current. Additionally, the write-in control circuit has a first timing operation in which the electric charge of the write-in current flowing in the first current path is stored by the write-in control circuit according to the write-in current in the charge storage circuit; and a second timing operation which supplies the drive current to the optical elements by the drive control circuit which does not overlap the time period of the first timing operation.
The optical elements have current control type light emitting devices which perform luminescent operation by predetermined luminosity gradation according to the current value of the drive current. These light emitting devices, for example, consist of organic electroluminescent devices. In the first timing operation, the electric potential of the end of the first current path is set as the first electric potential accordingly to become higher than the electric potential of the constant voltage regulate power source in the first timing operation which flows the write-in current to the first current path in the write-in control circuit and changes the optical elements to a reverse-bias condition; and in the electric potential of the drive power supply. In the second timing operation, the electric potential of the end of the first current path is set as the second electric potential accordingly to become lower than the electric potential of the constant voltage regulate power source in the second timing operation which flows the drive current in the drive control circuit to the optical elements and changes the optical elements to a forward-bias condition.
The write-in control circuit further comprises a third current path connected and provided between the first current path and the second current path; and the write-in current flows from the second current path to the first current path via the third current path; and a current control circuit which is provided in the third current path and controls inflow of the write-in current to the first current path. The write-in current flows in the first current path from the second current path via the third current path. The drive control circuit comprises a first switching element which is provided in the first current path and controls the current value of the drive current. The charge storage circuit comprises a capacitative element provided at least between the first switching element and the first current path. The write-in control circuit comprises a second switching element which controls operation of the first switching element. The charge storage means includes the capacitative element and parasitic capacitance provided between the first switching element and the second switching element. The capacitance value of the capacitative element in the charge storage means is set up to become lower than the parasitic capacitance. The first through third switching elements are constituted by Thin-Film Transistors consisting of n-channel type amorphous silicon.
The display device in this invention for acquiring the above-mentioned advantage comprises a display panel which comprises at least a plurality of display pixels arranged in a matrix form comprises the optical elements and a pixel driver circuit with a configuration equivalent to the above-mentioned driver circuit which controls operation of these optical elements, the selection lines where the selection signal is applied which selects each of the display pixels one line at a time, and the data lines where the signal current is supplied which has a current value according to the display signal; the pixel driver circuit comprises a first current path with one end connected to one end of the optical elements and the other end connected to the drive power supply; a second current path corresponding to a section of the data lines; a write-in control circuit which flows the write-in current in the direction of the other end side from one end side of the first current path via the second current path which has a current value according to the signal current; a charge storage circuit which stores the electric charge accompanying the write-in current which flows in the first current path; and a drive control circuit which supplies the drive current to the optical elements via the first current path and drives these optical elements based on the electric charge stored up in the charge storage circuit.
The display device further comprises a scanning driver circuit which applies the selection signal to the selection lines; and a signal driver circuit which flows the signal current to the data lines.
Additionally, the optical elements have current control type light emitting devices which perform luminescent operation by predetermined luminosity gradation according to the current value of the drive current. The light emitting devices are organic electroluminescent devices which have for example a top anode type device construction.
The drive method of the display device in the present invention for acquiring the above-mentioned advantage, in the pixel driver circuit during the selection period of each of the display pixels of each line of the display panel, the write-in current flows in the direction of the other end side from one end side of the current path by way of one end connected to the optical elements and the other end to predetermined electric potential, which has a current value according to the status signal. The electric charge according to the write-in current is stored in the capacitative element attached in the current path. During the non-selection period of each of the display pixels of each line, the drive current according to the charge stored in the capacitative element is supplied to the optical elements via the current path. In addition, during a selection period of each of the display pixels, the optical elements are placed in a non-selection state by changing the optical elements to a reverse-bias condition; and during a non-selection period of each of the display pixels, the optical elements are placed in a selection state by changing the optical elements into a forward-bias condition.
The above and further objects and novel features of the present invention will more fully appear from the following detailed description when the same is read in conjunction with the accompanying drawings. It is to be expressly understood, however, that the drawings are for the purpose of illustration only and are not intended as a definition of the limits of the invention.
Hereinafter, the configuration of the display device and the display device drive method related to the present invention and shown in the preferred embodiment will be explained in detail.
In addition, in the embodiment shown below, although the optical elements are composed from organic EL devices and the optical elements are described as organic EL devices OEL for convenience, the present invention is not limited to this. These optical elements may be suitable with another variety of self-luminescence type light emitting devices, for example, Light Emitting Diode (LEDs) and the like. Basically, the only requirement is that these optical elements are current control type light emitting devices which perform a luminescent operation by the luminosity gradation according to the current value of the applied current.
First, the driver circuit configuration and associated drive method as applied to the pixel driver circuit of the display device related to the present invention will be explained.
<<Configuration of the Driver Circuit>>
As shown in
The organic EL devices OEL as the optical elements are driven by the driver circuit DCA. Current is supplied by the driver circuit DCA which drives the luminescent operation according to the current value of this current. The organic EL device OEL cathode terminal is connected to the contact N11 in above-mentioned driver circuit DCA and the anode terminal is connected to the constant voltage source which has the high electric potential Vad. The organic EL devices OEL operating in such a connection configuration are provided having a top anode type device structure.
The capacitor Csa may be parasitic capacitance provided in between the gate-source of the Thin-Film Transistor Tr13, and a capacitative element (a capacitor) can be attached separately in between the contact N12 and the power supply lines VL in addition to the parasitic capacitance.
In the driver circuit DCA which has such a configuration mentioned above, the current path between the power supply lines VL and the contact N11 in which the Thin-Film Transistor Tr13 is provided constitutes the first current path related to this invention. Additionally, the circuit configuration including the first current path, the Thin-Film Transistor Tr13 and the capacitor Csa constitute the drive control circuit related to this invention. Furthermore, the circuit configuration including the above-mentioned Thin-Film Transistor Tr12 constitutes the current control circuit related to this invention. The current path between the contact N11 and the data lines DL in which the Thin-Film Transistor Tr12 is provided constitutes the third current path related to this invention. The circuit configuration including the Thin-Film Transistor Tr11, the third current path and the Thin-Film Transistor Tr12 constitutes the write-in control circuit related to this invention.
<<The Drive Method of the Driver Circuit>>
Next, the drive method in the driver circuit which has the configuration mentioned above will be explained.
As stated above, if the driver circuit related to this embodiment has such a configuration, the voltage Vcc which has predetermined signal voltage is applied via the power supply lines VL to the source terminal side of the Thin-Film Transistor Tr13 provided in the driver circuit DCA. The cathode terminal of the organic EL devices OEL serves as the load connected to the drain terminal and the high electric potential Vad is applied to the anode terminal of the organic EL devices OEL.
Additionally, as further described later, at the same time applying the write-in method (hereinafter denoted as the “current supply source type” for convenience) which flows the gradation current at the time of the write-in operation (write-in current) in the direction of the pixel driver circuit of each of the display pixels from the data lines DL side, the drive method is applied which flows the drive current at the time of the luminescent operation in the direction of the driver circuit from the light emitting devices side. Hereinafter, this will be described in detail.
(Write-in Operation Period; First Timing Operation)
The drive method in the driver related to this embodiment is shown in
Synchronizing with this timing, the predetermined gradation current Id (=Ipix) (signal current) necessary to perform the luminescent operation of the organic EL devices OEL of each line (In
Accordingly, as shown in
In addition, as the voltage Vch is applied to the source terminal of the Thin-Film Transistor Tr13, the high electric potential voltage Vd is applied to the contact N11 (the Thin-Film Transistor Tr13 drain terminal) rather than the voltage Vch via the Thin-Film Transistor Tr12. Also, the high electric potential voltage is applied to the contact N12 (the Thin-Film Transistor Tr13 gate terminal) via the Thin-Film Transistor Tr11 rather than the voltage Vch. Here, the voltage Vd is set to have a voltage level higher than the high electric potential Vad (Vd>Vad) applied to the anode terminal of the organic EL devices OEL.
In this manner, when the voltage of the Thin-Film Transistor Tr13 gate terminal (contact N12) becomes higher than the voltage of the source terminal, the Thin-Film Transistor Tr13 performs an “ON” operation. As shown in
Because the electric potential Vd of the contact N11 is set so as to become the high electric potential rather than the voltage Vad applied to the anode terminal of the organic EL devices OEL, the organic EL devices OEL will be in a condition where reverse-bias voltage is applied. As a result, current does not flow to the organic EL devices (optical elements) and the luminescent operation is not performed.
(Luminescent Operation Period; Second Timing Operation)
Next, in the luminescent operation period (second timing operation) of the light emitting devices after completion of the write-in operation period mentioned above, as the selection signal Vsel (=Vsl) which has low-level electric potential is applied to the selection lines SL, the voltage Vcc (=Vcl) which has low-level electric potential (second electric potential) is applied to the power supply lines VL.
Also, synchronizing with this timing, the supply operation of the gradation current Ipix to the i-th line of each driver circuit via the data lines DL is suspended.
Here, the low-level voltage Vcc (=Vcl) applied to the power supply lines VL is set to have a voltage level (Vad>Vcl) lower than the high electric potential voltage Vad applied to at least the anode terminal of the organic EL devices OEL.
Accordingly, as shown in
Thus, when capacitor Csa stores the charge voltage at the time of the write-in operation, the electric potential difference between the contact N11 and the contact N12 (between the Thin-Film Transistor Tr13 gate-source) is stored and the Thin-Film Transistor Tr13 maintains an “ON” state.
In addition, because the low-level voltage Vcl applied to the power supply lines VL is lower than the voltage Vad applied to anode terminal of the organic EL devices OEL, the electric potential applied to the contact N11 connected to the cathode terminal of the organic EL devices OEL becomes lower than the voltage Vad applied to anode terminal of the organic EL devices OEL. As a result, the organic EL devices OEL will be in a condition where forward-bias voltage is applied.
Therefore, as shown in
Here, as the voltage component based on the electric charge stored in capacitor Csa is equivalent to the electric potential difference, as in the case of the write-in current IAa flow which has an equivalent current value to the gradation current Id in the Thin-Film Transistor Tr13, the light generation drive current IAb which flows to the organic EL devices OEL will also have an equivalent current value (Iab·IAa) to the above-mentioned write-in current IAa. Therefore, the light generation drive current IAb will have a current value equivalent to the gradation current Id. For that reason, the organic EL devices OEL emit light continuously by the luminosity gradation according to the gradation current Id.
According to the pixel driver circuit DCA mentioned above, in the write-in operation period, the gradation current Id of the current value specified according to the luminescent state (luminosity gradation) of the organic EL devices OEL is supplied. In the luminescent operation period, the current assignment method applicable to the luminescent operation of the organic EL devices OEL is performed by luminosity gradation according to the gradation current Id by controlling the light generation drive current IAb flow to the organic EL devices OEL, based on the voltage stored relative to the write-in current IAa corresponding to the current value of the gradation current Id.
Additionally, the single Thin-Film Transistor Tr13 can implement both a function (current/voltage conversion function) to change the current level of the signal current according to the desired luminosity gradation into a voltage level and a function (luminescent drive function) which supplies the light generation drive current IAb of a predetermined current value to the organic EL devices OEL. Even in the case where the operating characteristics of the Thin-Film Transistor Tr13 change, the drive current cannot be influenced by these characteristic changes and the luminescent characteristics by the predetermined luminosity gradation of the organic EL devices OEL to the gradation current Id can be kept constant. That is, the drive current which flows during the luminescent operation period via the Thin-Film Transistor Tr13 is current according to the voltage component stored in the capacitor Csa during the write-in operation. For example, when the characteristic factors of the source current relative to the gate voltage of the Thin-Film Transistor Tr13 change with the passage of time and the like, because the value of the voltage component stored in the capacitor Csa constitutes a value according to the present characteristic factor changes, the value of the drive current will not be influenced by these characteristic changes in the Thin-Film Transistor Tr13.
Furthermore, since each of the Thin-Film Transistors Tr11, Tr12 and Tr13 which constitute the pixel driver circuit DCA mentioned above are all comprised with n-channel type MOS transistors (Negative-channel Metal-Oxide Semiconductor (NMOS)) and the above-mentioned drive control operation can be performed satisfactorily, the single n-type Thin-Film Transistor using amorphous silicon is satisfactorily applicable to the above-mentioned pixel driver circuit DCA. Therefore, the manufacturing technology using the already established amorphous silicon can be applied, and circuit configuration operating characteristics which are stabilized can be implemented relatively cheaply.
The pixel driver circuit DCA related to the embodiment further as has the functional advantages as shown below.
Accordingly, as shown in
In addition, the organic EL devices OEL in the embodiment have a top anode type device structure whereby the anode terminal is connected to the constant voltage regulated power source (high electric potential Vad) and does not have a top cathode type device structure whereby the cathode terminal is connected to the constant voltage regulated power source (for example, ground potential). In the circuit configuration applied the organic EL devices OEL which have such a top anode type device structure, the electric charge amount Qsa stored in the capacitor Csa during the write-in operation is expressed in the following formula (1):
Qsa=Csa×(VN12−Vch) (1)
Here, VN12 is the voltage of the contact N12 at the time of the write-in operation and Vch is the high-level voltage applied to the power supply lines VL at the time of the write-in operation.
At this time, the electric charge amount Qta stored in the parasitic capacitance Cta provided between the gate terminal (selection lines SL) of the Thin-Film Transistor Tr11 and the contact N12 is expressed in the following formula (2):
Qta=Cta×(Vsh−VN12) (2)
Here, Vsh is the high-level selection signal applied to the selection lines SL at the time of the write-in operation.
On the other hand, in the luminescent operation period (holding period), the electric charge amount Qsa′ stored in the capacitor Csa is expressed following formula (3):
Qsa′=Csa×(VN12′−Vcl) (3)
Here, VN12′ is the voltage of the contact N12 at the time of the luminescent operation and Vcl is low-level voltage applied to the power supply lines VL at the time of the luminescent operation.
At this time, the electric charge amount Qta′ stored in the above-mentioned parasitic capacitance Cta is expressed in following formula (4):
Qta′=Cta×(Vsl−VN12′) (4)
Here, Vsl is the low-level selection signal applied to the selection lines SL at the time of the luminescent operation.
Additionally, the transition to the condition of a luminescent operation from the write-in operation mentioned above is shown in the following formula (5) supposing that the amount of change in the electric charge in each capacitor and parasitic capacitance is equal; based on the above-mentioned formula (1) through formula (4), it is expressed in the following formula (6); and the amount of change ΔVT13gs of the potential VT13gs between the gate-source of the Thin-Film Transistor Tr13 in the transition to the condition of a luminescent operation period from a write-in operation period is expressed in formula (7).
Qsa−Qsa′=Qta−Qta′ (5)
Csa×{(VN12−VN12′)−(Vch−Vcl)}=Cta×{(Vsh−Vsl)−(VN12−VN12′)} (6)
ΔVT13gs=(VN12−VN12′)−(Vch−Vcl) ==Cta/Csa×(ΔVsel−ΔVN12) (7)
In addition, ΔVsel is the amount of change (Vsh−Vsl) in the voltage of the selection lines SL at the time of transition to the condition of a luminescent operation period from the write-in operation period. Similarly, ΔVN12 is the amount of change of the voltage at the contact N12 in the luminescent operation period from a write-in operation period (VN12−VN12′).
Here, because the amount of change ΔVN12 of the voltage of the contact N12 shown in the above-mentioned formula (7) can be expressed like the following formula (8), the above-mentioned formula (7) is expressed like formula (9).
ΔVN12=(VT13gs(hold)+Vcl)−Vch (8)
ΔVT13gs=Cta/Csa×(ΔVsel−VT13gs(hold)−Vcl+Vch) (9)
Here, VT13gs (hold) is the voltage between gate-source of the Thin-Film Transistor Tr13 at the time of the luminescent operation.
Therefore, according to the pixel driver circuit related to the embodiment, since the transition change over to the condition of a luminescent operation period from the write-in operation period of the potential between gate-source of the Thin-Film Transistor Tr13 does not include the argument relevant to the voltage supply between the anode terminal and the cathode terminal of the organic EL devices OEL, as shown in the above-mentioned formula (9), it does not influence the device characteristics, such as resistance of the organic EL devices OEL.
Accordingly, even when such a pixel driver circuit is applied to each display pixel which constitutes a display panel and resistance and the like of the optical elements (organic EL devices OEL) changes the attribute properties with the passage of time, the value of the drive current supplied to the optical elements (organic EL devices OEL) will not be influenced and the drive current relative to the display signal can be maintained constant. Thus, the luminosity gradation characteristics relative to the display signal will be constant over a long period of time and stable display image quality can be acquired.
In addition, in the pixel driver circuit related to the embodiment, as shown in the above-mentioned formula (9), the ratio of the capacitance value of the capacitor Csa and the capacity of the parasitic capacitance Cta (Cta/Csa) are closely related to the amount of change ΔVT13gs of the potential between the gate-source of the Thin-Film Transistor Tr13 and the amount of change ΔVN12 of the voltage at the contact N12.
Therefore, for example, by setting the capacitance value of the capacitor Csa lesser (Csa<Cta) in comparison with the parasitic capacitance Cta, the current value of the write-in current IAa relative to the light generation drive current IAb can be enlarged (IAa>IAb) by increasing the amount of change ΔVN12 of the voltage at the contact N12 at the time of the write-in operation. In this case, since the parasitic capacitance (wiring capacity) which enlarges the current value of the gradation current Id supplied to the data lines DL and added to the data lines DL can be charged rapidly, even if the display signal is of relatively low luminosity gradation, the write-in speed to the display panel can be raised and improvement of the display response characteristics can be advanced.
Furthermore, in the above-mentioned embodiment, although the circuit configuration is comprised with the three Thin-Film Transistors Tr11, Tr12 and Tr13 as the pixel driver circuit DCA was explained and shown as an example, the present invention of the pixel driver circuit DCA which applies the current assignment method is not limited to this embodiment. Relative to Thin-Film Transistors comprised with the current/voltage conversion function and luminescent drive function provided in the pixel driver circuit DCA, if the device has a connection configuration with light emitting devices (organic EL devices) which serve as the load but not connected to what is called a source follower type and the constant voltage by the constant voltage regulated power source is applied to the input terminal side (anode terminal of the organic EL devices) of these light emitting devices, it cannot be overemphasized that there can be other circuit configurations.
<<Display Device>>
Next, the driver circuit concerning the embodiment mentioned above is applied to the pixel driver circuit of the display pixels, and the display device comprised with the display panel arranged with a plurality of these display pixels in a matrix form will be explained with reference to the drawings.
As shown in
Next, each of the above-mentioned configurations will be explained below.
(Display Panel)
The display panel 110, as shown in
Here, the pixel driver circuit DC is set as the selection state (selection period) corresponding to the write-in operation period in the driver circuit DCA mentioned above or the non-selection state (holding period) corresponding to the luminescent operation period based on the selection signal Vsel. Briefly, in a selection state, the gradation current Ipix is taken in according to the display signal and stored as a voltage level. Then, in an on-selection state, the light generation drive current IAb according to the voltage level stored is supplied to the organic EL devices OEL which have the function to emit light continuously by predetermined luminosity gradation. This will be described in more detail below.
(Scanning Driver)
The scanning driver 120A (scanning driver circuit) by applying sequentially the high-level scanning signal Vsel to each selection line SL sets the selection state for each line of the display pixels, supplies the gradation current Ipix to the data lines DL based on the display signal by the data driver 130 and controls the predetermined write-in current IAa to each of the display pixels, based on the scanning control signals supplied from the system controller 150.
Specifically, as shown in
(Data Driver)
The data driver 130 (signal driver circuit) takes in and stores the display signal from the display signal generation circuit 160 at predetermined timing based on data control signals (an output power enable signal OE, a data latch signal STB, a sampling start signal STR, a shift clock signal CLK and the like) supplied from the system controller 150, converts the gradation voltage corresponding to the display signal into the current component and collectively supplies it to each of the data lines DL as the gradation current Ipix.
Specifically, the data driver 130 as shown in
Here, the voltage current conversion and gradation current supply circuit 135 configuration is shown in
According to such voltage current conversion and a gradation current supply circuit, the gradation current Ipix which is composed of Ipix=Vpix/R is generated to the gradation voltage Vpix inputted and the data lines DL are supplied based on the input timing of the output power enable signal OE.
Therefore, according to the data driver 130 related to the embodiment, the gradation voltage Vpix according to the display signal is converted into gradation current Ipix; each of the data lines DL is supplied at predetermined timing; and controlled so that the gradation current Ipix corresponding to the display signal flows to each of the display pixels (pixel driver circuit) of the line set as the selection state.
(System Controller)
The system controller 150 outputs the scanning control signals and data control signals (the scanning shift start signal SSTR, the scanning clock signal SCLK, the shift start signal STR, the shift clock signal CLK, the latch signal STB, the output power enable signal OE and the like mentioned above) and the power supply control signals (the power start signal VSTR, the power supply clock signal VCLK and the like) which control the operational state to each of the scanning driver 120A, the data driver 130 and the power supply driver 140, as well as operates each driver at predetermined timing. The selection signal Vsel, the gradation current Ipix and the voltage Vcc having predetermined voltage levels are made to generate and output the drive control operation (write-in operation and luminescent operation) in each of the display pixels (pixel driver circuit) which are performed continuously to control the image information based on predetermined video signals which are then displayed on the display panel 110.
(Power Supply Driver)
The power supply driver 140 synchronizes with the timing (write-in operation period) to set the selection state for each line of the display pixel clusters by the above-mentioned scanning driver 120A based on the power supply control signals supplied from the system controller 150. By applying the high-level voltage Vch (voltage level lower than selection signal Vsel and the gradation voltage Vpix) to the power supply lines VL, the predetermined write-in current IAa based on the display signal is supplied in the direction of the power supply lines VL via the data lines DL and the display pixels (pixel driver circuit DC) from the data driver 130.
On the other hand, synchronizing with the timing (luminescent operation period) to set the non-selection state for each line of the display pixel clusters by the scanning driver 120A, controls the flow of the light generation light generation drive current IAb equivalent to the write-in current written based on the display signals in the direction of the power supply lines VL via the pixel driver circuit DC from the organic EL devices OEL by applying the low-level voltage Vcl to the power supply lines VL (Refer to
Specifically, the power supply driver 140 as shown in
(Display Signal Generation Circuit)
The display signal generation circuit 160, for example, extracts the luminosity gradation signal component from the video signals supplied externally from the display device and supplies this to the data register circuit 132 of the data driver 130 by making this luminosity gradation component into the display signal for every one line period of the display panel 110.
Here, when the above-mentioned video signals includes a timing signal component which specifies the display timing as a television broadcast signal (composite video signal), the display signal generation circuit 160 may have the function which extracts the timing signal component besides the function which extracts the above-mentioned luminosity gradation signal component and is supplied to the system controller 150. In this case, the above-mentioned system controller 150 generates the scanning control signals and data control signals supplied to the scanning driver 120A, the data driver 130 and the power supply driver 140 based on the timing signal supplied from the display signal generation circuit 160.
In addition, as the driver attached to the periphery of the display panel 110, as shown in
Next, the drive method in the display device which has the above configuration will be explained.
Also, explanation will refer accordingly to the configuration in
The drive method of the display device related to the embodiment is shown in
Secondly, based on the voltage component corresponding to the luminescent operation period (second timing operation) shown in
As shown in
As shown in
Therefore, according to the display device related to this embodiment and method of driving the display device, the pixel driver circuit provided in each of the display pixels which constitutes the display panel such as the case of the above-mentioned driver circuit comprises a single n-type Thin-Film Transistor with both the current/voltage conversion function of the write-in current and the supply function of the drive current. Furthermore, since the circuit configuration does not have what is termed a source follower type circuit configuration, the optical elements serve as the load connected to the drain terminal. In addition, significant advantages can be acquired such as the current value of the drive current supplied to the optical elements is not influenced by operating characteristic changes of this Thin-Film Transistor; and during changeovers to the luminescent operation period from the write-in operation period, the potential between gate-source is not influenced by the characteristic factors that change properties with the passage of time in the optical elements and the like.
Accordingly, as the relation of the drive current to the display signal is maintained constant, the luminescent characteristics by the predetermined luminosity gradation of the optical elements relative to the display signal can be maintained constant and stabilized display image quality over a long period of time can be achieved.
Also, the capacitor and the parasitic capacitance which constitute the capacity component provided between the gate-source of the above-mentioned Thin-Film Transistor, the capacitative value of the parasitic capacitance is set more than the capacitor because the current value of the write-in current in order to flow predetermined drive current can be set greater. For example, when minute drive current is supplied to the light emitting devices as in the case of miniaturization of the light emitting devices, or in the case where the luminescent operation of the light emitting devices is performed at relatively low luminosity gradation, or even in the case where the write-in operation period (selection period) of each display pixel is set briefly, the wiring capacity of the data lines can be charged in a short period of time according to the gradation current which has a relatively large current value. Therefore, the display signal can be written in satisfactorily within the write-in predetermined operation period, and the display device superior display response characteristics or image quality can be achieved; thereby, having a display panel in which higher-resolution can be performed.
While the present invention has been described with reference to the preferred embodiments, it is intended that the invention be not limited by any of the details of the description thereof.
As this invention can be embodied in several forms without departing from the spirit of the essential characteristics thereof, the present embodiments are therefore illustrative and not restrictive, since the scope of the invention is defined by the appended claims rather than by the description preceding them, and all changes that fall within meets and bounds of the claims, or equivalence of such meets and bounds thereof are intended to be embraced by the claims.
Number | Date | Country | Kind |
---|---|---|---|
2003-058959 | Mar 2003 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
6798251 | Schafferer | Sep 2004 | B1 |
6943759 | Tam | Sep 2005 | B2 |
Number | Date | Country |
---|---|---|
2002-156923 | May 2002 | JP |
2003-140612 | May 2003 | JP |
WO 0106484 | Jan 2001 | WO |
WO 03001496 | Jan 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20040189627 A1 | Sep 2004 | US |